Home | History | Annotate | Download | only in i915
      1 /**************************************************************************
      2  *
      3  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
      4  * All Rights Reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the
      8  * "Software"), to deal in the Software without restriction, including
      9  * without limitation the rights to use, copy, modify, merge, publish,
     10  * distribute, sub license, and/or sell copies of the Software, and to
     11  * permit persons to whom the Software is furnished to do so, subject to
     12  * the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the
     15  * next paragraph) shall be included in all copies or substantial portions
     16  * of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
     21  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
     22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25  *
     26  **************************************************************************/
     27 
     28 /** @file intel_tris.c
     29  *
     30  * This file contains functions for managing the vertex buffer and emitting
     31  * primitives into it.
     32  */
     33 
     34 #include "main/glheader.h"
     35 #include "main/context.h"
     36 #include "main/macros.h"
     37 #include "main/enums.h"
     38 #include "main/texobj.h"
     39 #include "main/state.h"
     40 #include "main/dd.h"
     41 #include "main/fbobject.h"
     42 
     43 #include "swrast/swrast.h"
     44 #include "swrast_setup/swrast_setup.h"
     45 #include "tnl/t_context.h"
     46 #include "tnl/t_pipeline.h"
     47 #include "tnl/t_vertex.h"
     48 
     49 #include "intel_screen.h"
     50 #include "intel_context.h"
     51 #include "intel_tris.h"
     52 #include "intel_batchbuffer.h"
     53 #include "intel_buffers.h"
     54 #include "intel_reg.h"
     55 #include "intel_span.h"
     56 #include "i830_context.h"
     57 #include "i830_reg.h"
     58 #include "i915_context.h"
     59 
     60 static void intelRenderPrimitive(struct gl_context * ctx, GLenum prim);
     61 static void intelRasterPrimitive(struct gl_context * ctx, GLenum rprim,
     62                                  GLuint hwprim);
     63 
     64 static void
     65 intel_flush_inline_primitive(struct intel_context *intel)
     66 {
     67    GLuint used = intel->batch.used - intel->prim.start_ptr;
     68 
     69    assert(intel->prim.primitive != ~0);
     70 
     71 /*    printf("/\n"); */
     72 
     73    if (used < 2)
     74       goto do_discard;
     75 
     76    intel->batch.map[intel->prim.start_ptr] =
     77       _3DPRIMITIVE | intel->prim.primitive | (used - 2);
     78 
     79    goto finished;
     80 
     81  do_discard:
     82    intel->batch.used = intel->prim.start_ptr;
     83 
     84  finished:
     85    intel->prim.primitive = ~0;
     86    intel->prim.start_ptr = 0;
     87    intel->prim.flush = 0;
     88 }
     89 
     90 static void intel_start_inline(struct intel_context *intel, uint32_t prim)
     91 {
     92    BATCH_LOCALS;
     93 
     94    intel->vtbl.emit_state(intel);
     95 
     96    intel->no_batch_wrap = true;
     97 
     98    /*printf("%s *", __progname);*/
     99 
    100    /* Emit a slot which will be filled with the inline primitive
    101     * command later.
    102     */
    103    BEGIN_BATCH(1);
    104 
    105    intel->prim.start_ptr = intel->batch.used;
    106    intel->prim.primitive = prim;
    107    intel->prim.flush = intel_flush_inline_primitive;
    108 
    109    OUT_BATCH(0);
    110    ADVANCE_BATCH();
    111 
    112    intel->no_batch_wrap = false;
    113 /*    printf(">"); */
    114 }
    115 
    116 static void intel_wrap_inline(struct intel_context *intel)
    117 {
    118    GLuint prim = intel->prim.primitive;
    119 
    120    intel_flush_inline_primitive(intel);
    121    intel_batchbuffer_flush(intel);
    122    intel_start_inline(intel, prim);  /* ??? */
    123 }
    124 
    125 static GLuint *intel_extend_inline(struct intel_context *intel, GLuint dwords)
    126 {
    127    GLuint *ptr;
    128 
    129    assert(intel->prim.flush == intel_flush_inline_primitive);
    130 
    131    if (intel_batchbuffer_space(intel) < dwords * sizeof(GLuint))
    132       intel_wrap_inline(intel);
    133 
    134 /*    printf("."); */
    135 
    136    intel->vtbl.assert_not_dirty(intel);
    137 
    138    ptr = intel->batch.map + intel->batch.used;
    139    intel->batch.used += dwords;
    140 
    141    return ptr;
    142 }
    143 
    144 /** Sets the primitive type for a primitive sequence, flushing as needed. */
    145 void intel_set_prim(struct intel_context *intel, uint32_t prim)
    146 {
    147    /* if we have no VBOs */
    148 
    149    if (intel->intelScreen->no_vbo) {
    150       intel_start_inline(intel, prim);
    151       return;
    152    }
    153    if (prim != intel->prim.primitive) {
    154       INTEL_FIREVERTICES(intel);
    155       intel->prim.primitive = prim;
    156    }
    157 }
    158 
    159 /** Returns mapped VB space for the given number of vertices */
    160 uint32_t *intel_get_prim_space(struct intel_context *intel, unsigned int count)
    161 {
    162    uint32_t *addr;
