1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as described in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenSchedule.h" 16 #include "CodeGenTarget.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/Regex.h" 20 #include "llvm/TableGen/Error.h" 21 22 using namespace llvm; 23 24 #define DEBUG_TYPE "subtarget-emitter" 25 26 #ifndef NDEBUG 27 static void dumpIdxVec(const IdxVec &V) { 28 for (unsigned i = 0, e = V.size(); i < e; ++i) { 29 dbgs() << V[i] << ", "; 30 } 31 } 32 static void dumpIdxVec(const SmallVectorImpl<unsigned> &V) { 33 for (unsigned i = 0, e = V.size(); i < e; ++i) { 34 dbgs() << V[i] << ", "; 35 } 36 } 37 #endif 38 39 namespace { 40 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 41 struct InstrsOp : public SetTheory::Operator { 42 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 43 ArrayRef<SMLoc> Loc) override { 44 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 45 } 46 }; 47 48 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 49 // 50 // TODO: Since this is a prefix match, perform a binary search over the 51 // instruction names using lower_bound. Note that the predefined instrs must be 52 // scanned linearly first. However, this is only safe if the regex pattern has 53 // no top-level bars. The DAG already has a list of patterns, so there's no 54 // reason to use top-level bars, but we need a way to verify they don't exist 55 // before implementing the optimization. 56 struct InstRegexOp : public SetTheory::Operator { 57 const CodeGenTarget &Target; 58 InstRegexOp(const CodeGenTarget &t): Target(t) {} 59 60 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 61 ArrayRef<SMLoc> Loc) override { 62 SmallVector<Regex, 4> RegexList; 63 for (DagInit::const_arg_iterator 64 AI = Expr->arg_begin(), AE = Expr->arg_end(); AI != AE; ++AI) { 65 StringInit *SI = dyn_cast<StringInit>(*AI); 66 if (!SI) 67 PrintFatalError(Loc, "instregex requires pattern string: " 68 + Expr->getAsString()); 69 std::string pat = SI->getValue(); 70 // Implement a python-style prefix match. 71 if (pat[0] != '^') { 72 pat.insert(0, "^("); 73 pat.insert(pat.end(), ')'); 74 } 75 RegexList.push_back(Regex(pat)); 76 } 77 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 78 E = Target.inst_end(); I != E; ++I) { 79 for (auto &R : RegexList) { 80 if (R.match((*I)->TheDef->getName())) 81 Elts.insert((*I)->TheDef); 82 } 83 } 84 } 85 }; 86 } // end anonymous namespace 87 88 /// CodeGenModels ctor interprets machine model records and populates maps. 89 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 90 const CodeGenTarget &TGT): 91 Records(RK), Target(TGT) { 92 93 Sets.addFieldExpander("InstRW", "Instrs"); 94 95 // Allow Set evaluation to recognize the dags used in InstRW records: 96 // (instrs Op1, Op1...) 97 Sets.addOperator("instrs", new InstrsOp); 98 Sets.addOperator("instregex", new InstRegexOp(Target)); 99 100 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 101 // that are explicitly referenced in tablegen records. Resources associated 102 // with each processor will be derived later. Populate ProcModelMap with the 103 // CodeGenProcModel instances. 104 collectProcModels(); 105 106 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 107 // defined, and populate SchedReads and SchedWrites vectors. Implicit 108 // SchedReadWrites that represent sequences derived from expanded variant will 109 // be inferred later. 110 collectSchedRW(); 111 112 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 113 // required by an instruction definition, and populate SchedClassIdxMap. Set 114 // NumItineraryClasses to the number of explicit itinerary classes referenced 115 // by instructions. Set NumInstrSchedClasses to the number of itinerary 116 // classes plus any classes implied by instructions that derive from class 117 // Sched and provide SchedRW list. This does not infer any new classes from 118 // SchedVariant. 119 collectSchedClasses(); 120 121 // Find instruction itineraries for each processor. Sort and populate 122 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 123 // all itinerary classes to be discovered. 124 collectProcItins(); 125 126 // Find ItinRW records for each processor and itinerary class. 127 // (For per-operand resources mapped to itinerary classes). 128 collectProcItinRW(); 129 130 // Infer new SchedClasses from SchedVariant. 131 inferSchedClasses(); 132 133 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 134 // ProcResourceDefs. 135 collectProcResources(); 136 } 137 138 /// Gather all processor models. 139 void CodeGenSchedModels::collectProcModels() { 140 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 141 std::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 142 143 // Reserve space because we can. Reallocation would be ok. 144 ProcModels.reserve(ProcRecords.size()+1); 145 146 // Use idx=0 for NoModel/NoItineraries. 147 Record *NoModelDef = Records.getDef("NoSchedModel"); 148 Record *NoItinsDef = Records.getDef("NoItineraries"); 149 ProcModels.push_back(CodeGenProcModel(0, "NoSchedModel", 150 NoModelDef, NoItinsDef)); 151 ProcModelMap[NoModelDef] = 0; 152 153 // For each processor, find a unique machine model. 154 for (unsigned i = 0, N = ProcRecords.size(); i < N; ++i) 155 addProcModel(ProcRecords[i]); 156 } 157 158 /// Get a unique processor model based on the defined MachineModel and 159 /// ProcessorItineraries. 160 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 161 Record *ModelKey = getModelOrItinDef(ProcDef); 162 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 163 return; 164 165 std::string Name = ModelKey->getName(); 166 if (ModelKey->isSubClassOf("SchedMachineModel")) { 167 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 168 ProcModels.push_back( 169 CodeGenProcModel(ProcModels.size(), Name, ModelKey, ItinsDef)); 170 } 171 else { 172 // An itinerary is defined without a machine model. Infer a new model. 173 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 174 Name = Name + "Model"; 175 ProcModels.push_back( 176 CodeGenProcModel(ProcModels.size(), Name, 177 ProcDef->getValueAsDef("SchedModel"), ModelKey)); 178 } 179 DEBUG(ProcModels.back().dump()); 180 } 181 182 // Recursively find all reachable SchedReadWrite records. 183 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 184 SmallPtrSet<Record*, 16> &RWSet) { 185 if (!RWSet.insert(RWDef)) 186 return; 187 RWDefs.push_back(RWDef); 188 // Reads don't current have sequence records, but it can be added later. 189 if (RWDef->isSubClassOf("WriteSequence")) { 190 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 191 for (RecIter I = Seq.begin(), E = Seq.end(); I != E; ++I) 192 scanSchedRW(*I, RWDefs, RWSet); 193 } 194 else if (RWDef->isSubClassOf("SchedVariant")) { 195 // Visit each variant (guarded by a different predicate). 196 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 197 for (RecIter VI = Vars.begin(), VE = Vars.end(); VI != VE; ++VI) { 198 // Visit each RW in the sequence selected by the current variant. 199 RecVec Selected = (*VI)->getValueAsListOfDefs("Selected"); 200 for (RecIter I = Selected.begin(), E = Selected.end(); I != E; ++I) 201 scanSchedRW(*I, RWDefs, RWSet); 202 } 203 } 204 } 205 206 // Collect and sort all SchedReadWrites reachable via tablegen records. 207 // More may be inferred later when inferring new SchedClasses from variants. 208 void CodeGenSchedModels::collectSchedRW() { 209 // Reserve idx=0 for invalid writes/reads. 210 SchedWrites.resize(1); 211 SchedReads.resize(1); 212 213 SmallPtrSet<Record*, 16> RWSet; 214 215 // Find all SchedReadWrites referenced by instruction defs. 216 RecVec SWDefs, SRDefs; 217 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 218 E = Target.inst_end(); I != E; ++I) { 219 Record *SchedDef = (*I)->TheDef; 220 if (SchedDef->isValueUnset("SchedRW")) 221 continue; 222 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 223 for (RecIter RWI = RWs.begin(), RWE = RWs.end(); RWI != RWE; ++RWI) { 224 if ((*RWI)->isSubClassOf("SchedWrite")) 225 scanSchedRW(*RWI, SWDefs, RWSet); 226 else { 227 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 228 scanSchedRW(*RWI, SRDefs, RWSet); 229 } 230 } 231 } 232 // Find all ReadWrites referenced by InstRW. 233 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 234 for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) { 235 // For all OperandReadWrites. 