Home | History | Annotate | Download | only in TableGen
      1 //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the DAG Matcher optimizer.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "DAGISelMatcher.h"
     15 #include "CodeGenDAGPatterns.h"
     16 #include "llvm/ADT/DenseSet.h"
     17 #include "llvm/ADT/StringSet.h"
     18 #include "llvm/Support/Debug.h"
     19 #include "llvm/Support/raw_ostream.h"
     20 using namespace llvm;
     21 
     22 #define DEBUG_TYPE "isel-opt"
     23 
     24 /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
     25 /// into single compound nodes like RecordChild.
     26 static void ContractNodes(std::unique_ptr<Matcher> &MatcherPtr,
     27                           const CodeGenDAGPatterns &CGP) {
     28   // If we reached the end of the chain, we're done.
     29   Matcher *N = MatcherPtr.get();
     30   if (!N) return;
     31 
     32   // If we have a scope node, walk down all of the children.
     33   if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
     34     for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
     35       std::unique_ptr<Matcher> Child(Scope->takeChild(i));
     36       ContractNodes(Child, CGP);
     37       Scope->resetChild(i, Child.release());
     38     }
     39     return;
     40   }
     41 
     42   // If we found a movechild node with a node that comes in a 'foochild' form,
     43   // transform it.
     44   if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
     45     Matcher *New = nullptr;
     46     if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
     47       if (MC->getChildNo() < 8)  // Only have RecordChild0...7
     48         New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
     49                                      RM->getResultNo());
     50 
     51     if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
     52       if (MC->getChildNo() < 8 &&  // Only have CheckChildType0...7
     53           CT->getResNo() == 0)     // CheckChildType checks res #0
     54         New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
     55 
     56     if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext()))
     57       if (MC->getChildNo() < 4)  // Only have CheckChildSame0...3
     58         New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber());
     59 
     60     if (CheckIntegerMatcher *CS = dyn_cast<CheckIntegerMatcher>(MC->getNext()))
     61       if (MC->getChildNo() < 5)  // Only have CheckChildInteger0...4
     62         New = new CheckChildIntegerMatcher(MC->getChildNo(), CS->getValue());
     63 
     64     if (New) {
     65       // Insert the new node.
     66       New->setNext(MatcherPtr.release());
     67       MatcherPtr.reset(New);
     68       // Remove the old one.
     69       MC->setNext(MC->getNext()->takeNext());
     70       return ContractNodes(MatcherPtr, CGP);
     71     }
     72   }
     73 
     74   // Zap movechild -> moveparent.
     75   if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
     76     if (MoveParentMatcher *MP =
     77           dyn_cast<MoveParentMatcher>(MC->getNext())) {
     78       MatcherPtr.reset(MP->takeNext());
     79       return ContractNodes(MatcherPtr, CGP);
     80     }
     81 
     82   // Turn EmitNode->MarkFlagResults->CompleteMatch into
     83   // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage
     84   // MorphNodeTo formation.  This is safe because MarkFlagResults never refers
     85   // to the root of the pattern.
     86   if (isa<EmitNodeMatcher>(N) && isa<MarkGlueResultsMatcher>(N->getNext()) &&
     87       isa<CompleteMatchMatcher>(N->getNext()->getNext())) {
     88     // Unlink the two nodes from the list.
     89     Matcher *EmitNode = MatcherPtr.release();
     90     Matcher *MFR = EmitNode->takeNext();
     91     Matcher *Tail = MFR->takeNext();
     92 
     93     // Relink them.
     94     MatcherPtr.reset(MFR);
     95     MFR->setNext(EmitNode);
     96     EmitNode->setNext(Tail);
     97     return ContractNodes(MatcherPtr, CGP);
     98   }
     99 
    100   // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
    101   if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
    102     if (CompleteMatchMatcher *CM =
    103           dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
    104       // We can only use MorphNodeTo if the result values match up.
