Home | History | Annotate | Download | only in Hexagon
      1 //===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // MachineScheduler schedules machine instructions after phi elimination. It
     11 // preserves LiveIntervals so it can be invoked before register allocation.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "HexagonMachineScheduler.h"
     16 #include "llvm/CodeGen/MachineLoopInfo.h"
     17 #include "llvm/IR/Function.h"
     18 
     19 using namespace llvm;
     20 
     21 #define DEBUG_TYPE "misched"
     22 
     23 /// Platform-specific modifications to DAG.
     24 void VLIWMachineScheduler::postprocessDAG() {
     25   SUnit* LastSequentialCall = nullptr;
     26   // Currently we only catch the situation when compare gets scheduled
     27   // before preceding call.
     28   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
     29     // Remember the call.
     30     if (SUnits[su].getInstr()->isCall())
     31       LastSequentialCall = &(SUnits[su]);
     32     // Look for a compare that defines a predicate.
     33     else if (SUnits[su].getInstr()->isCompare() && LastSequentialCall)
     34       SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier));
     35   }
     36 }
     37 
     38 /// Check if scheduling of this SU is possible
     39 /// in the current packet.
     40 /// It is _not_ precise (statefull), it is more like
     41 /// another heuristic. Many corner cases are figured
     42 /// empirically.
     43 bool VLIWResourceModel::isResourceAvailable(SUnit *SU) {
     44   if (!SU || !SU->getInstr())
     45     return false;
     46 
     47   // First see if the pipeline could receive this instruction
     48   // in the current cycle.
     49   switch (SU->getInstr()->getOpcode()) {
     50   default:
     51     if (!ResourcesModel->canReserveResources(SU->getInstr()))
     52       return false;
     53   case TargetOpcode::EXTRACT_SUBREG:
     54   case TargetOpcode::INSERT_SUBREG:
     55   case TargetOpcode::SUBREG_TO_REG:
     56   case TargetOpcode::REG_SEQUENCE:
     57   case TargetOpcode::IMPLICIT_DEF:
     58   case TargetOpcode::COPY:
     59   case TargetOpcode::INLINEASM:
     60     break;
     61   }
     62 
     63   // Now see if there are no other dependencies to instructions already
     64   // in the packet.
     65   for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
     66     if (Packet[i]->Succs.size() == 0)
     67       continue;
     68     for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
     69          E = Packet[i]->Succs.end(); I != E; ++I) {
     70       // Since we do not add pseudos to packets, might as well
     71       // ignore order dependencies.
     72       if (I->isCtrl())
     73         continue;
     74 
     75       if (I->getSUnit() == SU)
     76         return false;
     77     }
     78   }
     79   return true;
     80 }
     81 
     82 /// Keep track of available resources.
     83 bool VLIWResourceModel::reserveResources(SUnit *SU) {
     84   bool startNewCycle = false;
     85   // Artificially reset state.
     86   if (!SU) {
     87     ResourcesModel->clearResources();
     88     Packet.clear();
     89     TotalPackets++;
     90     return false;
     91   }
     92   // If this SU does not fit in the packet
     93   // start a new one.
     94   if (!isResourceAvailable(SU)) {
     95     ResourcesModel->clearResources();
     96     Packet.clear();
     97     TotalPackets++;
     98     startNewCycle = true;
     99   }
    100 
    101   switch (SU->getInstr()->getOpcode()) {
    102   default:
    103     ResourcesModel->reserveResources(SU->getInstr());
    104     break;
    105   case TargetOpcode::EXTRACT_SUBREG:
    106   case TargetOpcode::INSERT_SUBREG:
    107   case TargetOpcode::SUBREG_TO_REG:
    108   case TargetOpcode::REG_SEQUENCE:
    109   case TargetOpcode::IMPLICIT_DEF:
    110   case TargetOpcode::KILL:
    111   case TargetOpcode::CFI_INSTRUCTION:
    112   case TargetOpcode::EH_LABEL:
    113   case TargetOpcode::COPY:
    114   case TargetOpcode::INLINEASM:
    115     break;
    116   }
    117   Packet.push_back(SU);
    118 
    119 #ifndef NDEBUG
    120   DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
    121   for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
    122     DEBUG(dbgs() << "\t[" << i << "] SU(");
    123     DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
    124     DEBUG(Packet[i]->getInstr()->dump());
    125   }
    126 #endif
    127 
    128   // If packet is now full, reset the state so in the next cycle
    129   // we start fresh.