236 RecVec RWDefs = (*OI)->getValueAsListOfDefs("OperandReadWrites"); 237 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 238 RWI != RWE; ++RWI) { 239 if ((*RWI)->isSubClassOf("SchedWrite")) 240 scanSchedRW(*RWI, SWDefs, RWSet); 241 else { 242 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 243 scanSchedRW(*RWI, SRDefs, RWSet); 244 } 245 } 246 } 247 // Find all ReadWrites referenced by ItinRW. 248 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 249 for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { 250 // For all OperandReadWrites. 251 RecVec RWDefs = (*II)->getValueAsListOfDefs("OperandReadWrites"); 252 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 253 RWI != RWE; ++RWI) { 254 if ((*RWI)->isSubClassOf("SchedWrite")) 255 scanSchedRW(*RWI, SWDefs, RWSet); 256 else { 257 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 258 scanSchedRW(*RWI, SRDefs, RWSet); 259 } 260 } 261 } 262 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 263 // for the loop below that initializes Alias vectors. 264 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 265 std::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 266 for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { 267 Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); 268 Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); 269 if (MatchDef->isSubClassOf("SchedWrite")) { 270 if (!AliasDef->isSubClassOf("SchedWrite")) 271 PrintFatalError((*AI)->getLoc(), "SchedWrite Alias must be SchedWrite"); 272 scanSchedRW(AliasDef, SWDefs, RWSet); 273 } 274 else { 275 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 276 if (!AliasDef->isSubClassOf("SchedRead")) 277 PrintFatalError((*AI)->getLoc(), "SchedRead Alias must be SchedRead"); 278 scanSchedRW(AliasDef, SRDefs, RWSet); 279 } 280 } 281 // Sort and add the SchedReadWrites directly referenced by instructions or 282 // itinerary resources. Index reads and writes in separate domains. 283 std::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 284 for (RecIter SWI = SWDefs.begin(), SWE = SWDefs.end(); SWI != SWE; ++SWI) { 285 assert(!getSchedRWIdx(*SWI, /*IsRead=*/false) && "duplicate SchedWrite"); 286 SchedWrites.push_back(CodeGenSchedRW(SchedWrites.size(), *SWI)); 287 } 288 std::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 289 for (RecIter SRI = SRDefs.begin(), SRE = SRDefs.end(); SRI != SRE; ++SRI) { 290 assert(!getSchedRWIdx(*SRI, /*IsRead-*/true) && "duplicate SchedWrite"); 291 SchedReads.push_back(CodeGenSchedRW(SchedReads.size(), *SRI)); 292 } 293 // Initialize WriteSequence vectors. 294 for (std::vector<CodeGenSchedRW>::iterator WI = SchedWrites.begin(), 295 WE = SchedWrites.end(); WI != WE; ++WI) { 296 if (!WI->IsSequence) 297 continue; 298 findRWs(WI->TheDef->getValueAsListOfDefs("Writes"), WI->Sequence, 299 /*IsRead=*/false); 300 } 301 // Initialize Aliases vectors. 302 for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { 303 Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); 304 getSchedRW(AliasDef).IsAlias = true; 305 Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); 306 CodeGenSchedRW &RW = getSchedRW(MatchDef); 307 if (RW.IsAlias) 308 PrintFatalError((*AI)->getLoc(), "Cannot Alias an Alias"); 309 RW.Aliases.push_back(*AI); 310 } 311 DEBUG( 312 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 313 dbgs() << WIdx << ": "; 314 SchedWrites[WIdx].dump(); 315 dbgs() << '\n'; 316 } 317 for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { 318 dbgs() << RIdx << ": "; 319 SchedReads[RIdx].dump(); 320 dbgs() << '\n'; 321 } 322 RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 323 for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); 324 RI != RE; ++RI) { 325 if (!getSchedRWIdx(*RI, (*RI)->isSubClassOf("SchedRead"))) { 326 const std::string &Name = (*RI)->getName(); 327 if (Name != "NoWrite" && Name != "ReadDefault") 328 dbgs() << "Unused SchedReadWrite " << (*RI)->getName() << '\n'; 329 } 330 }); 331 } 332 333 /// Compute a SchedWrite name from a sequence of writes. 334 std::string CodeGenSchedModels::genRWName(const IdxVec& Seq, bool IsRead) { 335 std::string Name("("); 336 for (IdxIter I = Seq.begin(), E = Seq.end(); I != E; ++I) { 337 if (I != Seq.begin()) 338 Name += '_'; 339 Name += getSchedRW(*I, IsRead).Name; 340 } 341 Name += ')'; 342 return Name; 343 } 344 345 unsigned CodeGenSchedModels::getSchedRWIdx(Record *Def, bool IsRead, 346 unsigned After) const { 347 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 348 assert(After < RWVec.size() && "start position out of bounds"); 349 for (std::vector<CodeGenSchedRW>::const_iterator I = RWVec.begin() + After, 350 E = RWVec.end(); I != E; ++I) { 351 if (I->TheDef == Def) 352 return I - RWVec.begin(); 353 } 354 return 0; 355 } 356 357 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 358 for (unsigned i = 0, e = SchedReads.size(); i < e; ++i) { 359 Record *ReadDef = SchedReads[i].TheDef; 360 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 361 continue; 362 363 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 364 if (std::find(ValidWrites.begin(), ValidWrites.end(), WriteDef) 365 != ValidWrites.end()) { 366 return true; 367 } 368 } 369 return false; 370 } 371 372 namespace llvm { 373 void splitSchedReadWrites(const RecVec &RWDefs, 374 RecVec &WriteDefs, RecVec &ReadDefs) { 375 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { 376 if ((*RWI)->isSubClassOf("SchedWrite")) 377 WriteDefs.push_back(*RWI); 378 else { 379 assert((*RWI)->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 380 ReadDefs.push_back(*RWI); 381 } 382 } 383 } 384 } // namespace llvm 385 386 // Split the SchedReadWrites defs and call findRWs for each list. 387 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 388 IdxVec &Writes, IdxVec &Reads) const { 389 RecVec WriteDefs; 390 RecVec ReadDefs; 391 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 392 findRWs(WriteDefs, Writes, false); 393 findRWs(ReadDefs, Reads, true); 394 } 395 396 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 397 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 398 bool IsRead) const { 399 for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); RI != RE; ++RI) { 400 unsigned Idx = getSchedRWIdx(*RI, IsRead); 401 assert(Idx && "failed to collect SchedReadWrite"); 402 RWs.push_back(Idx); 403 } 404 } 405 406 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 407 bool IsRead) const { 408 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 409 if (!SchedRW.IsSequence) { 410 RWSeq.push_back(RWIdx); 411 return; 412 } 413 int Repeat = 414 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 415 for (int i = 0; i < Repeat; ++i) { 416 for (IdxIter I = SchedRW.Sequence.begin(), E = SchedRW.Sequence.end(); 417 I != E; ++I) { 418 expandRWSequence(*I, RWSeq, IsRead); 419 } 420 } 421 } 422 423 // Expand a SchedWrite as a sequence following any aliases that coincide with 424 // the given processor model. 425 void CodeGenSchedModels::expandRWSeqForProc( 426 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 427 const CodeGenProcModel &ProcModel) const { 428 429 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 430 Record *AliasDef = nullptr; 431 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); 432 AI != AE; ++AI) { 433 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 434 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 435 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 436 if (&getProcModel(ModelDef) != &ProcModel) 437 continue; 438 } 439 if (AliasDef) 440 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 441 "defined for processor " + ProcModel.ModelName + 442 " Ensure only one SchedAlias exists per RW."); 443 AliasDef = AliasRW.TheDef; 444 } 445 if (AliasDef) { 446 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 447 RWSeq, IsRead,ProcModel); 448 return; 449 } 450 if (!SchedWrite.IsSequence) { 451 RWSeq.push_back(RWIdx); 452 return; 453 } 454 int Repeat = 455 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 456 for (int i = 0; i < Repeat; ++i) { 457 for (IdxIter I = SchedWrite.Sequence.begin(), E = SchedWrite.Sequence.end(); 458 I != E; ++I) { 459 expandRWSeqForProc(*I, RWSeq, IsRead, ProcModel); 460 } 461 } 462 } 463 464 // Find the existing SchedWrite that models this sequence of writes. 