    105       unsigned RootResultFirst = EN->getFirstResultSlot();
    106       bool ResultsMatch = true;
    107       for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
    108         if (CM->getResult(i) != RootResultFirst+i)
    109           ResultsMatch = false;
    110 
    111       // If the selected node defines a subset of the glue/chain results, we
    112       // can't use MorphNodeTo.  For example, we can't use MorphNodeTo if the
    113       // matched pattern has a chain but the root node doesn't.
    114       const PatternToMatch &Pattern = CM->getPattern();
    115 
    116       if (!EN->hasChain() &&
    117           Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
    118         ResultsMatch = false;
    119 
    120       // If the matched node has glue and the output root doesn't, we can't
    121       // use MorphNodeTo.
    122       //
    123       // NOTE: Strictly speaking, we don't have to check for glue here
    124       // because the code in the pattern generator doesn't handle it right.  We
    125       // do it anyway for thoroughness.
    126       if (!EN->hasOutFlag() &&
    127           Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP))
    128         ResultsMatch = false;
    129 
    130 
    131       // If the root result node defines more results than the source root node
    132       // *and* has a chain or glue input, then we can't match it because it
    133       // would end up replacing the extra result with the chain/glue.
    134 #if 0
    135       if ((EN->hasGlue() || EN->hasChain()) &&
    136           EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...)
    137         ResultMatch = false;
    138 #endif
    139 
    140       if (ResultsMatch) {
    141         const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
    142         const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
    143         MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
    144                                                 VTs, Operands,
    145                                                 EN->hasChain(), EN->hasInFlag(),
    146                                                 EN->hasOutFlag(),
    147                                                 EN->hasMemRefs(),
    148                                                 EN->getNumFixedArityOperands(),
    149                                                 Pattern));
    150         return;
    151       }
    152 
    153       // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
    154       // variants.
    155     }
    156 
    157   ContractNodes(N->getNextPtr(), CGP);
    158 
    159 
    160   // If we have a CheckType/CheckChildType/Record node followed by a
    161   // CheckOpcode, invert the two nodes.  We prefer to do structural checks
    162   // before type checks, as this opens opportunities for factoring on targets
    163   // like X86 where many operations are valid on multiple types.
    164   if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
    165        isa<RecordMatcher>(N)) &&
    166       isa<CheckOpcodeMatcher>(N->getNext())) {
    167     // Unlink the two nodes from the list.
    168     Matcher *CheckType = MatcherPtr.release();
    169     Matcher *CheckOpcode = CheckType->takeNext();
    170     Matcher *Tail = CheckOpcode->takeNext();
    171 
    172     // Relink them.
    173     MatcherPtr.reset(CheckOpcode);
    174     CheckOpcode->setNext(CheckType);
    175     CheckType->setNext(Tail);
    176     return ContractNodes(MatcherPtr, CGP);
    177   }
    178 }
    179 
    180 /// SinkPatternPredicates - Pattern predicates can be checked at any level of
    181 /// the matching tree.  The generator dumps them at the top level of the pattern
    182 /// though, which prevents factoring from being able to see past them.  This
    183 /// optimization sinks them as far down into the pattern as possible.
    184 ///
    185 /// Conceptually, we'd like to sink these predicates all the way to the last
    186 /// matcher predicate in the series.  However, it turns out that some
    187 /// ComplexPatterns have side effects on the graph, so we really don't want to
    188 /// run a the complex pattern if the pattern predicate will fail.  For this
    189 /// reason, we refuse to sink the pattern predicate past a ComplexPattern.
    190 ///
    191 static void SinkPatternPredicates(std::unique_ptr<Matcher> &MatcherPtr) {
    192   // Recursively scan for a PatternPredicate.
    193   // If we reached the end of the chain, we're done.
    194   Matcher *N = MatcherPtr.get();
    195   if (!N) return;
    196 
    197   // Walk down all members of a scope node.