    130   if (Packet.size() >= SchedModel->getIssueWidth()) {
    131     ResourcesModel->clearResources();
    132     Packet.clear();
    133     TotalPackets++;
    134     startNewCycle = true;
    135   }
    136 
    137   return startNewCycle;
    138 }
    139 
    140 /// schedule - Called back from MachineScheduler::runOnMachineFunction
    141 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
    142 /// only includes instructions that have DAG nodes, not scheduling boundaries.
    143 void VLIWMachineScheduler::schedule() {
    144   DEBUG(dbgs()
    145         << "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
    146         << " " << BB->getName()
    147         << " in_func " << BB->getParent()->getFunction()->getName()
    148         << " at loop depth "  << MLI.getLoopDepth(BB)
    149         << " \n");
    150 
    151   buildDAGWithRegPressure();
    152 
    153   // Postprocess the DAG to add platform-specific artificial dependencies.
    154   postprocessDAG();
    155 
    156   SmallVector<SUnit*, 8> TopRoots, BotRoots;
    157   findRootsAndBiasEdges(TopRoots, BotRoots);
    158 
    159   // Initialize the strategy before modifying the DAG.
    160   SchedImpl->initialize(this);
    161 
    162   // To view Height/Depth correctly, they should be accessed at least once.
    163   //
    164   // FIXME: SUnit::dumpAll always recompute depth and height now. The max
    165   // depth/height could be computed directly from the roots and leaves.
    166   DEBUG(unsigned maxH = 0;
    167         for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    168           if (SUnits[su].getHeight() > maxH)
    169             maxH = SUnits[su].getHeight();
    170         dbgs() << "Max Height " << maxH << "\n";);
    171   DEBUG(unsigned maxD = 0;
    172         for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    173           if (SUnits[su].getDepth() > maxD)
    174             maxD = SUnits[su].getDepth();
    175         dbgs() << "Max Depth " << maxD << "\n";);
    176   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    177           SUnits[su].dumpAll(this));
    178 
    179   initQueues(TopRoots, BotRoots);
    180 
    181   bool IsTopNode = false;
    182   while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
    183     if (!checkSchedLimit())
    184       break;
    185 
    186     scheduleMI(SU, IsTopNode);
    187 
    188     updateQueues(SU, IsTopNode);
    189 
    190     // Notify the scheduling strategy after updating the DAG.
    191     SchedImpl->schedNode(SU, IsTopNode);
    192   }
    193   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
    194 
    195   placeDebugValues();
    196 }
    197 
    198 void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) {
    199   DAG = static_cast<VLIWMachineScheduler*>(dag);
    200   SchedModel = DAG->getSchedModel();
    201 
    202   Top.init(DAG, SchedModel);
    203   Bot.init(DAG, SchedModel);
    204 
    205   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
    206   // are disabled, then these HazardRecs will be disabled.
    207   const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries();
    208   const TargetMachine &TM = DAG->MF.getTarget();
    209   delete Top.HazardRec;
    210   delete Bot.HazardRec;
    211   Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
    212   Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
    213 
    214   delete Top.ResourceModel;
    215   delete Bot.ResourceModel;
    216   Top.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
    217   Bot.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
    218 
    219   assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) &&
    220          "-misched-topdown incompatible with -misched-bottomup");
    221 }
    222 
    223 void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
    224   if (SU->isScheduled)
    225     return;
    226 
    227   for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    228        I != E; ++I) {
    229     unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
    230     unsigned MinLatency = I->getLatency();
    231 #ifndef NDEBUG
    232     Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
    233 #endif
    234     if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
    235       SU->TopReadyCycle = PredReadyCycle + MinLatency;
    236   }
    237   Top.releaseNode(SU, SU->TopReadyCycle);
    238 }
    239 
    240 void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
    241   if (SU->isScheduled)
    242     return;
    243 
    244   assert(SU->getInstr() && "Scheduled SUnit must have instr");
    245 
    246   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    247        I != E; ++I) {
    248     unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
    249     unsigned MinLatency = I->getLatency();
    250 #ifndef NDEBUG
    251     Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
    252 #endif
    253     if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
    254       SU->BotReadyCycle = SuccReadyCycle + MinLatency;
    255   }
    256   Bot.releaseNode(SU, SU->BotReadyCycle);
    257 }
    258 
    259 /// Does this SU have a hazard within the current instruction group.