    163 
    164    if (intel->intelScreen->no_vbo) {
    165       return intel_extend_inline(intel, count * intel->vertex_size);
    166    }
    167 
    168    /* Check for space in the existing VB */
    169    if (intel->prim.vb_bo == NULL ||
    170        (intel->prim.current_offset +
    171 	count * intel->vertex_size * 4) > INTEL_VB_SIZE ||
    172        (intel->prim.count + count) >= (1 << 16)) {
    173       /* Flush existing prim if any */
    174       INTEL_FIREVERTICES(intel);
    175 
    176       intel_finish_vb(intel);
    177 
    178       /* Start a new VB */
    179       if (intel->prim.vb == NULL)
    180 	 intel->prim.vb = malloc(INTEL_VB_SIZE);
    181       intel->prim.vb_bo = drm_intel_bo_alloc(intel->bufmgr, "vb",
    182 					     INTEL_VB_SIZE, 4);
    183       intel->prim.start_offset = 0;
    184       intel->prim.current_offset = 0;
    185    }
    186 
    187    intel->prim.flush = intel_flush_prim;
    188 
    189    addr = (uint32_t *)(intel->prim.vb + intel->prim.current_offset);
    190    intel->prim.current_offset += intel->vertex_size * 4 * count;
    191    intel->prim.count += count;
    192 
    193    return addr;
    194 }
    195 
    196 /** Dispatches the accumulated primitive to the batchbuffer. */
    197 void intel_flush_prim(struct intel_context *intel)
    198 {
    199    drm_intel_bo *aper_array[2];
    200    drm_intel_bo *vb_bo;
    201    unsigned int offset, count;
    202    BATCH_LOCALS;
    203 
    204    /* Must be called after an intel_start_prim. */
    205    assert(intel->prim.primitive != ~0);
    206 
    207    if (intel->prim.count == 0)
    208       return;
    209 
    210    /* Clear the current prims out of the context state so that a batch flush
    211     * flush triggered by emit_state doesn't loop back to flush_prim again.
    212     */
    213    vb_bo = intel->prim.vb_bo;
    214    drm_intel_bo_reference(vb_bo);
    215    count = intel->prim.count;
    216    intel->prim.count = 0;
    217    offset = intel->prim.start_offset;
    218    intel->prim.start_offset = intel->prim.current_offset;
    219    if (intel->gen < 3)
    220       intel->prim.current_offset = intel->prim.start_offset = ALIGN(intel->prim.start_offset, 128);
    221    intel->prim.flush = NULL;
    222 
    223    intel->vtbl.emit_state(intel);
    224 
    225    aper_array[0] = intel->batch.bo;
    226    aper_array[1] = vb_bo;
    227    if (dri_bufmgr_check_aperture_space(aper_array, 2)) {
    228       intel_batchbuffer_flush(intel);
    229       intel->vtbl.emit_state(intel);
    230    }
    231 
    232    /* Ensure that we don't start a new batch for the following emit, which
    233     * depends on the state just emitted. emit_state should be making sure we
    234     * have the space for this.
    235     */
    236    intel->no_batch_wrap = true;
    237 
    238    if (intel->always_flush_cache) {
    239       intel_batchbuffer_emit_mi_flush(intel);
    240    }
    241 
    242 #if 0
    243    printf("emitting %d..%d=%d vertices size %d\n", offset,
    244 	  intel->prim.current_offset, count,
    245 	  intel->vertex_size * 4);
    246 #endif
    247 
    248    if (intel->gen >= 3) {
    249       struct i915_context *i915 = i915_context(&intel->ctx);
    250       unsigned int cmd = 0, len = 0;
    251 
    252       if (vb_bo != i915->current_vb_bo) {
    253 	 cmd |= I1_LOAD_S(0);
    254 	 len++;
    255       }
    256 
    257       if (intel->vertex_size != i915->current_vertex_size) {
    258 	 cmd |= I1_LOAD_S(1);
    259 	 len++;
    260       }
    261       if (len)
    262 	 len++;
    263 
    264       BEGIN_BATCH(2+len);
    265       if (cmd)
    266 	 OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | cmd | (len - 2));
    267       if (vb_bo != i915->current_vb_bo) {
    268 	 OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0, 0);
    269 	 i915->current_vb_bo = vb_bo;
    270       }
    271       if (intel->vertex_size != i915->current_vertex_size) {
    272 	 OUT_BATCH((intel->vertex_size << S1_VERTEX_WIDTH_SHIFT) |
    273 		   (intel->vertex_size << S1_VERTEX_PITCH_SHIFT));
    274 	 i915->current_vertex_size = intel->vertex_size;
    275       }
    276       OUT_BATCH(_3DPRIMITIVE |
    277 		PRIM_INDIRECT |
    278 		PRIM_INDIRECT_SEQUENTIAL |
    279 		intel->prim.primitive |
    280 		count);
    281       OUT_BATCH(offset / (intel->vertex_size * 4));
    282       ADVANCE_BATCH();
    283    } else {
    284       struct i830_context *i830 = i830_context(&intel->ctx);
    285 
    286       BEGIN_BATCH(5);
    287       OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
    288 		I1_LOAD_S(0) | I1_LOAD_S(2) | 1);
    289       /* S0 */
    290       assert((offset & ~S0_VB_OFFSET_MASK_830) == 0);
    291       OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0,
    292 		offset | (intel->vertex_size << S0_VB_PITCH_SHIFT_830) |
    293 		S0_VB_ENABLE_830);
    294       /* S2
    295        * This is somewhat unfortunate -- VB width is tied up with
    296        * vertex format data that we've already uploaded through
    297        * _3DSTATE_VFT[01]_CMD.  We may want to replace emits of VFT state with
    298        * STATE_IMMEDIATE_1 like this to avoid duplication.