    198   if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
    199     for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
    200       std::unique_ptr<Matcher> Child(Scope->takeChild(i));
    201       SinkPatternPredicates(Child);
    202       Scope->resetChild(i, Child.release());
    203     }
    204     return;
    205   }
    206 
    207   // If this node isn't a CheckPatternPredicateMatcher we keep scanning until
    208   // we find one.
    209   CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N);
    210   if (!CPPM)
    211     return SinkPatternPredicates(N->getNextPtr());
    212 
    213   // Ok, we found one, lets try to sink it. Check if we can sink it past the
    214   // next node in the chain.  If not, we won't be able to change anything and
    215   // might as well bail.
    216   if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate())
    217     return;
    218 
    219   // Okay, we know we can sink it past at least one node.  Unlink it from the
    220   // chain and scan for the new insertion point.
    221   MatcherPtr.release();  // Don't delete CPPM.
    222   MatcherPtr.reset(CPPM->takeNext());
    223 
    224   N = MatcherPtr.get();
    225   while (N->getNext()->isSafeToReorderWithPatternPredicate())
    226     N = N->getNext();
    227 
    228   // At this point, we want to insert CPPM after N.
    229   CPPM->setNext(N->takeNext());
    230   N->setNext(CPPM);
    231 }
    232 
    233 /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
    234 /// specified kind.  Return null if we didn't find one otherwise return the
    235 /// matcher.
    236 static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
    237   for (; M; M = M->getNext())
    238     if (M->getKind() == Kind)
    239       return M;
    240   return nullptr;
    241 }
    242 
    243 
    244 /// FactorNodes - Turn matches like this:
    245 ///   Scope
    246 ///     OPC_CheckType i32
    247 ///       ABC
    248 ///     OPC_CheckType i32
    249 ///       XYZ
    250 /// into:
    251 ///   OPC_CheckType i32
    252 ///     Scope
    253 ///       ABC
    254 ///       XYZ
    255 ///
    256 static void FactorNodes(std::unique_ptr<Matcher> &MatcherPtr) {
    257   // If we reached the end of the chain, we're done.
    258   Matcher *N = MatcherPtr.get();
    259   if (!N) return;
    260 
    261   // If this is not a push node, just scan for one.
    262   ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
    263   if (!Scope)
    264     return FactorNodes(N->getNextPtr());
    265 
    266   // Okay, pull together the children of the scope node into a vector so we can
    267   // inspect it more easily.  While we're at it, bucket them up by the hash
    268   // code of their first predicate.
    269   SmallVector<Matcher*, 32> OptionsToMatch;
    270 
    271   for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
    272     // Factor the subexpression.
    273     std::unique_ptr<Matcher> Child(Scope->takeChild(i));
    274     FactorNodes(Child);
    275 
    276     if (Matcher *N = Child.release())
    277       OptionsToMatch.push_back(N);
    278   }
    279 
    280   SmallVector<Matcher*, 32> NewOptionsToMatch;
    281 
    282   // Loop over options to match, merging neighboring patterns with identical
    283   // starting nodes into a shared matcher.
    284   for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
    285     // Find the set of matchers that start with this node.
    286     Matcher *Optn = OptionsToMatch[OptionIdx++];
    287 
    288     if (OptionIdx == e) {
    289       NewOptionsToMatch.push_back(Optn);
    290       continue;
    291     }
    292 
    293     // See if the next option starts with the same matcher.  If the two
    294     // neighbors *do* start with the same matcher, we can factor the matcher out
    295     // of at least these two patterns.  See what the maximal set we can merge
    296     // together is.
    297     SmallVector<Matcher*, 8> EqualMatchers;
    298     EqualMatchers.push_back(Optn);
    299 
    300     // Factor all of the known-equal matchers after this one into the same
    301     // group.
    302     while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
    303       EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
    304 
    305     // If we found a non-equal matcher, see if it is contradictory with the
    306     // current node.  If so, we know that the ordering relation between the
    307     // current sets of nodes and this node don't matter.  Look past it to see if
    308     // we can merge anything else into this matching group.