465 unsigned CodeGenSchedModels::findRWForSequence(const IdxVec &Seq, 466 bool IsRead) { 467 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 468 469 for (std::vector<CodeGenSchedRW>::iterator I = RWVec.begin(), E = RWVec.end(); 470 I != E; ++I) { 471 if (I->Sequence == Seq) 472 return I - RWVec.begin(); 473 } 474 // Index zero reserved for invalid RW. 475 return 0; 476 } 477 478 /// Add this ReadWrite if it doesn't already exist. 479 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 480 bool IsRead) { 481 assert(!Seq.empty() && "cannot insert empty sequence"); 482 if (Seq.size() == 1) 483 return Seq.back(); 484 485 unsigned Idx = findRWForSequence(Seq, IsRead); 486 if (Idx) 487 return Idx; 488 489 unsigned RWIdx = IsRead ? SchedReads.size() : SchedWrites.size(); 490 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 491 if (IsRead) 492 SchedReads.push_back(SchedRW); 493 else 494 SchedWrites.push_back(SchedRW); 495 return RWIdx; 496 } 497 498 /// Visit all the instruction definitions for this target to gather and 499 /// enumerate the itinerary classes. These are the explicitly specified 500 /// SchedClasses. More SchedClasses may be inferred. 501 void CodeGenSchedModels::collectSchedClasses() { 502 503 // NoItinerary is always the first class at Idx=0 504 SchedClasses.resize(1); 505 SchedClasses.back().Index = 0; 506 SchedClasses.back().Name = "NoInstrModel"; 507 SchedClasses.back().ItinClassDef = Records.getDef("NoItinerary"); 508 SchedClasses.back().ProcIndices.push_back(0); 509 510 // Create a SchedClass for each unique combination of itinerary class and 511 // SchedRW list. 512 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 513 E = Target.inst_end(); I != E; ++I) { 514 Record *ItinDef = (*I)->TheDef->getValueAsDef("Itinerary"); 515 IdxVec Writes, Reads; 516 if (!(*I)->TheDef->isValueUnset("SchedRW")) 517 findRWs((*I)->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 518 519 // ProcIdx == 0 indicates the class applies to all processors. 520 IdxVec ProcIndices(1, 0); 521 522 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, ProcIndices); 523 InstrClassMap[(*I)->TheDef] = SCIdx; 524 } 525 // Create classes for InstRW defs. 526 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 527 std::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 528 for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) 529 createInstRWClass(*OI); 530 531 NumInstrSchedClasses = SchedClasses.size(); 532 533 bool EnableDump = false; 534 DEBUG(EnableDump = true); 535 if (!EnableDump) 536 return; 537 538 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 539 E = Target.inst_end(); I != E; ++I) { 540 541 std::string InstName = (*I)->TheDef->getName(); 542 unsigned SCIdx = InstrClassMap.lookup((*I)->TheDef); 543 if (!SCIdx) { 544 dbgs() << "No machine model for " << (*I)->TheDef->getName() << '\n'; 545 continue; 546 } 547 CodeGenSchedClass &SC = getSchedClass(SCIdx); 548 if (SC.ProcIndices[0] != 0) 549 PrintFatalError((*I)->TheDef->getLoc(), "Instruction's sched class " 550 "must not be subtarget specific."); 551 552 IdxVec ProcIndices; 553 if (SC.ItinClassDef->getName() != "NoItinerary") { 554 ProcIndices.push_back(0); 555 dbgs() << "Itinerary for " << InstName << ": " 556 << SC.ItinClassDef->getName() << '\n'; 557 } 558 if (!SC.Writes.empty()) { 559 ProcIndices.push_back(0); 560 dbgs() << "SchedRW machine model for " << InstName; 561 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; ++WI) 562 dbgs() << " " << SchedWrites[*WI].Name; 563 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) 564 dbgs() << " " << SchedReads[*RI].Name; 565 dbgs() << '\n'; 566 } 567 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 568 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 569 RWI != RWE; ++RWI) { 570 const CodeGenProcModel &ProcModel = 571 getProcModel((*RWI)->getValueAsDef("SchedModel")); 572 ProcIndices.push_back(ProcModel.Index); 573 dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName; 574 IdxVec Writes; 575 IdxVec Reads; 576 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 577 Writes, Reads); 578 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) 579 dbgs() << " " << SchedWrites[*WI].Name; 580 for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) 581 dbgs() << " " << SchedReads[*RI].Name; 582 dbgs() << '\n'; 583 } 584 for (std::vector<CodeGenProcModel>::iterator PI = ProcModels.begin(), 585 PE = ProcModels.end(); PI != PE; ++PI) { 586 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PI->Index)) 587 dbgs() << "No machine model for " << (*I)->TheDef->getName() 588 << " on processor " << PI->ModelName << '\n'; 589 } 590 } 591 } 592 593 /// Find an SchedClass that has been inferred from a per-operand list of 594 /// SchedWrites and SchedReads. 595 unsigned CodeGenSchedModels::findSchedClassIdx(Record *ItinClassDef, 596 const IdxVec &Writes, 597 const IdxVec &Reads) const { 598 for (SchedClassIter I = schedClassBegin(), E = schedClassEnd(); I != E; ++I) { 599 if (I->ItinClassDef == ItinClassDef 600 && I->Writes == Writes && I->Reads == Reads) { 601 return I - schedClassBegin(); 602 } 603 } 604 return 0; 605 } 606 607 // Get the SchedClass index for an instruction. 608 unsigned CodeGenSchedModels::getSchedClassIdx( 609 const CodeGenInstruction &Inst) const { 610 611 return InstrClassMap.lookup(Inst.TheDef); 612 } 613 614 std::string CodeGenSchedModels::createSchedClassName( 615 Record *ItinClassDef, const IdxVec &OperWrites, const IdxVec &OperReads) { 616 617 std::string Name; 618 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 619 Name = ItinClassDef->getName(); 620 for (IdxIter WI = OperWrites.begin(), WE = OperWrites.end(); WI != WE; ++WI) { 621 if (!Name.empty()) 622 Name += '_'; 623 Name += SchedWrites[*WI].Name; 624 } 625 for (IdxIter RI = OperReads.begin(), RE = OperReads.end(); RI != RE; ++RI) { 626 Name += '_'; 627 Name += SchedReads[*RI].Name; 628 } 629 return Name; 630 } 631 632 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 633 634 std::string Name; 635 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 636 if (I != InstDefs.begin()) 637 Name += '_'; 638 Name += (*I)->getName(); 639 } 640 return Name; 641 } 642 643 /// Add an inferred sched class from an itinerary class and per-operand list of 644 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 645 /// processors that may utilize this class. 646 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 647 const IdxVec &OperWrites, 648 const IdxVec &OperReads, 649 const IdxVec &ProcIndices) 650 { 651 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 652 653 unsigned Idx = findSchedClassIdx(ItinClassDef, OperWrites, OperReads); 654 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 655 IdxVec PI; 656 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 657 SchedClasses[Idx].ProcIndices.end(), 658 ProcIndices.begin(), ProcIndices.end(), 659 std::back_inserter(PI)); 660 SchedClasses[Idx].ProcIndices.swap(PI); 661 return Idx; 662 } 663 Idx = SchedClasses.size(); 664 SchedClasses.resize(Idx+1); 665 CodeGenSchedClass &SC = SchedClasses.back(); 666 SC.Index = Idx; 667 SC.Name = createSchedClassName(ItinClassDef, OperWrites, OperReads); 668 SC.ItinClassDef = ItinClassDef; 669 SC.Writes = OperWrites; 670 SC.Reads = OperReads; 671 SC.ProcIndices = ProcIndices; 672 673 return Idx; 674 } 675 676 // Create classes for each set of opcodes that are in the same InstReadWrite 677 // definition across all processors. 678 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 679 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 680 // intersects with an existing class via a previous InstRWDef. Instrs that do 681 // not intersect with an existing class refer back to their former class as 682 // determined from ItinDef or SchedRW. 683 SmallVector<std::pair<unsigned, SmallVector<Record *, 8> >, 4> ClassInstrs; 684 // Sort Instrs into sets. 685 const RecVec *InstDefs = Sets.expand(InstRWDef); 686 if (InstDefs->empty()) 687 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 688 689 for (RecIter I = InstDefs->begin(), E = InstDefs->end(); I != E; ++I) { 690 InstClassMapTy::const_iterator Pos = InstrClassMap.find(*I); 691 if (Pos == InstrClassMap.end()) 692 PrintFatalError((*I)->getLoc(), "No sched class for instruction."); 693 unsigned SCIdx = Pos->second; 694 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 695 for (; CIdx != CEnd; ++CIdx) { 696 if (ClassInstrs[CIdx].first == SCIdx) 697 break; 698 } 699 if (CIdx == CEnd) { 700 ClassInstrs.resize(CEnd + 1); 701 ClassInstrs[CIdx].first = SCIdx; 702 } 703 ClassInstrs[CIdx].second.push_back(*I); 704 } 705 // For each set of Instrs, create a new class if necessary, and map or remap 706 // the Instrs to it. 707 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 708 for (; CIdx != CEnd; ++CIdx) { 709 unsigned OldSCIdx = ClassInstrs[CIdx].first; 710 ArrayRef<Record*> InstDefs = ClassInstrs[CIdx].second; 711 // If the all instrs in the current class are accounted for, then leave 712 // them mapped to their old class. 