    299        */
    300       OUT_BATCH((i830->state.Ctx[I830_CTXREG_VF] & VFT0_TEX_COUNT_MASK) >>
    301 		VFT0_TEX_COUNT_SHIFT << S2_TEX_COUNT_SHIFT_830 |
    302 		(i830->state.Ctx[I830_CTXREG_VF2] << 16) |
    303 		intel->vertex_size << S2_VERTEX_0_WIDTH_SHIFT_830);
    304 
    305       OUT_BATCH(_3DPRIMITIVE |
    306 		PRIM_INDIRECT |
    307 		PRIM_INDIRECT_SEQUENTIAL |
    308 		intel->prim.primitive |
    309 		count);
    310       OUT_BATCH(0); /* Beginning vertex index */
    311       ADVANCE_BATCH();
    312    }
    313 
    314    if (intel->always_flush_cache) {
    315       intel_batchbuffer_emit_mi_flush(intel);
    316    }
    317 
    318    intel->no_batch_wrap = false;
    319 
    320    drm_intel_bo_unreference(vb_bo);
    321 }
    322 
    323 /**
    324  * Uploads the locally-accumulated VB into the buffer object.
    325  *
    326  * This avoids us thrashing the cachelines in and out as the buffer gets
    327  * filled, dispatched, then reused as the hardware completes rendering from it,
    328  * and also lets us clflush less if we dispatch with a partially-filled VB.
    329  *
    330  * This is called normally from get_space when we're finishing a BO, but also
    331  * at batch flush time so that we don't try accessing the contents of a
    332  * just-dispatched buffer.
    333  */
    334 void intel_finish_vb(struct intel_context *intel)
    335 {
    336    if (intel->prim.vb_bo == NULL)
    337       return;
    338 
    339    drm_intel_bo_subdata(intel->prim.vb_bo, 0, intel->prim.start_offset,
    340 			intel->prim.vb);
    341    drm_intel_bo_unreference(intel->prim.vb_bo);
    342    intel->prim.vb_bo = NULL;
    343 }
    344 
    345 /***********************************************************************
    346  *                    Emit primitives as inline vertices               *
    347  ***********************************************************************/
    348 
    349 #ifdef __i386__
    350 #define COPY_DWORDS( j, vb, vertsize, v )			\
    351 do {								\
    352    int __tmp;							\
    353    __asm__ __volatile__( "rep ; movsl"				\
    354 			 : "=%c" (j), "=D" (vb), "=S" (__tmp)	\
    355 			 : "0" (vertsize),			\
    356 			 "D" ((long)vb),			\
    357 			 "S" ((long)v) );			\
    358 } while (0)
    359 #else
    360 #define COPY_DWORDS( j, vb, vertsize, v )	\
    361 do {						\
    362    for ( j = 0 ; j < vertsize ; j++ ) {		\
    363       vb[j] = ((GLuint *)v)[j];			\
    364    }						\
    365    vb += vertsize;				\
    366 } while (0)
    367 #endif
    368 
    369 static void
    370 intel_draw_quad(struct intel_context *intel,
    371                 intelVertexPtr v0,
    372                 intelVertexPtr v1, intelVertexPtr v2, intelVertexPtr v3)
    373 {
    374    GLuint vertsize = intel->vertex_size;
    375    GLuint *vb = intel_get_prim_space(intel, 6);
    376    int j;
    377 
    378    COPY_DWORDS(j, vb, vertsize, v0);
    379    COPY_DWORDS(j, vb, vertsize, v1);
    380 
    381    /* If smooth shading, draw like a trifan which gives better
    382     * rasterization.  Otherwise draw as two triangles with provoking
    383     * vertex in third position as required for flat shading.
    384     */
    385    if (intel->ctx.Light.ShadeModel == GL_FLAT) {
    386       COPY_DWORDS(j, vb, vertsize, v3);
    387       COPY_DWORDS(j, vb, vertsize, v1);
    388    }
    389    else {
    390       COPY_DWORDS(j, vb, vertsize, v2);
    391       COPY_DWORDS(j, vb, vertsize, v0);
    392    }
    393 
    394    COPY_DWORDS(j, vb, vertsize, v2);
    395    COPY_DWORDS(j, vb, vertsize, v3);
    396 }
    397 
    398 static void
    399 intel_draw_triangle(struct intel_context *intel,
    400                     intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
    401 {
    402    GLuint vertsize = intel->vertex_size;
    403    GLuint *vb = intel_get_prim_space(intel, 3);
    404    int j;
    405 
    406    COPY_DWORDS(j, vb, vertsize, v0);
    407    COPY_DWORDS(j, vb, vertsize, v1);
    408    COPY_DWORDS(j, vb, vertsize, v2);
    409 }
    410 
    411 
    412 static void
    413 intel_draw_line(struct intel_context *intel,
    414                 intelVertexPtr v0, intelVertexPtr v1)
    415 {
    416    GLuint vertsize = intel->vertex_size;
    417    GLuint *vb = intel_get_prim_space(intel, 2);
    418    int j;
    419 
    420    COPY_DWORDS(j, vb, vertsize, v0);
    421    COPY_DWORDS(j, vb, vertsize, v1);
    422 }
    423 
    424 
    425 static void
    426 intel_draw_point(struct intel_context *intel, intelVertexPtr v0)
    427 {
    428    GLuint vertsize = intel->vertex_size;
    429    GLuint *vb = intel_get_prim_space(intel, 1);
    430    int j;
    431 
    432    /* Adjust for sub pixel position -- still required for conform. */
    433    *(float *) &vb[0] = v0->v.x;
    434    *(float *) &vb[1] = v0->v.y;
    435    for (j = 2; j < vertsize; j++)
    436       vb[j] = v0->ui[j];
    437 }
    438 
    439 
    440 
    441 /***********************************************************************
    442  *                Fixup for ARB_point_parameters                       *
    443  ***********************************************************************/
    444 
    445 /* Currently not working - VERT_ATTRIB_POINTSIZE isn't correctly
    446  * represented in the fragment program InputsRead field.