    309     unsigned Scan = OptionIdx;
    310     while (1) {
    311       // If we ran out of stuff to scan, we're done.
    312       if (Scan == e) break;
    313 
    314       Matcher *ScanMatcher = OptionsToMatch[Scan];
    315 
    316       // If we found an entry that matches out matcher, merge it into the set to
    317       // handle.
    318       if (Optn->isEqual(ScanMatcher)) {
    319         // If is equal after all, add the option to EqualMatchers and remove it
    320         // from OptionsToMatch.
    321         EqualMatchers.push_back(ScanMatcher);
    322         OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
    323         --e;
    324         continue;
    325       }
    326 
    327       // If the option we're checking for contradicts the start of the list,
    328       // skip over it.
    329       if (Optn->isContradictory(ScanMatcher)) {
    330         ++Scan;
    331         continue;
    332       }
    333 
    334       // If we're scanning for a simple node, see if it occurs later in the
    335       // sequence.  If so, and if we can move it up, it might be contradictory
    336       // or the same as what we're looking for.  If so, reorder it.
    337       if (Optn->isSimplePredicateOrRecordNode()) {
    338         Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
    339         if (M2 && M2 != ScanMatcher &&
    340             M2->canMoveBefore(ScanMatcher) &&
    341             (M2->isEqual(Optn) || M2->isContradictory(Optn))) {
    342           Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
    343           M2->setNext(MatcherWithoutM2);
    344           OptionsToMatch[Scan] = M2;
    345           continue;
    346         }
    347       }
    348 
    349       // Otherwise, we don't know how to handle this entry, we have to bail.
    350       break;
    351     }
    352 
    353     if (Scan != e &&
    354         // Don't print it's obvious nothing extra could be merged anyway.
    355         Scan+1 != e) {
    356       DEBUG(errs() << "Couldn't merge this:\n";
    357             Optn->print(errs(), 4);
    358             errs() << "into this:\n";
    359             OptionsToMatch[Scan]->print(errs(), 4);
    360             if (Scan+1 != e)
    361               OptionsToMatch[Scan+1]->printOne(errs());
    362             if (Scan+2 < e)
    363               OptionsToMatch[Scan+2]->printOne(errs());
    364             errs() << "\n");
    365     }
    366 
    367     // If we only found one option starting with this matcher, no factoring is
    368     // possible.
    369     if (EqualMatchers.size() == 1) {
    370       NewOptionsToMatch.push_back(EqualMatchers[0]);
    371       continue;
    372     }
    373 
    374     // Factor these checks by pulling the first node off each entry and
    375     // discarding it.  Take the first one off the first entry to reuse.
    376     Matcher *Shared = Optn;
    377     Optn = Optn->takeNext();
    378     EqualMatchers[0] = Optn;
    379 
    380     // Remove and delete the first node from the other matchers we're factoring.
    381     for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
    382       Matcher *Tmp = EqualMatchers[i]->takeNext();
    383       delete EqualMatchers[i];
    384       EqualMatchers[i] = Tmp;
    385     }
    386 
    387     Shared->setNext(new ScopeMatcher(EqualMatchers));
    388 
    389     // Recursively factor the newly created node.
    390     FactorNodes(Shared->getNextPtr());
    391 
    392     NewOptionsToMatch.push_back(Shared);
    393   }
    394 
    395   // If we're down to a single pattern to match, then we don't need this scope
    396   // anymore.
    397   if (NewOptionsToMatch.size() == 1) {
    398     MatcherPtr.reset(NewOptionsToMatch[0]);
    399     return;
    400   }
    401 
    402   if (NewOptionsToMatch.empty()) {
    403     MatcherPtr.reset(nullptr);
    404     return;
    405   }
    406 
    407   // If our factoring failed (didn't achieve anything) see if we can simplify in
    408   // other ways.
    409 
    410   // Check to see if all of the leading entries are now opcode checks.  If so,
    411   // we can convert this Scope to be a OpcodeSwitch instead.