713 if (OldSCIdx) { 714 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; 715 if (!RWDefs.empty()) { 716 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); 717 unsigned OrigNumInstrs = 0; 718 for (RecIter I = OrigInstDefs->begin(), E = OrigInstDefs->end(); 719 I != E; ++I) { 720 if (InstrClassMap[*I] == OldSCIdx) 721 ++OrigNumInstrs; 722 } 723 if (OrigNumInstrs == InstDefs.size()) { 724 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 725 "expected a generic SchedClass"); 726 DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" 727 << SchedClasses[OldSCIdx].Name << " on " 728 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 729 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); 730 continue; 731 } 732 } 733 } 734 unsigned SCIdx = SchedClasses.size(); 735 SchedClasses.resize(SCIdx+1); 736 CodeGenSchedClass &SC = SchedClasses.back(); 737 SC.Index = SCIdx; 738 SC.Name = createSchedClassName(InstDefs); 739 DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " 740 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 741 742 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 743 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 744 SC.Writes = SchedClasses[OldSCIdx].Writes; 745 SC.Reads = SchedClasses[OldSCIdx].Reads; 746 SC.ProcIndices.push_back(0); 747 // Map each Instr to this new class. 748 // Note that InstDefs may be a smaller list than InstRWDef's "Instrs". 749 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 750 SmallSet<unsigned, 4> RemappedClassIDs; 751 for (ArrayRef<Record*>::const_iterator 752 II = InstDefs.begin(), IE = InstDefs.end(); II != IE; ++II) { 753 unsigned OldSCIdx = InstrClassMap[*II]; 754 if (OldSCIdx && RemappedClassIDs.insert(OldSCIdx)) { 755 for (RecIter RI = SchedClasses[OldSCIdx].InstRWs.begin(), 756 RE = SchedClasses[OldSCIdx].InstRWs.end(); RI != RE; ++RI) { 757 if ((*RI)->getValueAsDef("SchedModel") == RWModelDef) { 758 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 759 (*II)->getName() + " also matches " + 760 (*RI)->getValue("Instrs")->getValue()->getAsString()); 761 } 762 assert(*RI != InstRWDef && "SchedClass has duplicate InstRW def"); 763 SC.InstRWs.push_back(*RI); 764 } 765 } 766 InstrClassMap[*II] = SCIdx; 767 } 768 SC.InstRWs.push_back(InstRWDef); 769 } 770 } 771 772 // True if collectProcItins found anything. 773 bool CodeGenSchedModels::hasItineraries() const { 774 for (CodeGenSchedModels::ProcIter PI = procModelBegin(), PE = procModelEnd(); 775 PI != PE; ++PI) { 776 if (PI->hasItineraries()) 777 return true; 778 } 779 return false; 780 } 781 782 // Gather the processor itineraries. 783 void CodeGenSchedModels::collectProcItins() { 784 for (std::vector<CodeGenProcModel>::iterator PI = ProcModels.begin(), 785 PE = ProcModels.end(); PI != PE; ++PI) { 786 CodeGenProcModel &ProcModel = *PI; 787 if (!ProcModel.hasItineraries()) 788 continue; 789 790 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 791 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 792 793 // Populate ItinDefList with Itinerary records. 794 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 795 796 // Insert each itinerary data record in the correct position within 797 // the processor model's ItinDefList. 798 for (unsigned i = 0, N = ItinRecords.size(); i < N; i++) { 799 Record *ItinData = ItinRecords[i]; 800 Record *ItinDef = ItinData->getValueAsDef("TheClass"); 801 bool FoundClass = false; 802 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 803 SCI != SCE; ++SCI) { 804 // Multiple SchedClasses may share an itinerary. Update all of them. 805 if (SCI->ItinClassDef == ItinDef) { 806 ProcModel.ItinDefList[SCI->Index] = ItinData; 807 FoundClass = true; 808 } 809 } 810 if (!FoundClass) { 811 DEBUG(dbgs() << ProcModel.ItinsDef->getName() 812 << " missing class for itinerary " << ItinDef->getName() << '\n'); 813 } 814 } 815 // Check for missing itinerary entries. 816 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 817 DEBUG( 818 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 819 if (!ProcModel.ItinDefList[i]) 820 dbgs() << ProcModel.ItinsDef->getName() 821 << " missing itinerary for class " 822 << SchedClasses[i].Name << '\n'; 823 }); 824 } 825 } 826 827 // Gather the read/write types for each itinerary class. 828 void CodeGenSchedModels::collectProcItinRW() { 829 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 830 std::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 831 for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { 832 if (!(*II)->getValueInit("SchedModel")->isComplete()) 833 PrintFatalError((*II)->getLoc(), "SchedModel is undefined"); 834 Record *ModelDef = (*II)->getValueAsDef("SchedModel"); 835 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 836 if (I == ProcModelMap.end()) { 837 PrintFatalError((*II)->getLoc(), "Undefined SchedMachineModel " 838 + ModelDef->getName()); 839 } 840 ProcModels[I->second].ItinRWDefs.push_back(*II); 841 } 842 } 843 844 /// Infer new classes from existing classes. In the process, this may create new 845 /// SchedWrites from sequences of existing SchedWrites. 846 void CodeGenSchedModels::inferSchedClasses() { 847 DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 848 849 // Visit all existing classes and newly created classes. 850 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 851 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 852 853 if (SchedClasses[Idx].ItinClassDef) 854 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 855 if (!SchedClasses[Idx].InstRWs.empty()) 856 inferFromInstRWs(Idx); 857 if (!SchedClasses[Idx].Writes.empty()) { 858 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 859 Idx, SchedClasses[Idx].ProcIndices); 860 } 861 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 862 "too many SchedVariants"); 863 } 864 } 865 866 /// Infer classes from per-processor itinerary resources. 867 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 868 unsigned FromClassIdx) { 869 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 870 const CodeGenProcModel &PM = ProcModels[PIdx]; 871 // For all ItinRW entries. 872 bool HasMatch = false; 873 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 874 II != IE; ++II) { 875 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 876 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 877 continue; 878 if (HasMatch) 879 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 880 + ItinClassDef->getName() 881 + " in ItinResources for " + PM.ModelName); 882 HasMatch = true; 883 IdxVec Writes, Reads; 884 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 885 IdxVec ProcIndices(1, PIdx); 886 inferFromRW(Writes, Reads, FromClassIdx, ProcIndices); 887 } 888 } 889 } 890 891 /// Infer classes from per-processor InstReadWrite definitions. 892 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 893 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { 894 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); 895 Record *Rec = SchedClasses[SCIdx].InstRWs[I]; 896 const RecVec *InstDefs = Sets.expand(Rec); 897 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 898 for (; II != IE; ++II) { 899 if (InstrClassMap[*II] == SCIdx) 900 break; 901 } 902 // If this class no longer has any instructions mapped to it, it has become 903 // irrelevant. 904 if (II == IE) 905 continue; 906 IdxVec Writes, Reads; 907 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 908 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; 909 IdxVec ProcIndices(1, PIdx); 910 inferFromRW(Writes, Reads, SCIdx, ProcIndices); // May mutate SchedClasses. 911 } 912 } 913 914 namespace { 915 // Helper for substituteVariantOperand. 916 struct TransVariant { 917 Record *VarOrSeqDef; // Variant or sequence. 