    260 ///
    261 /// The scheduler supports two modes of hazard recognition. The first is the
    262 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
    263 /// supports highly complicated in-order reservation tables
    264 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
    265 ///
    266 /// The second is a streamlined mechanism that checks for hazards based on
    267 /// simple counters that the scheduler itself maintains. It explicitly checks
    268 /// for instruction dispatch limitations, including the number of micro-ops that
    269 /// can dispatch per cycle.
    270 ///
    271 /// TODO: Also check whether the SU must start a new group.
    272 bool ConvergingVLIWScheduler::VLIWSchedBoundary::checkHazard(SUnit *SU) {
    273   if (HazardRec->isEnabled())
    274     return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
    275 
    276   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
    277   if (IssueCount + uops > SchedModel->getIssueWidth())
    278     return true;
    279 
    280   return false;
    281 }
    282 
    283 void ConvergingVLIWScheduler::VLIWSchedBoundary::releaseNode(SUnit *SU,
    284                                                      unsigned ReadyCycle) {
    285   if (ReadyCycle < MinReadyCycle)
    286     MinReadyCycle = ReadyCycle;
    287 
    288   // Check for interlocks first. For the purpose of other heuristics, an
    289   // instruction that cannot issue appears as if it's not in the ReadyQueue.
    290   if (ReadyCycle > CurrCycle || checkHazard(SU))
    291 
    292     Pending.push(SU);
    293   else
    294     Available.push(SU);
    295 }
    296 
    297 /// Move the boundary of scheduled code by one cycle.
    298 void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpCycle() {
    299   unsigned Width = SchedModel->getIssueWidth();
    300   IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
    301 
    302   assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
    303   unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
    304 
    305   if (!HazardRec->isEnabled()) {
    306     // Bypass HazardRec virtual calls.
    307     CurrCycle = NextCycle;
    308   } else {
    309     // Bypass getHazardType calls in case of long latency.
    310     for (; CurrCycle != NextCycle; ++CurrCycle) {
    311       if (isTop())
    312         HazardRec->AdvanceCycle();
    313       else
    314         HazardRec->RecedeCycle();
    315     }
    316   }
    317   CheckPending = true;
    318 
    319   DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
    320         << CurrCycle << '\n');
    321 }
    322 
    323 /// Move the boundary of scheduled code by one SUnit.
    324 void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpNode(SUnit *SU) {
    325   bool startNewCycle = false;
    326 
    327   // Update the reservation table.
    328   if (HazardRec->isEnabled()) {
    329     if (!isTop() && SU->isCall) {
    330       // Calls are scheduled with their preceding instructions. For bottom-up
    331       // scheduling, clear the pipeline state before emitting.
    332       HazardRec->Reset();
    333     }
    334     HazardRec->EmitInstruction(SU);
    335   }
    336 
    337   // Update DFA model.
    338   startNewCycle = ResourceModel->reserveResources(SU);
    339 
    340   // Check the instruction group dispatch limit.
    341   // TODO: Check if this SU must end a dispatch group.
    342   IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
    343   if (startNewCycle) {
    344     DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
    345     bumpCycle();
    346   }
    347   else
    348     DEBUG(dbgs() << "*** IssueCount " << IssueCount
    349           << " at cycle " << CurrCycle << '\n');
    350 }
    351 
    352 /// Release pending ready nodes in to the available queue. This makes them
    353 /// visible to heuristics.
    354 void ConvergingVLIWScheduler::VLIWSchedBoundary::releasePending() {
    355   // If the available queue is empty, it is safe to reset MinReadyCycle.
    356   if (Available.empty())
    357     MinReadyCycle = UINT_MAX;
    358 
    359   // Check to see if any of the pending instructions are ready to issue.  If
    360   // so, add them to the available queue.