    412   bool AllOpcodeChecks = true, AllTypeChecks = true;
    413   for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
    414     // Check to see if this breaks a series of CheckOpcodeMatchers.
    415     if (AllOpcodeChecks &&
    416         !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
    417 #if 0
    418       if (i > 3) {
    419         errs() << "FAILING OPC #" << i << "\n";
    420         NewOptionsToMatch[i]->dump();
    421       }
    422 #endif
    423       AllOpcodeChecks = false;
    424     }
    425 
    426     // Check to see if this breaks a series of CheckTypeMatcher's.
    427     if (AllTypeChecks) {
    428       CheckTypeMatcher *CTM =
    429         cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
    430                                                         Matcher::CheckType));
    431       if (!CTM ||
    432           // iPTR checks could alias any other case without us knowing, don't
    433           // bother with them.
    434           CTM->getType() == MVT::iPTR ||
    435           // SwitchType only works for result #0.
    436           CTM->getResNo() != 0 ||
    437           // If the CheckType isn't at the start of the list, see if we can move
    438           // it there.
    439           !CTM->canMoveBefore(NewOptionsToMatch[i])) {
    440 #if 0
    441         if (i > 3 && AllTypeChecks) {
    442           errs() << "FAILING TYPE #" << i << "\n";
    443           NewOptionsToMatch[i]->dump();
    444         }
    445 #endif
    446         AllTypeChecks = false;
    447       }
    448     }
    449   }
    450 
    451   // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
    452   if (AllOpcodeChecks) {
    453     StringSet<> Opcodes;
    454     SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
    455     for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
    456       CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
    457       assert(Opcodes.insert(COM->getOpcode().getEnumName()) &&
    458              "Duplicate opcodes not factored?");
    459       Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext()));
    460     }
    461 
    462     MatcherPtr.reset(new SwitchOpcodeMatcher(Cases));
    463     return;
    464   }
    465 
    466   // If all the options are CheckType's, we can form the SwitchType, woot.
    467   if (AllTypeChecks) {
    468     DenseMap<unsigned, unsigned> TypeEntry;
    469     SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
    470     for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
    471       CheckTypeMatcher *CTM =
    472         cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
    473                                                         Matcher::CheckType));
    474       Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM);
    475       MVT::SimpleValueType CTMTy = CTM->getType();
    476       delete CTM;
    477 
    478       unsigned &Entry = TypeEntry[CTMTy];
    479       if (Entry != 0) {
    480         // If we have unfactored duplicate types, then we should factor them.
    481         Matcher *PrevMatcher = Cases[Entry-1].second;
    482         if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
    483           SM->setNumChildren(SM->getNumChildren()+1);
    484           SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM);
    485           continue;
    486         }
    487 
    488         Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM };
    489         Cases[Entry-1].second = new ScopeMatcher(Entries);
    490         continue;
    491       }
    492 
    493       Entry = Cases.size()+1;
    494       Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
    495     }
    496 
    497     if (Cases.size() != 1) {
    498       MatcherPtr.reset(new SwitchTypeMatcher(Cases));
    499     } else {
    500       // If we factored and ended up with one case, create it now.
    501       MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
    502       MatcherPtr->setNext(Cases[0].second);
    503     }
    504     return;
    505   }
    506 
    507 
    508   // Reassemble the Scope node with the adjusted children.
    509   Scope->setNumChildren(NewOptionsToMatch.size());
    510   for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
    511     Scope->resetChild(i, NewOptionsToMatch[i]);
    512 }
    513 
    514 Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher,
    515                                const CodeGenDAGPatterns &CGP) {
    516   std::unique_ptr<Matcher> MatcherPtr(TheMatcher);
    517   ContractNodes(MatcherPtr, CGP);
    518   SinkPatternPredicates(MatcherPtr);
    519   FactorNodes(MatcherPtr);
    520   return MatcherPtr.release();
    521 }
    522