    447  */
    448 static void
    449 intel_atten_point(struct intel_context *intel, intelVertexPtr v0)
    450 {
    451    struct gl_context *ctx = &intel->ctx;
    452    GLfloat psz[4], col[4], restore_psz, restore_alpha;
    453 
    454    _tnl_get_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
    455    _tnl_get_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
    456 
    457    restore_psz = psz[0];
    458    restore_alpha = col[3];
    459 
    460    if (psz[0] >= ctx->Point.Threshold) {
    461       psz[0] = MIN2(psz[0], ctx->Point.MaxSize);
    462    }
    463    else {
    464       GLfloat dsize = psz[0] / ctx->Point.Threshold;
    465       psz[0] = MAX2(ctx->Point.Threshold, ctx->Point.MinSize);
    466       col[3] *= dsize * dsize;
    467    }
    468 
    469    if (psz[0] < 1.0)
    470       psz[0] = 1.0;
    471 
    472    if (restore_psz != psz[0] || restore_alpha != col[3]) {
    473       _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
    474       _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
    475 
    476       intel_draw_point(intel, v0);
    477 
    478       psz[0] = restore_psz;
    479       col[3] = restore_alpha;
    480 
    481       _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
    482       _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
    483    }
    484    else
    485       intel_draw_point(intel, v0);
    486 }
    487 
    488 
    489 
    490 
    491 
    492 /***********************************************************************
    493  *                Fixup for I915 WPOS texture coordinate                *
    494  ***********************************************************************/
    495 
    496 static void
    497 intel_emit_fragcoord(struct intel_context *intel, intelVertexPtr v)
    498 {
    499    struct gl_context *ctx = &intel->ctx;
    500    struct gl_framebuffer *fb = ctx->DrawBuffer;
    501    GLuint offset = intel->wpos_offset;
    502    float *vertex_position = (float *)v;
    503    float *fragcoord = (float *)((char *)v + offset);
    504 
    505    fragcoord[0] = vertex_position[0];
    506 
    507    if (_mesa_is_user_fbo(fb))
    508       fragcoord[1] = vertex_position[1];
    509    else
    510       fragcoord[1] = fb->Height - vertex_position[1];
    511 
    512    fragcoord[2] = vertex_position[2];
    513    fragcoord[3] = vertex_position[3];
    514 }
    515 
    516 static void
    517 intel_wpos_triangle(struct intel_context *intel,
    518                     intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
    519 {
    520    intel_emit_fragcoord(intel, v0);
    521    intel_emit_fragcoord(intel, v1);
    522    intel_emit_fragcoord(intel, v2);
    523 
    524    intel_draw_triangle(intel, v0, v1, v2);
    525 }
    526 
    527 
    528 static void
    529 intel_wpos_line(struct intel_context *intel,
    530                 intelVertexPtr v0, intelVertexPtr v1)
    531 {
    532    intel_emit_fragcoord(intel, v0);
    533    intel_emit_fragcoord(intel, v1);
    534    intel_draw_line(intel, v0, v1);
    535 }
    536 
    537 
    538 static void
    539 intel_wpos_point(struct intel_context *intel, intelVertexPtr v0)
    540 {
    541    intel_emit_fragcoord(intel, v0);
    542    intel_draw_point(intel, v0);
    543 }
    544 
    545 
    546 
    547 
    548 
    549 
    550 /***********************************************************************
    551  *          Macros for t_dd_tritmp.h to draw basic primitives          *
    552  ***********************************************************************/
    553 
    554 #define TRI( a, b, c )				\
    555 do { 						\
    556    if (DO_FALLBACK)				\
    557       intel->draw_tri( intel, a, b, c );	\
    558    else						\
    559       intel_draw_triangle( intel, a, b, c );	\
    560 } while (0)
    561 
    562 #define QUAD( a, b, c, d )			\
    563 do { 						\
    564    if (DO_FALLBACK) {				\
    565       intel->draw_tri( intel, a, b, d );	\
    566       intel->draw_tri( intel, b, c, d );	\
    567    } else					\
    568       intel_draw_quad( intel, a, b, c, d );	\
    569 } while (0)
    570 
    571 #define LINE( v0, v1 )				\
    572 do { 						\
    573    if (DO_FALLBACK)				\
    574       intel->draw_line( intel, v0, v1 );	\
    575    else						\
    576       intel_draw_line( intel, v0, v1 );		\
    577 } while (0)
    578 
    579 #define POINT( v0 )				\
    580 do { 						\
    581    if (DO_FALLBACK)				\
    582       intel->draw_point( intel, v0 );		\
    583    else						\
    584       intel_draw_point( intel, v0 );		\
    585 } while (0)
    586 
    587 
    588 /***********************************************************************
    589  *              Build render functions from dd templates               *
    590  ***********************************************************************/
    591 
    592 #define INTEL_OFFSET_BIT 	0x01
    593 #define INTEL_TWOSIDE_BIT	0x02
    594 #define INTEL_UNFILLED_BIT	0x04
    595 #define INTEL_FALLBACK_BIT	0x08
    596 #define INTEL_MAX_TRIFUNC	0x10
    597 
    598 
    599 static struct
    600 {
    601    tnl_points_func points;
    602    tnl_line_func line;
    603    tnl_triangle_func triangle;
    604    tnl_quad_func quad;
    605 } rast_tab[INTEL_MAX_TRIFUNC];
    606 
    607 
    608 #define DO_FALLBACK (IND & INTEL_FALLBACK_BIT)
    609 #define DO_OFFSET   (IND & INTEL_OFFSET_BIT)
    610 #define DO_UNFILLED (IND & INTEL_UNFILLED_BIT)
    611 #define DO_TWOSIDE  (IND & INTEL_TWOSIDE_BIT)
    612 #define DO_FLAT      0
    613 #define DO_TRI       1
    614 #define DO_QUAD      1
    615 #define DO_LINE      1
    616 #define DO_POINTS    1
    617 #define DO_FULL_QUAD 1
    618 
    619 #define HAVE_SPEC         1
    620 #define HAVE_BACK_COLORS  0
    621 #define HAVE_HW_FLATSHADE 1
    622 #define VERTEX            intelVertex
    623 #define TAB               rast_tab
    624 
    625 /* Only used to pull back colors into vertices (ie, we know color is
    626  * floating point).