    361   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
    362     SUnit *SU = *(Pending.begin()+i);
    363     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
    364 
    365     if (ReadyCycle < MinReadyCycle)
    366       MinReadyCycle = ReadyCycle;
    367 
    368     if (ReadyCycle > CurrCycle)
    369       continue;
    370 
    371     if (checkHazard(SU))
    372       continue;
    373 
    374     Available.push(SU);
    375     Pending.remove(Pending.begin()+i);
    376     --i; --e;
    377   }
    378   CheckPending = false;
    379 }
    380 
    381 /// Remove SU from the ready set for this boundary.
    382 void ConvergingVLIWScheduler::VLIWSchedBoundary::removeReady(SUnit *SU) {
    383   if (Available.isInQueue(SU))
    384     Available.remove(Available.find(SU));
    385   else {
    386     assert(Pending.isInQueue(SU) && "bad ready count");
    387     Pending.remove(Pending.find(SU));
    388   }
    389 }
    390 
    391 /// If this queue only has one ready candidate, return it. As a side effect,
    392 /// advance the cycle until at least one node is ready. If multiple instructions
    393 /// are ready, return NULL.
    394 SUnit *ConvergingVLIWScheduler::VLIWSchedBoundary::pickOnlyChoice() {
    395   if (CheckPending)
    396     releasePending();
    397 
    398   for (unsigned i = 0; Available.empty(); ++i) {
    399     assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
    400            "permanent hazard"); (void)i;
    401     ResourceModel->reserveResources(nullptr);
    402     bumpCycle();
    403     releasePending();
    404   }
    405   if (Available.size() == 1)
    406     return *Available.begin();
    407   return nullptr;
    408 }
    409 
    410 #ifndef NDEBUG
    411 void ConvergingVLIWScheduler::traceCandidate(const char *Label,
    412                                              const ReadyQueue &Q,
    413                                              SUnit *SU, PressureChange P) {
    414   dbgs() << Label << " " << Q.getName() << " ";
    415   if (P.isValid())
    416     dbgs() << DAG->TRI->getRegPressureSetName(P.getPSet()) << ":"
    417            << P.getUnitInc() << " ";
    418   else
    419     dbgs() << "     ";
    420   SU->dump(DAG);
    421 }
    422 #endif
    423 
    424 /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
    425 /// of SU, return it, otherwise return null.
    426 static SUnit *getSingleUnscheduledPred(SUnit *SU) {
    427   SUnit *OnlyAvailablePred = nullptr;
    428   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    429        I != E; ++I) {
    430     SUnit &Pred = *I->getSUnit();
    431     if (!Pred.isScheduled) {
    432       // We found an available, but not scheduled, predecessor.  If it's the
    433       // only one we have found, keep track of it... otherwise give up.
    434       if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
    435         return nullptr;
    436       OnlyAvailablePred = &Pred;
    437     }
    438   }
    439   return OnlyAvailablePred;
    440 }
    441 
    442 /// getSingleUnscheduledSucc - If there is exactly one unscheduled successor
    443 /// of SU, return it, otherwise return null.
    444 static SUnit *getSingleUnscheduledSucc(SUnit *SU) {
    445   SUnit *OnlyAvailableSucc = nullptr;
    446   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    447        I != E; ++I) {
    448     SUnit &Succ = *I->getSUnit();
    449     if (!Succ.isScheduled) {
    450       // We found an available, but not scheduled, successor.  If it's the
    451       // only one we have found, keep track of it... otherwise give up.
    452       if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ)
    453         return nullptr;
    454       OnlyAvailableSucc = &Succ;
    455     }
    456   }
    457   return OnlyAvailableSucc;
    458 }
    459 
    460 // Constants used to denote relative importance of
    461 // heuristic components for cost computation.
    462 static const unsigned PriorityOne = 200;
    463 static const unsigned PriorityTwo = 50;
    464 static const unsigned ScaleTwo = 10;
    465 static const unsigned FactorOne = 2;
    466 
    467 /// Single point to compute overall scheduling cost.
    468 /// TODO: More heuristics will be used soon.
    469 int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
    470                                             SchedCandidate &Candidate,
    471                                             RegPressureDelta &Delta,
    472                                             bool verbose) {
    473   // Initial trivial priority.