918 unsigned RWIdx; // Index of this variant or sequence's matched type. 919 unsigned ProcIdx; // Processor model index or zero for any. 920 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 921 922 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 923 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 924 }; 925 926 // Associate a predicate with the SchedReadWrite that it guards. 927 // RWIdx is the index of the read/write variant. 928 struct PredCheck { 929 bool IsRead; 930 unsigned RWIdx; 931 Record *Predicate; 932 933 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 934 }; 935 936 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 937 struct PredTransition { 938 // A predicate term is a conjunction of PredChecks. 939 SmallVector<PredCheck, 4> PredTerm; 940 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 941 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 942 SmallVector<unsigned, 4> ProcIndices; 943 }; 944 945 // Encapsulate a set of partially constructed transitions. 946 // The results are built by repeated calls to substituteVariants. 947 class PredTransitions { 948 CodeGenSchedModels &SchedModels; 949 950 public: 951 std::vector<PredTransition> TransVec; 952 953 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 954 955 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 956 bool IsRead, unsigned StartIdx); 957 958 void substituteVariants(const PredTransition &Trans); 959 960 #ifndef NDEBUG 961 void dump() const; 962 #endif 963 964 private: 965 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 966 void getIntersectingVariants( 967 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 968 std::vector<TransVariant> &IntersectingVariants); 969 void pushVariant(const TransVariant &VInfo, bool IsRead); 970 }; 971 } // anonymous 972 973 // Return true if this predicate is mutually exclusive with a PredTerm. This 974 // degenerates into checking if the predicate is mutually exclusive with any 975 // predicate in the Term's conjunction. 976 // 977 // All predicates associated with a given SchedRW are considered mutually 978 // exclusive. This should work even if the conditions expressed by the 979 // predicates are not exclusive because the predicates for a given SchedWrite 980 // are always checked in the order they are defined in the .td file. Later 981 // conditions implicitly negate any prior condition. 982 bool PredTransitions::mutuallyExclusive(Record *PredDef, 983 ArrayRef<PredCheck> Term) { 984 985 for (ArrayRef<PredCheck>::iterator I = Term.begin(), E = Term.end(); 986 I != E; ++I) { 987 if (I->Predicate == PredDef) 988 return false; 989 990 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(I->RWIdx, I->IsRead); 991 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 992 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 993 for (RecIter VI = Variants.begin(), VE = Variants.end(); VI != VE; ++VI) { 994 if ((*VI)->getValueAsDef("Predicate") == PredDef) 995 return true; 996 } 997 } 998 return false; 999 } 1000 1001 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 1002 CodeGenSchedModels &SchedModels) { 1003 if (RW.HasVariants) 1004 return true; 1005 1006 for (RecIter I = RW.Aliases.begin(), E = RW.Aliases.end(); I != E; ++I) { 1007 const CodeGenSchedRW &AliasRW = 1008 SchedModels.getSchedRW((*I)->getValueAsDef("AliasRW")); 1009 if (AliasRW.HasVariants) 1010 return true; 1011 if (AliasRW.IsSequence) { 1012 IdxVec ExpandedRWs; 1013 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 1014 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1015 SI != SE; ++SI) { 1016 if (hasAliasedVariants(SchedModels.getSchedRW(*SI, AliasRW.IsRead), 1017 SchedModels)) { 1018 return true; 1019 } 1020 } 1021 } 1022 } 1023 return false; 1024 } 1025 1026 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1027 CodeGenSchedModels &SchedModels) { 1028 for (ArrayRef<PredTransition>::iterator 1029 PTI = Transitions.begin(), PTE = Transitions.end(); 1030 PTI != PTE; ++PTI) { 1031 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1032 WSI = PTI->WriteSequences.begin(), WSE = PTI->WriteSequences.end(); 1033 WSI != WSE; ++WSI) { 1034 for (SmallVectorImpl<unsigned>::const_iterator 1035 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1036 if (hasAliasedVariants(SchedModels.getSchedWrite(*WI), SchedModels)) 1037 return true; 1038 } 1039 } 1040 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1041 RSI = PTI->ReadSequences.begin(), RSE = PTI->ReadSequences.end(); 1042 RSI != RSE; ++RSI) { 1043 for (SmallVectorImpl<unsigned>::const_iterator 1044 RI = RSI->begin(), RE = RSI->end(); RI != RE; ++RI) { 1045 if (hasAliasedVariants(SchedModels.getSchedRead(*RI), SchedModels)) 1046 return true; 1047 } 1048 } 1049 } 1050 return false; 1051 } 1052 1053 // Populate IntersectingVariants with any variants or aliased sequences of the 1054 // given SchedRW whose processor indices and predicates are not mutually 1055 // exclusive with the given transition. 1056 void PredTransitions::getIntersectingVariants( 1057 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1058 std::vector<TransVariant> &IntersectingVariants) { 1059 1060 bool GenericRW = false; 1061 1062 std::vector<TransVariant> Variants; 1063 if (SchedRW.HasVariants) { 1064 unsigned VarProcIdx = 0; 1065 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1066 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1067 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1068 } 1069 // Push each variant. Assign TransVecIdx later. 1070 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1071 for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) 1072 Variants.push_back(TransVariant(*RI, SchedRW.Index, VarProcIdx, 0)); 1073 if (VarProcIdx == 0) 1074 GenericRW = true; 1075 } 1076 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1077 AI != AE; ++AI) { 1078 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1079 // to is defined within a processor model, constrain all variants to 1080 // that processor. 1081 unsigned AliasProcIdx = 0; 1082 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1083 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1084 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1085 } 1086 const CodeGenSchedRW &AliasRW = 1087 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1088 1089 if (AliasRW.HasVariants) { 1090 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1091 for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) 1092 Variants.push_back(TransVariant(*RI, AliasRW.Index, AliasProcIdx, 0)); 1093 } 1094 if (AliasRW.IsSequence) { 1095 Variants.push_back( 1096 TransVariant(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0)); 1097 } 1098 if (AliasProcIdx == 0) 1099 GenericRW = true; 1100 } 1101 for (unsigned VIdx = 0, VEnd = Variants.size(); VIdx != VEnd; ++VIdx) { 1102 TransVariant &Variant = Variants[VIdx]; 1103 // Don't expand variants if the processor models don't intersect. 1104 // A zero processor index means any processor. 1105 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; 1106 if (ProcIndices[0] && Variants[VIdx].ProcIdx) { 1107 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1108 Variant.ProcIdx); 1109 if (!Cnt) 1110 continue; 1111 if (Cnt > 1) { 1112 const CodeGenProcModel &PM = 1113 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1114 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1115 "Multiple variants defined for processor " + 1116 PM.ModelName + 1117 " Ensure only one SchedAlias exists per RW."); 1118 } 1119 } 1120 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1121 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1122 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1123 continue; 1124 } 1125 if (IntersectingVariants.empty()) { 1126 // The first variant builds on the existing transition. 1127 Variant.TransVecIdx = TransIdx; 1128 IntersectingVariants.push_back(Variant); 1129 } 1130 else { 1131 // Push another copy of the current transition for more variants. 1132 Variant.TransVecIdx = TransVec.size(); 1133 IntersectingVariants.push_back(Variant); 1134 TransVec.push_back(TransVec[TransIdx]); 1135 } 1136 } 1137 if (GenericRW && IntersectingVariants.empty()) { 1138 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " 1139 "a matching predicate on any processor"); 1140 } 1141 } 1142 1143 // Push the Reads/Writes selected by this variant onto the PredTransition 1144 // specified by VInfo. 