    627  */
    628 #define INTEL_COLOR( dst, src )				\
    629 do {							\
    630    UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]);	\
    631    UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]);	\
    632    UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]);	\
    633    UNCLAMPED_FLOAT_TO_UBYTE((dst)[3], (src)[3]);	\
    634 } while (0)
    635 
    636 #define INTEL_SPEC( dst, src )				\
    637 do {							\
    638    UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]);	\
    639    UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]);	\
    640    UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]);	\
    641 } while (0)
    642 
    643 
    644 #define DEPTH_SCALE intel->polygon_offset_scale
    645 #define UNFILLED_TRI unfilled_tri
    646 #define UNFILLED_QUAD unfilled_quad
    647 #define VERT_X(_v) _v->v.x
    648 #define VERT_Y(_v) _v->v.y
    649 #define VERT_Z(_v) _v->v.z
    650 #define AREA_IS_CCW( a ) (a > 0)
    651 #define GET_VERTEX(e) (intel->verts + (e * intel->vertex_size * sizeof(GLuint)))
    652 
    653 #define VERT_SET_RGBA( v, c )    if (coloroffset) INTEL_COLOR( v->ub4[coloroffset], c )
    654 #define VERT_COPY_RGBA( v0, v1 ) if (coloroffset) v0->ui[coloroffset] = v1->ui[coloroffset]
    655 #define VERT_SAVE_RGBA( idx )    if (coloroffset) color[idx] = v[idx]->ui[coloroffset]
    656 #define VERT_RESTORE_RGBA( idx ) if (coloroffset) v[idx]->ui[coloroffset] = color[idx]
    657 
    658 #define VERT_SET_SPEC( v, c )    if (specoffset) INTEL_SPEC( v->ub4[specoffset], c )
    659 #define VERT_COPY_SPEC( v0, v1 ) if (specoffset) COPY_3V(v0->ub4[specoffset], v1->ub4[specoffset])
    660 #define VERT_SAVE_SPEC( idx )    if (specoffset) spec[idx] = v[idx]->ui[specoffset]
    661 #define VERT_RESTORE_SPEC( idx ) if (specoffset) v[idx]->ui[specoffset] = spec[idx]
    662 
    663 #define LOCAL_VARS(n)							\
    664    struct intel_context *intel = intel_context(ctx);			\
    665    GLuint color[n] = { 0, }, spec[n] = { 0, };				\
    666    GLuint coloroffset = intel->coloroffset;				\
    667    GLuint specoffset = intel->specoffset;				\
    668    (void) color; (void) spec; (void) coloroffset; (void) specoffset;
    669 
    670 
    671 /***********************************************************************
    672  *                Helpers for rendering unfilled primitives            *
    673  ***********************************************************************/
    674 
    675 static const GLuint hw_prim[GL_POLYGON + 1] = {
    676    PRIM3D_POINTLIST,
    677    PRIM3D_LINELIST,
    678    PRIM3D_LINELIST,
    679    PRIM3D_LINELIST,
    680    PRIM3D_TRILIST,
    681    PRIM3D_TRILIST,
    682    PRIM3D_TRILIST,
    683    PRIM3D_TRILIST,
    684    PRIM3D_TRILIST,
    685    PRIM3D_TRILIST
    686 };
    687 
    688 #define RASTERIZE(x) intelRasterPrimitive( ctx, x, hw_prim[x] )
    689 #define RENDER_PRIMITIVE intel->render_primitive
    690 #define TAG(x) x
    691 #define IND INTEL_FALLBACK_BIT
    692 #include "tnl_dd/t_dd_unfilled.h"
    693 #undef IND
    694 
    695 /***********************************************************************
    696  *                      Generate GL render functions                   *
    697  ***********************************************************************/
    698 
    699 #define IND (0)
    700 #define TAG(x) x
    701 #include "tnl_dd/t_dd_tritmp.h"
    702 
    703 #define IND (INTEL_OFFSET_BIT)
    704 #define TAG(x) x##_offset
    705 #include "tnl_dd/t_dd_tritmp.h"
    706 
    707 #define IND (INTEL_TWOSIDE_BIT)
    708 #define TAG(x) x##_twoside
    709 #include "tnl_dd/t_dd_tritmp.h"
    710 
    711 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT)
    712 #define TAG(x) x##_twoside_offset
    713 #include "tnl_dd/t_dd_tritmp.h"
    714 
    715 #define IND (INTEL_UNFILLED_BIT)
    716 #define TAG(x) x##_unfilled
    717 #include "tnl_dd/t_dd_tritmp.h"
    718 
    719 #define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
    720 #define TAG(x) x##_offset_unfilled
    721 #include "tnl_dd/t_dd_tritmp.h"
    722 
    723 #define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT)
    724 #define TAG(x) x##_twoside_unfilled
    725 #include "tnl_dd/t_dd_tritmp.h"
    726 
    727 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
    728 #define TAG(x) x##_twoside_offset_unfilled
    729 #include "tnl_dd/t_dd_tritmp.h"
    730 
    731 #define IND (INTEL_FALLBACK_BIT)
    732 #define TAG(x) x##_fallback
    733 #include "tnl_dd/t_dd_tritmp.h"
    734 
    735 #define IND (INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
    736 #define TAG(x) x##_offset_fallback
    737 #include "tnl_dd/t_dd_tritmp.h"
    738 