    474   int ResCount = 1;
    475 
    476   // Do not waste time on a node that is already scheduled.
    477   if (!SU || SU->isScheduled)
    478     return ResCount;
    479 
    480   // Forced priority is high.
    481   if (SU->isScheduleHigh)
    482     ResCount += PriorityOne;
    483 
    484   // Critical path first.
    485   if (Q.getID() == TopQID) {
    486     ResCount += (SU->getHeight() * ScaleTwo);
    487 
    488     // If resources are available for it, multiply the
    489     // chance of scheduling.
    490     if (Top.ResourceModel->isResourceAvailable(SU))
    491       ResCount <<= FactorOne;
    492   } else {
    493     ResCount += (SU->getDepth() * ScaleTwo);
    494 
    495     // If resources are available for it, multiply the
    496     // chance of scheduling.
    497     if (Bot.ResourceModel->isResourceAvailable(SU))
    498       ResCount <<= FactorOne;
    499   }
    500 
    501   unsigned NumNodesBlocking = 0;
    502   if (Q.getID() == TopQID) {
    503     // How many SUs does it block from scheduling?
    504     // Look at all of the successors of this node.
    505     // Count the number of nodes that
    506     // this node is the sole unscheduled node for.
    507     for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    508          I != E; ++I)
    509       if (getSingleUnscheduledPred(I->getSUnit()) == SU)
    510         ++NumNodesBlocking;
    511   } else {
    512     // How many unscheduled predecessors block this node?
    513     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    514          I != E; ++I)
    515       if (getSingleUnscheduledSucc(I->getSUnit()) == SU)
    516         ++NumNodesBlocking;
    517   }
    518   ResCount += (NumNodesBlocking * ScaleTwo);
    519 
    520   // Factor in reg pressure as a heuristic.
    521   ResCount -= (Delta.Excess.getUnitInc()*PriorityTwo);
    522   ResCount -= (Delta.CriticalMax.getUnitInc()*PriorityTwo);
    523 
    524   DEBUG(if (verbose) dbgs() << " Total(" << ResCount << ")");
    525 
    526   return ResCount;
    527 }
    528 
    529 /// Pick the best candidate from the top queue.
    530 ///
    531 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
    532 /// DAG building. To adjust for the current scheduling location we need to
    533 /// maintain the number of vreg uses remaining to be top-scheduled.
    534 ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
    535 pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
    536                   SchedCandidate &Candidate) {
    537   DEBUG(Q.dump());
    538 
    539   // getMaxPressureDelta temporarily modifies the tracker.
    540   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
    541 
    542   // BestSU remains NULL if no top candidates beat the best existing candidate.
    543   CandResult FoundCandidate = NoCand;
    544   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
    545     RegPressureDelta RPDelta;
    546     TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
    547                                     DAG->getRegionCriticalPSets(),
    548                                     DAG->getRegPressure().MaxSetPressure);
    549 
    550     int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);
    551 
    552     // Initialize the candidate if needed.
    553     if (!Candidate.SU) {
    554       Candidate.SU = *I;
    555       Candidate.RPDelta = RPDelta;
    556       Candidate.SCost = CurrentCost;
    557       FoundCandidate = NodeOrder;
    558       continue;
    559     }
    560 
    561     // Best cost.
    562     if (CurrentCost > Candidate.SCost) {
    563       DEBUG(traceCandidate("CCAND", Q, *I));
    564       Candidate.SU = *I;
    565       Candidate.RPDelta = RPDelta;
    566       Candidate.SCost = CurrentCost;
    567       FoundCandidate = BestCost;
    568       continue;
    569     }
    570 
    571     // Fall through to original instruction order.
    572     // Only consider node order if Candidate was chosen from this Q.
    573     if (FoundCandidate == NoCand)
    574       continue;
    575   }
    576   return FoundCandidate;
    577 }
    578 
    579 /// Pick the best candidate node from either the top or bottom queue.
    580 SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
    581   // Schedule as far as possible in the direction of no choice. This is most
    582   // efficient, but also provides the best heuristics for CriticalPSets.