1145 void PredTransitions:: 1146 pushVariant(const TransVariant &VInfo, bool IsRead) { 1147 1148 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1149 1150 // If this operand transition is reached through a processor-specific alias, 1151 // then the whole transition is specific to this processor. 1152 if (VInfo.ProcIdx != 0) 1153 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1154 1155 IdxVec SelectedRWs; 1156 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1157 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1158 Trans.PredTerm.push_back(PredCheck(IsRead, VInfo.RWIdx,PredDef)); 1159 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1160 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1161 } 1162 else { 1163 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1164 "variant must be a SchedVariant or aliased WriteSequence"); 1165 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1166 } 1167 1168 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1169 1170 SmallVectorImpl<SmallVector<unsigned,4> > &RWSequences = IsRead 1171 ? Trans.ReadSequences : Trans.WriteSequences; 1172 if (SchedRW.IsVariadic) { 1173 unsigned OperIdx = RWSequences.size()-1; 1174 // Make N-1 copies of this transition's last sequence. 1175 for (unsigned i = 1, e = SelectedRWs.size(); i != e; ++i) { 1176 // Create a temporary copy the vector could reallocate. 1177 RWSequences.reserve(RWSequences.size() + 1); 1178 RWSequences.push_back(RWSequences[OperIdx]); 1179 } 1180 // Push each of the N elements of the SelectedRWs onto a copy of the last 1181 // sequence (split the current operand into N operands). 1182 // Note that write sequences should be expanded within this loop--the entire 1183 // sequence belongs to a single operand. 1184 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1185 RWI != RWE; ++RWI, ++OperIdx) { 1186 IdxVec ExpandedRWs; 1187 if (IsRead) 1188 ExpandedRWs.push_back(*RWI); 1189 else 1190 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1191 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1192 ExpandedRWs.begin(), ExpandedRWs.end()); 1193 } 1194 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1195 } 1196 else { 1197 // Push this transition's expanded sequence onto this transition's last 1198 // sequence (add to the current operand's sequence). 1199 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1200 IdxVec ExpandedRWs; 1201 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1202 RWI != RWE; ++RWI) { 1203 if (IsRead) 1204 ExpandedRWs.push_back(*RWI); 1205 else 1206 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1207 } 1208 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1209 } 1210 } 1211 1212 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1213 // operand. StartIdx is an index into TransVec where partial results 1214 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1215 // of TransVec. 1216 void PredTransitions::substituteVariantOperand( 1217 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1218 1219 // Visit each original RW within the current sequence. 1220 for (SmallVectorImpl<unsigned>::const_iterator 1221 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1222 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1223 // Push this RW on all partial PredTransitions or distribute variants. 1224 // New PredTransitions may be pushed within this loop which should not be 1225 // revisited (TransEnd must be loop invariant). 1226 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1227 TransIdx != TransEnd; ++TransIdx) { 1228 // In the common case, push RW onto the current operand's sequence. 1229 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1230 if (IsRead) 1231 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1232 else 1233 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1234 continue; 1235 } 1236 // Distribute this partial PredTransition across intersecting variants. 1237 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1238 std::vector<TransVariant> IntersectingVariants; 1239 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1240 // Now expand each variant on top of its copy of the transition. 1241 for (std::vector<TransVariant>::const_iterator 1242 IVI = IntersectingVariants.begin(), 1243 IVE = IntersectingVariants.end(); 1244 IVI != IVE; ++IVI) { 1245 pushVariant(*IVI, IsRead); 1246 } 1247 } 1248 } 1249 } 1250 1251 // For each variant of a Read/Write in Trans, substitute the sequence of 1252 // Read/Writes guarded by the variant. This is exponential in the number of 1253 // variant Read/Writes, but in practice detection of mutually exclusive 1254 // predicates should result in linear growth in the total number variants. 1255 // 1256 // This is one step in a breadth-first search of nested variants. 1257 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1258 // Build up a set of partial results starting at the back of 1259 // PredTransitions. Remember the first new transition. 1260 unsigned StartIdx = TransVec.size(); 1261 TransVec.resize(TransVec.size() + 1); 1262 TransVec.back().PredTerm = Trans.PredTerm; 1263 TransVec.back().ProcIndices = Trans.ProcIndices; 1264 1265 // Visit each original write sequence. 1266 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1267 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1268 WSI != WSE; ++WSI) { 1269 // Push a new (empty) write sequence onto all partial Transitions. 1270 for (std::vector<PredTransition>::iterator I = 1271 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1272 I->WriteSequences.resize(I->WriteSequences.size() + 1); 1273 } 1274 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1275 } 1276 // Visit each original read sequence. 1277 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1278 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1279 RSI != RSE; ++RSI) { 1280 // Push a new (empty) read sequence onto all partial Transitions. 1281 for (std::vector<PredTransition>::iterator I = 1282 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1283 I->ReadSequences.resize(I->ReadSequences.size() + 1); 1284 } 1285 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1286 } 1287 } 1288 1289 // Create a new SchedClass for each variant found by inferFromRW. Pass 1290 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1291 unsigned FromClassIdx, 1292 CodeGenSchedModels &SchedModels) { 1293 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1294 // requires creating a new SchedClass. 1295 for (ArrayRef<PredTransition>::iterator 1296 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1297 IdxVec OperWritesVariant; 1298 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1299 WSI = I->WriteSequences.begin(), WSE = I->WriteSequences.end(); 1300 WSI != WSE; ++WSI) { 1301 // Create a new write representing the expanded sequence. 1302 OperWritesVariant.push_back( 1303 SchedModels.findOrInsertRW(*WSI, /*IsRead=*/false)); 1304 } 1305 IdxVec OperReadsVariant; 1306 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1307 RSI = I->ReadSequences.begin(), RSE = I->ReadSequences.end(); 1308 RSI != RSE; ++RSI) { 1309 // Create a new read representing the expanded sequence. 1310 OperReadsVariant.push_back( 1311 SchedModels.findOrInsertRW(*RSI, /*IsRead=*/true)); 1312 } 1313 IdxVec ProcIndices(I->ProcIndices.begin(), I->ProcIndices.end()); 1314 CodeGenSchedTransition SCTrans; 1315 SCTrans.ToClassIdx = 1316 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, 1317 OperReadsVariant, ProcIndices); 1318 SCTrans.ProcIndices = ProcIndices; 1319 // The final PredTerm is unique set of predicates guarding the transition. 1320 RecVec Preds; 1321 for (SmallVectorImpl<PredCheck>::const_iterator 1322 PI = I->PredTerm.begin(), PE = I->PredTerm.end(); PI != PE; ++PI) { 1323 Preds.push_back(PI->Predicate); 1324 } 1325 RecIter PredsEnd = std::unique(Preds.begin(), Preds.end()); 1326 Preds.resize(PredsEnd - Preds.begin()); 1327 SCTrans.PredTerm = Preds; 1328 SchedModels.getSchedClass(FromClassIdx).Transitions.push_back(SCTrans); 1329 } 1330 } 1331 1332 // Create new SchedClasses for the given ReadWrite list. If any of the 1333 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1334 // of the ReadWrite list, following Aliases if necessary. 1335 void CodeGenSchedModels::inferFromRW(const IdxVec &OperWrites, 1336 const IdxVec &OperReads, 1337 unsigned FromClassIdx, 1338 const IdxVec &ProcIndices) { 1339 DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); dbgs() << ") "); 1340 1341 // Create a seed transition with an empty PredTerm and the expanded sequences 1342 // of SchedWrites for the current SchedClass. 