    739 #define IND (INTEL_TWOSIDE_BIT|INTEL_FALLBACK_BIT)
    740 #define TAG(x) x##_twoside_fallback
    741 #include "tnl_dd/t_dd_tritmp.h"
    742 
    743 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
    744 #define TAG(x) x##_twoside_offset_fallback
    745 #include "tnl_dd/t_dd_tritmp.h"
    746 
    747 #define IND (INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
    748 #define TAG(x) x##_unfilled_fallback
    749 #include "tnl_dd/t_dd_tritmp.h"
    750 
    751 #define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
    752 #define TAG(x) x##_offset_unfilled_fallback
    753 #include "tnl_dd/t_dd_tritmp.h"
    754 
    755 #define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
    756 #define TAG(x) x##_twoside_unfilled_fallback
    757 #include "tnl_dd/t_dd_tritmp.h"
    758 
    759 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT| \
    760 	     INTEL_FALLBACK_BIT)
    761 #define TAG(x) x##_twoside_offset_unfilled_fallback
    762 #include "tnl_dd/t_dd_tritmp.h"
    763 
    764 
    765 static void
    766 init_rast_tab(void)
    767 {
    768    init();
    769    init_offset();
    770    init_twoside();
    771    init_twoside_offset();
    772    init_unfilled();
    773    init_offset_unfilled();
    774    init_twoside_unfilled();
    775    init_twoside_offset_unfilled();
    776    init_fallback();
    777    init_offset_fallback();
    778    init_twoside_fallback();
    779    init_twoside_offset_fallback();
    780    init_unfilled_fallback();
    781    init_offset_unfilled_fallback();
    782    init_twoside_unfilled_fallback();
    783    init_twoside_offset_unfilled_fallback();
    784 }
    785 
    786 
    787 /***********************************************************************
    788  *                    Rasterization fallback helpers                   *
    789  ***********************************************************************/
    790 
    791 
    792 /* This code is hit only when a mix of accelerated and unaccelerated
    793  * primitives are being drawn, and only for the unaccelerated
    794  * primitives.
    795  */
    796 static void
    797 intel_fallback_tri(struct intel_context *intel,
    798                    intelVertex * v0, intelVertex * v1, intelVertex * v2)
    799 {
    800    struct gl_context *ctx = &intel->ctx;
    801    SWvertex v[3];
    802 
    803    if (0)
    804       fprintf(stderr, "\n%s\n", __FUNCTION__);
    805 
    806    INTEL_FIREVERTICES(intel);
    807 
    808    _swsetup_Translate(ctx, v0, &v[0]);
    809    _swsetup_Translate(ctx, v1, &v[1]);
    810    _swsetup_Translate(ctx, v2, &v[2]);
    811    intelSpanRenderStart(ctx);
    812    _swrast_Triangle(ctx, &v[0], &v[1], &v[2]);
    813    intelSpanRenderFinish(ctx);
    814 }
    815 
    816 
    817 static void
    818 intel_fallback_line(struct intel_context *intel,
    819                     intelVertex * v0, intelVertex * v1)
    820 {
    821    struct gl_context *ctx = &intel->ctx;
    822    SWvertex v[2];
    823 
    824    if (0)
    825       fprintf(stderr, "\n%s\n", __FUNCTION__);
    826 
    827    INTEL_FIREVERTICES(intel);
    828 
    829    _swsetup_Translate(ctx, v0, &v[0]);
    830    _swsetup_Translate(ctx, v1, &v[1]);
    831    intelSpanRenderStart(ctx);
    832    _swrast_Line(ctx, &v[0], &v[1]);
    833    intelSpanRenderFinish(ctx);
    834 }
    835 
    836 static void
    837 intel_fallback_point(struct intel_context *intel,
    838 		     intelVertex * v0)
    839 {
    840    struct gl_context *ctx = &intel->ctx;
    841    SWvertex v[1];
    842 
    843    if (0)
    844       fprintf(stderr, "\n%s\n", __FUNCTION__);
    845 
    846    INTEL_FIREVERTICES(intel);
    847 
    848    _swsetup_Translate(ctx, v0, &v[0]);
    849    intelSpanRenderStart(ctx);
    850    _swrast_Point(ctx, &v[0]);
    851    intelSpanRenderFinish(ctx);
    852 }
    853 
    854 
    855 /**********************************************************************/
    856 /*               Render unclipped begin/end objects                   */
    857 /**********************************************************************/
    858 
    859 #define IND 0
    860 #define V(x) (intelVertex *)(vertptr + ((x)*vertsize*sizeof(GLuint)))
    861 #define RENDER_POINTS( start, count )	\
    862    for ( ; start < count ; start++) POINT( V(ELT(start)) );
    863 #define RENDER_LINE( v0, v1 )         LINE( V(v0), V(v1) )
    864 #define RENDER_TRI(  v0, v1, v2 )     TRI(  V(v0), V(v1), V(v2) )
    865 #define RENDER_QUAD( v0, v1, v2, v3 ) QUAD( V(v0), V(v1), V(v2), V(v3) )
    866 #define INIT(x) intelRenderPrimitive( ctx, x )
    867 #undef LOCAL_VARS
    868 #define LOCAL_VARS						\