    583   if (SUnit *SU = Bot.pickOnlyChoice()) {
    584     IsTopNode = false;
    585     return SU;
    586   }
    587   if (SUnit *SU = Top.pickOnlyChoice()) {
    588     IsTopNode = true;
    589     return SU;
    590   }
    591   SchedCandidate BotCand;
    592   // Prefer bottom scheduling when heuristics are silent.
    593   CandResult BotResult = pickNodeFromQueue(Bot.Available,
    594                                            DAG->getBotRPTracker(), BotCand);
    595   assert(BotResult != NoCand && "failed to find the first candidate");
    596 
    597   // If either Q has a single candidate that provides the least increase in
    598   // Excess pressure, we can immediately schedule from that Q.
    599   //
    600   // RegionCriticalPSets summarizes the pressure within the scheduled region and
    601   // affects picking from either Q. If scheduling in one direction must
    602   // increase pressure for one of the excess PSets, then schedule in that
    603   // direction first to provide more freedom in the other direction.
    604   if (BotResult == SingleExcess || BotResult == SingleCritical) {
    605     IsTopNode = false;
    606     return BotCand.SU;
    607   }
    608   // Check if the top Q has a better candidate.
    609   SchedCandidate TopCand;
    610   CandResult TopResult = pickNodeFromQueue(Top.Available,
    611                                            DAG->getTopRPTracker(), TopCand);
    612   assert(TopResult != NoCand && "failed to find the first candidate");
    613 
    614   if (TopResult == SingleExcess || TopResult == SingleCritical) {
    615     IsTopNode = true;
    616     return TopCand.SU;
    617   }
    618   // If either Q has a single candidate that minimizes pressure above the
    619   // original region's pressure pick it.
    620   if (BotResult == SingleMax) {
    621     IsTopNode = false;
    622     return BotCand.SU;
    623   }
    624   if (TopResult == SingleMax) {
    625     IsTopNode = true;
    626     return TopCand.SU;
    627   }
    628   if (TopCand.SCost > BotCand.SCost) {
    629     IsTopNode = true;
    630     return TopCand.SU;
    631   }
    632   // Otherwise prefer the bottom candidate in node order.
    633   IsTopNode = false;
    634   return BotCand.SU;
    635 }
    636 
    637 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
    638 SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
    639   if (DAG->top() == DAG->bottom()) {
    640     assert(Top.Available.empty() && Top.Pending.empty() &&
    641            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
    642     return nullptr;
    643   }
    644   SUnit *SU;
    645   if (llvm::ForceTopDown) {
    646     SU = Top.pickOnlyChoice();
    647     if (!SU) {
    648       SchedCandidate TopCand;
    649       CandResult TopResult =
    650         pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
    651       assert(TopResult != NoCand && "failed to find the first candidate");
    652       (void)TopResult;
    653       SU = TopCand.SU;
    654     }
    655     IsTopNode = true;
    656   } else if (llvm::ForceBottomUp) {
    657     SU = Bot.pickOnlyChoice();
    658     if (!SU) {
    659       SchedCandidate BotCand;
    660       CandResult BotResult =
    661         pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
    662       assert(BotResult != NoCand && "failed to find the first candidate");
    663       (void)BotResult;
    664       SU = BotCand.SU;
    665     }
    666     IsTopNode = false;
    667   } else {
    668     SU = pickNodeBidrectional(IsTopNode);
    669   }
    670   if (SU->isTopReady())
    671     Top.removeReady(SU);
    672   if (SU->isBottomReady())
    673     Bot.removeReady(SU);
    674 
    675   DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
    676         << " Scheduling Instruction in cycle "
    677         << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
    678         SU->dump(DAG));
    679   return SU;
    680 }
    681 
    682 /// Update the scheduler's state after scheduling a node. This is the same node
    683 /// that was just returned by pickNode(). However, VLIWMachineScheduler needs
    684 /// to update it's state based on the current cycle before MachineSchedStrategy
    685 /// does.
    686 void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
    687   if (IsTopNode) {
    688     SU->TopReadyCycle = Top.CurrCycle;
    689     Top.bumpNode(SU);
    690   } else {
    691     SU->BotReadyCycle = Bot.CurrCycle;
    692     Bot.bumpNode(SU);
    693   }
    694 }
    695