1343 std::vector<PredTransition> LastTransitions; 1344 LastTransitions.resize(1); 1345 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1346 ProcIndices.end()); 1347 1348 for (IdxIter I = OperWrites.begin(), E = OperWrites.end(); I != E; ++I) { 1349 IdxVec WriteSeq; 1350 expandRWSequence(*I, WriteSeq, /*IsRead=*/false); 1351 unsigned Idx = LastTransitions[0].WriteSequences.size(); 1352 LastTransitions[0].WriteSequences.resize(Idx + 1); 1353 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences[Idx]; 1354 for (IdxIter WI = WriteSeq.begin(), WE = WriteSeq.end(); WI != WE; ++WI) 1355 Seq.push_back(*WI); 1356 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1357 } 1358 DEBUG(dbgs() << " Reads: "); 1359 for (IdxIter I = OperReads.begin(), E = OperReads.end(); I != E; ++I) { 1360 IdxVec ReadSeq; 1361 expandRWSequence(*I, ReadSeq, /*IsRead=*/true); 1362 unsigned Idx = LastTransitions[0].ReadSequences.size(); 1363 LastTransitions[0].ReadSequences.resize(Idx + 1); 1364 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences[Idx]; 1365 for (IdxIter RI = ReadSeq.begin(), RE = ReadSeq.end(); RI != RE; ++RI) 1366 Seq.push_back(*RI); 1367 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1368 } 1369 DEBUG(dbgs() << '\n'); 1370 1371 // Collect all PredTransitions for individual operands. 1372 // Iterate until no variant writes remain. 1373 while (hasVariant(LastTransitions, *this)) { 1374 PredTransitions Transitions(*this); 1375 for (std::vector<PredTransition>::const_iterator 1376 I = LastTransitions.begin(), E = LastTransitions.end(); 1377 I != E; ++I) { 1378 Transitions.substituteVariants(*I); 1379 } 1380 DEBUG(Transitions.dump()); 1381 LastTransitions.swap(Transitions.TransVec); 1382 } 1383 // If the first transition has no variants, nothing to do. 1384 if (LastTransitions[0].PredTerm.empty()) 1385 return; 1386 1387 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1388 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1389 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1390 } 1391 1392 // Check if any processor resource group contains all resource records in 1393 // SubUnits. 1394 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { 1395 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1396 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1397 continue; 1398 RecVec SuperUnits = 1399 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1400 RecIter RI = SubUnits.begin(), RE = SubUnits.end(); 1401 for ( ; RI != RE; ++RI) { 1402 if (std::find(SuperUnits.begin(), SuperUnits.end(), *RI) 1403 == SuperUnits.end()) { 1404 break; 1405 } 1406 } 1407 if (RI == RE) 1408 return true; 1409 } 1410 return false; 1411 } 1412 1413 // Verify that overlapping groups have a common supergroup. 1414 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { 1415 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1416 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1417 continue; 1418 RecVec CheckUnits = 1419 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1420 for (unsigned j = i+1; j < e; ++j) { 1421 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) 1422 continue; 1423 RecVec OtherUnits = 1424 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); 1425 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), 1426 OtherUnits.begin(), OtherUnits.end()) 1427 != CheckUnits.end()) { 1428 // CheckUnits and OtherUnits overlap 1429 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), 1430 CheckUnits.end()); 1431 if (!hasSuperGroup(OtherUnits, PM)) { 1432 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), 1433 "proc resource group overlaps with " 1434 + PM.ProcResourceDefs[j]->getName() 1435 + " but no supergroup contains both."); 1436 } 1437 } 1438 } 1439 } 1440 } 1441 1442 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1443 void CodeGenSchedModels::collectProcResources() { 1444 // Add any subtarget-specific SchedReadWrites that are directly associated 1445 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1446 // determine which processors they apply to. 1447 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 1448 SCI != SCE; ++SCI) { 1449 if (SCI->ItinClassDef) 1450 collectItinProcResources(SCI->ItinClassDef); 1451 else { 1452 // This class may have a default ReadWrite list which can be overriden by 1453 // InstRW definitions. 1454 if (!SCI->InstRWs.empty()) { 1455 for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); 1456 RWI != RWE; ++RWI) { 1457 Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); 1458 IdxVec ProcIndices(1, getProcModel(RWModelDef).Index); 1459 IdxVec Writes, Reads; 1460 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 1461 Writes, Reads); 1462 collectRWResources(Writes, Reads, ProcIndices); 1463 } 1464 } 1465 collectRWResources(SCI->Writes, SCI->Reads, SCI->ProcIndices); 1466 } 1467 } 1468 // Add resources separately defined by each subtarget. 1469 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1470 for (RecIter WRI = WRDefs.begin(), WRE = WRDefs.end(); WRI != WRE; ++WRI) { 1471 Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); 1472 addWriteRes(*WRI, getProcModel(ModelDef).Index); 1473 } 1474 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); 1475 for (RecIter WRI = SWRDefs.begin(), WRE = SWRDefs.end(); WRI != WRE; ++WRI) { 1476 Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); 1477 addWriteRes(*WRI, getProcModel(ModelDef).Index); 1478 } 1479 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1480 for (RecIter RAI = RADefs.begin(), RAE = RADefs.end(); RAI != RAE; ++RAI) { 1481 Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); 1482 addReadAdvance(*RAI, getProcModel(ModelDef).Index); 1483 } 1484 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); 1485 for (RecIter RAI = SRADefs.begin(), RAE = SRADefs.end(); RAI != RAE; ++RAI) { 1486 if ((*RAI)->getValueInit("SchedModel")->isComplete()) { 1487 Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); 1488 addReadAdvance(*RAI, getProcModel(ModelDef).Index); 1489 } 1490 } 1491 // Add ProcResGroups that are defined within this processor model, which may 1492 // not be directly referenced but may directly specify a buffer size. 1493 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1494 for (RecIter RI = ProcResGroups.begin(), RE = ProcResGroups.end(); 1495 RI != RE; ++RI) { 1496 if (!(*RI)->getValueInit("SchedModel")->isComplete()) 1497 continue; 1498 CodeGenProcModel &PM = getProcModel((*RI)->getValueAsDef("SchedModel")); 1499 RecIter I = std::find(PM.ProcResourceDefs.begin(), 1500 PM.ProcResourceDefs.end(), *RI); 1501 if (I == PM.ProcResourceDefs.end()) 1502 PM.ProcResourceDefs.push_back(*RI); 1503 } 1504 // Finalize each ProcModel by sorting the record arrays. 1505 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1506 CodeGenProcModel &PM = ProcModels[PIdx]; 1507 std::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1508 LessRecord()); 1509 std::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1510 LessRecord()); 1511 std::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1512 LessRecord()); 1513 DEBUG( 1514 PM.dump(); 1515 dbgs() << "WriteResDefs: "; 1516 for (RecIter RI = PM.WriteResDefs.begin(), 1517 RE = PM.WriteResDefs.end(); RI != RE; ++RI) { 1518 if ((*RI)->isSubClassOf("WriteRes")) 1519 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1520 else 1521 dbgs() << (*RI)->getName() << " "; 1522 } 1523 dbgs() << "\nReadAdvanceDefs: "; 1524 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1525 RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { 1526 if ((*RI)->isSubClassOf("ReadAdvance")) 1527 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1528 else 1529 dbgs() << (*RI)->getName() << " "; 1530 } 1531 dbgs() << "\nProcResourceDefs: "; 1532 for (RecIter RI = PM.ProcResourceDefs.begin(), 1533 RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { 1534 dbgs() << (*RI)->getName() << " "; 1535 } 1536 dbgs() << '\n'); 1537 verifyProcResourceGroups(PM); 1538 } 1539 } 1540 1541 // Collect itinerary class resources for each processor. 1542 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1543 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1544 const CodeGenProcModel &PM = ProcModels[PIdx]; 1545 // For all ItinRW entries. 