    869     struct intel_context *intel = intel_context(ctx);			\
    870     GLubyte *vertptr = (GLubyte *)intel->verts;			\
    871     const GLuint vertsize = intel->vertex_size;       	\
    872     const GLuint * const elt = TNL_CONTEXT(ctx)->vb.Elts;	\
    873     (void) elt;
    874 #define RESET_STIPPLE
    875 #define RESET_OCCLUSION
    876 #define PRESERVE_VB_DEFS
    877 #define ELT(x) x
    878 #define TAG(x) intel_##x##_verts
    879 #include "tnl/t_vb_rendertmp.h"
    880 #undef ELT
    881 #undef TAG
    882 #define TAG(x) intel_##x##_elts
    883 #define ELT(x) elt[x]
    884 #include "tnl/t_vb_rendertmp.h"
    885 
    886 /**********************************************************************/
    887 /*                   Render clipped primitives                        */
    888 /**********************************************************************/
    889 
    890 
    891 
    892 static void
    893 intelRenderClippedPoly(struct gl_context * ctx, const GLuint * elts, GLuint n)
    894 {
    895    struct intel_context *intel = intel_context(ctx);
    896    TNLcontext *tnl = TNL_CONTEXT(ctx);
    897    struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
    898    GLuint prim = intel->render_primitive;
    899 
    900    /* Render the new vertices as an unclipped polygon.
    901     */
    902    {
    903       GLuint *tmp = VB->Elts;
    904       VB->Elts = (GLuint *) elts;
    905       tnl->Driver.Render.PrimTabElts[GL_POLYGON] (ctx, 0, n,
    906                                                   PRIM_BEGIN | PRIM_END);
    907       VB->Elts = tmp;
    908    }
    909 
    910    /* Restore the render primitive
    911     */
    912    if (prim != GL_POLYGON)
    913       tnl->Driver.Render.PrimitiveNotify(ctx, prim);
    914 }
    915 
    916 static void
    917 intelRenderClippedLine(struct gl_context * ctx, GLuint ii, GLuint jj)
    918 {
    919    TNLcontext *tnl = TNL_CONTEXT(ctx);
    920 
    921    tnl->Driver.Render.Line(ctx, ii, jj);
    922 }
    923 
    924 static void
    925 intelFastRenderClippedPoly(struct gl_context * ctx, const GLuint * elts, GLuint n)
    926 {
    927    struct intel_context *intel = intel_context(ctx);
    928    const GLuint vertsize = intel->vertex_size;
    929    GLuint *vb = intel_get_prim_space(intel, (n - 2) * 3);
    930    GLubyte *vertptr = (GLubyte *) intel->verts;
    931    const GLuint *start = (const GLuint *) V(elts[0]);
    932    int i, j;
    933 
    934    for (i = 2; i < n; i++) {
    935       COPY_DWORDS(j, vb, vertsize, V(elts[i - 1]));
    936       COPY_DWORDS(j, vb, vertsize, V(elts[i]));
    937       COPY_DWORDS(j, vb, vertsize, start);
    938    }
    939 }
    940 
    941 /**********************************************************************/
    942 /*                    Choose render functions                         */
    943 /**********************************************************************/
    944 
    945 
    946 
    947 
    948 #define ANY_FALLBACK_FLAGS (DD_LINE_STIPPLE | DD_TRI_STIPPLE | DD_POINT_ATTEN)
    949 #define ANY_RASTER_FLAGS (DD_TRI_LIGHT_TWOSIDE | DD_TRI_OFFSET | DD_TRI_UNFILLED)
    950 
    951 void
    952 intelChooseRenderState(struct gl_context * ctx)
    953 {
    954    TNLcontext *tnl = TNL_CONTEXT(ctx);
    955    struct intel_context *intel = intel_context(ctx);
    956    GLuint flags = ctx->_TriangleCaps;
    957    const struct gl_fragment_program *fprog = ctx->FragmentProgram._Current;
    958    bool have_wpos = (fprog && (fprog->Base.InputsRead & FRAG_BIT_WPOS));
    959    GLuint index = 0;
    960 
    961    if (INTEL_DEBUG & DEBUG_STATE)
    962       fprintf(stderr, "\n%s\n", __FUNCTION__);
    963 
    964    if ((flags & (ANY_FALLBACK_FLAGS | ANY_RASTER_FLAGS)) || have_wpos) {
    965 
    966       if (flags & ANY_RASTER_FLAGS) {
    967          if (flags & DD_TRI_LIGHT_TWOSIDE)
    968             index |= INTEL_TWOSIDE_BIT;
    969          if (flags & DD_TRI_OFFSET)
    970             index |= INTEL_OFFSET_BIT;
    971          if (flags & DD_TRI_UNFILLED)
    972             index |= INTEL_UNFILLED_BIT;
    973       }
    974 
    975       if (have_wpos) {
    976          intel->draw_point = intel_wpos_point;
    977          intel->draw_line = intel_wpos_line;
    978          intel->draw_tri = intel_wpos_triangle;
    979 
    980          /* Make sure these get called:
    981           */
    982          index |= INTEL_FALLBACK_BIT;
    983       }
    984       else {
    985          intel->draw_point = intel_draw_point;
    986          intel->draw_line = intel_draw_line;
    987          intel->draw_tri = intel_draw_triangle;
    988       }
    989 
    990       /* Hook in fallbacks for specific primitives.