1546 bool HasMatch = false; 1547 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1548 II != IE; ++II) { 1549 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1550 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1551 continue; 1552 if (HasMatch) 1553 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1554 + ItinClassDef->getName() 1555 + " in ItinResources for " + PM.ModelName); 1556 HasMatch = true; 1557 IdxVec Writes, Reads; 1558 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1559 IdxVec ProcIndices(1, PIdx); 1560 collectRWResources(Writes, Reads, ProcIndices); 1561 } 1562 } 1563 } 1564 1565 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1566 const IdxVec &ProcIndices) { 1567 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1568 if (SchedRW.TheDef) { 1569 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1570 for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); 1571 PI != PE; ++PI) { 1572 addWriteRes(SchedRW.TheDef, *PI); 1573 } 1574 } 1575 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1576 for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); 1577 PI != PE; ++PI) { 1578 addReadAdvance(SchedRW.TheDef, *PI); 1579 } 1580 } 1581 } 1582 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1583 AI != AE; ++AI) { 1584 IdxVec AliasProcIndices; 1585 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1586 AliasProcIndices.push_back( 1587 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1588 } 1589 else 1590 AliasProcIndices = ProcIndices; 1591 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1592 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1593 1594 IdxVec ExpandedRWs; 1595 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1596 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1597 SI != SE; ++SI) { 1598 collectRWResources(*SI, IsRead, AliasProcIndices); 1599 } 1600 } 1601 } 1602 1603 // Collect resources for a set of read/write types and processor indices. 1604 void CodeGenSchedModels::collectRWResources(const IdxVec &Writes, 1605 const IdxVec &Reads, 1606 const IdxVec &ProcIndices) { 1607 1608 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) 1609 collectRWResources(*WI, /*IsRead=*/false, ProcIndices); 1610 1611 for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) 1612 collectRWResources(*RI, /*IsRead=*/true, ProcIndices); 1613 } 1614 1615 1616 // Find the processor's resource units for this kind of resource. 1617 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1618 const CodeGenProcModel &PM) const { 1619 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1620 return ProcResKind; 1621 1622 Record *ProcUnitDef = nullptr; 1623 RecVec ProcResourceDefs = 1624 Records.getAllDerivedDefinitions("ProcResourceUnits"); 1625 1626 for (RecIter RI = ProcResourceDefs.begin(), RE = ProcResourceDefs.end(); 1627 RI != RE; ++RI) { 1628 1629 if ((*RI)->getValueAsDef("Kind") == ProcResKind 1630 && (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) { 1631 if (ProcUnitDef) { 1632 PrintFatalError((*RI)->getLoc(), 1633 "Multiple ProcessorResourceUnits associated with " 1634 + ProcResKind->getName()); 1635 } 1636 ProcUnitDef = *RI; 1637 } 1638 } 1639 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1640 for (RecIter RI = ProcResGroups.begin(), RE = ProcResGroups.end(); 1641 RI != RE; ++RI) { 1642 1643 if (*RI == ProcResKind 1644 && (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) { 1645 if (ProcUnitDef) { 1646 PrintFatalError((*RI)->getLoc(), 1647 "Multiple ProcessorResourceUnits associated with " 1648 + ProcResKind->getName()); 1649 } 1650 ProcUnitDef = *RI; 1651 } 1652 } 1653 if (!ProcUnitDef) { 1654 PrintFatalError(ProcResKind->getLoc(), 1655 "No ProcessorResources associated with " 1656 + ProcResKind->getName()); 1657 } 1658 return ProcUnitDef; 1659 } 1660 1661 // Iteratively add a resource and its super resources. 1662 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1663 CodeGenProcModel &PM) { 1664 for (;;) { 1665 Record *ProcResUnits = findProcResUnits(ProcResKind, PM); 1666 1667 // See if this ProcResource is already associated with this processor. 1668 RecIter I = std::find(PM.ProcResourceDefs.begin(), 1669 PM.ProcResourceDefs.end(), ProcResUnits); 1670 if (I != PM.ProcResourceDefs.end()) 1671 return; 1672 1673 PM.ProcResourceDefs.push_back(ProcResUnits); 1674 if (ProcResUnits->isSubClassOf("ProcResGroup")) 1675 return; 1676 1677 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1678 return; 1679 1680 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1681 } 1682 } 1683 1684 // Add resources for a SchedWrite to this processor if they don't exist. 1685 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1686 assert(PIdx && "don't add resources to an invalid Processor model"); 1687 1688 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1689 RecIter WRI = std::find(WRDefs.begin(), WRDefs.end(), ProcWriteResDef); 1690 if (WRI != WRDefs.end()) 1691 return; 1692 WRDefs.push_back(ProcWriteResDef); 1693 1694 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1695 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1696 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1697 WritePRI != WritePRE; ++WritePRI) { 1698 addProcResource(*WritePRI, ProcModels[PIdx]); 1699 } 1700 } 1701 1702 // Add resources for a ReadAdvance to this processor if they don't exist. 1703 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1704 unsigned PIdx) { 1705 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1706 RecIter I = std::find(RADefs.begin(), RADefs.end(), ProcReadAdvanceDef); 1707 if (I != RADefs.end()) 1708 return; 1709 RADefs.push_back(ProcReadAdvanceDef); 1710 } 1711 1712 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1713 RecIter PRPos = std::find(ProcResourceDefs.begin(), ProcResourceDefs.end(), 1714 PRDef); 1715 if (PRPos == ProcResourceDefs.end()) 1716 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 1717 "the ProcResources list for " + ModelName); 1718 // Idx=0 is reserved for invalid. 1719 return 1 + (PRPos - ProcResourceDefs.begin()); 1720 } 1721 1722 #ifndef NDEBUG 1723 void CodeGenProcModel::dump() const { 1724 dbgs() << Index << ": " << ModelName << " " 1725 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1726 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1727 } 1728 1729 void CodeGenSchedRW::dump() const { 1730 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1731 if (IsSequence) { 1732 dbgs() << "("; 1733 dumpIdxVec(Sequence); 1734 dbgs() << ")"; 1735 } 1736 } 1737 1738 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1739 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' 1740 << " Writes: "; 1741 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1742 SchedModels->getSchedWrite(Writes[i]).dump(); 1743 if (i < N-1) { 1744 dbgs() << '\n'; 1745 dbgs().indent(10); 1746 } 1747 } 1748 dbgs() << "\n Reads: "; 1749 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1750 SchedModels->getSchedRead(Reads[i]).dump(); 1751 if (i < N-1) { 1752 dbgs() << '\n'; 1753 dbgs().indent(10); 1754 } 1755 } 1756 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1757 if (!Transitions.empty()) { 1758 dbgs() << "\n Transitions for Proc "; 1759 for (std::vector<CodeGenSchedTransition>::const_iterator 1760 TI = Transitions.begin(), TE = Transitions.end(); TI != TE; ++TI) { 1761 dumpIdxVec(TI->ProcIndices); 1762 } 1763 } 1764 } 1765 1766 void PredTransitions::dump() const { 1767 dbgs() << "Expanded Variants:\n"; 1768 for (std::vector<PredTransition>::const_iterator 1769 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1770 dbgs() << "{"; 1771 for (SmallVectorImpl<PredCheck>::const_iterator 1772 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1773 PCI != PCE; ++PCI) { 1774 if (PCI != TI->PredTerm.begin()) 1775 dbgs() << ", "; 1776 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1777 << ":" << PCI->Predicate->getName(); 1778 } 1779 dbgs() << "},\n => {"; 1780 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1781 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1782 WSI != WSE; ++WSI) { 1783 dbgs() << "("; 1784 for (SmallVectorImpl<unsigned>::const_iterator 1785 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1786 if (WI != WSI->begin()) 1787 dbgs() << ", "; 1788 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1789 } 1790 dbgs() << "),"; 1791 } 1792 dbgs() << "}\n"; 1793 } 1794 } 1795 #endif // NDEBUG 1796