    991        */
    992       if (flags & ANY_FALLBACK_FLAGS) {
    993          if (flags & DD_LINE_STIPPLE)
    994             intel->draw_line = intel_fallback_line;
    995 
    996          if ((flags & DD_TRI_STIPPLE) && !intel->hw_stipple)
    997             intel->draw_tri = intel_fallback_tri;
    998 
    999          if (flags & DD_POINT_ATTEN) {
   1000 	    if (0)
   1001 	       intel->draw_point = intel_atten_point;
   1002 	    else
   1003 	       intel->draw_point = intel_fallback_point;
   1004 	 }
   1005 
   1006          index |= INTEL_FALLBACK_BIT;
   1007       }
   1008    }
   1009 
   1010    if (intel->RenderIndex != index) {
   1011       intel->RenderIndex = index;
   1012 
   1013       tnl->Driver.Render.Points = rast_tab[index].points;
   1014       tnl->Driver.Render.Line = rast_tab[index].line;
   1015       tnl->Driver.Render.Triangle = rast_tab[index].triangle;
   1016       tnl->Driver.Render.Quad = rast_tab[index].quad;
   1017 
   1018       if (index == 0) {
   1019          tnl->Driver.Render.PrimTabVerts = intel_render_tab_verts;
   1020          tnl->Driver.Render.PrimTabElts = intel_render_tab_elts;
   1021          tnl->Driver.Render.ClippedLine = line; /* from tritmp.h */
   1022          tnl->Driver.Render.ClippedPolygon = intelFastRenderClippedPoly;
   1023       }
   1024       else {
   1025          tnl->Driver.Render.PrimTabVerts = _tnl_render_tab_verts;
   1026          tnl->Driver.Render.PrimTabElts = _tnl_render_tab_elts;
   1027          tnl->Driver.Render.ClippedLine = intelRenderClippedLine;
   1028          tnl->Driver.Render.ClippedPolygon = intelRenderClippedPoly;
   1029       }
   1030    }
   1031 }
   1032 
   1033 static const GLenum reduced_prim[GL_POLYGON + 1] = {
   1034    GL_POINTS,
   1035    GL_LINES,
   1036    GL_LINES,
   1037    GL_LINES,
   1038    GL_TRIANGLES,
   1039    GL_TRIANGLES,
   1040    GL_TRIANGLES,
   1041    GL_TRIANGLES,
   1042    GL_TRIANGLES,
   1043    GL_TRIANGLES
   1044 };
   1045 
   1046 
   1047 /**********************************************************************/
   1048 /*                 High level hooks for t_vb_render.c                 */
   1049 /**********************************************************************/
   1050 
   1051 
   1052 
   1053 
   1054 static void
   1055 intelRunPipeline(struct gl_context * ctx)
   1056 {
   1057    struct intel_context *intel = intel_context(ctx);
   1058 
   1059    _mesa_lock_context_textures(ctx);
   1060 
   1061    if (ctx->NewState)
   1062       _mesa_update_state_locked(ctx);
   1063 
   1064    /* We need to get this done before we start the pipeline, or a
   1065     * change in the INTEL_FALLBACK() of its intel_draw_buffers() call
   1066     * while the pipeline is running will result in mismatched swrast
   1067     * map/unmaps, and later assertion failures.
   1068     */
   1069    intel_prepare_render(intel);
   1070 
   1071    if (intel->NewGLState) {
   1072       if (intel->NewGLState & _NEW_TEXTURE) {
   1073          intel->vtbl.update_texture_state(intel);
   1074       }
   1075 
   1076       if (!intel->Fallback) {
   1077          if (intel->NewGLState & _INTEL_NEW_RENDERSTATE)
   1078             intelChooseRenderState(ctx);
   1079       }
   1080 
   1081       intel->NewGLState = 0;
   1082    }
   1083 
   1084    intel_map_vertex_shader_textures(ctx);
   1085    intel->tnl_pipeline_running = true;
   1086    _tnl_run_pipeline(ctx);
   1087    intel->tnl_pipeline_running = false;
   1088    intel_unmap_vertex_shader_textures(ctx);
   1089 
   1090    _mesa_unlock_context_textures(ctx);
   1091 }
   1092 
   1093 static void
   1094 intelRenderStart(struct gl_context * ctx)
   1095 {
   1096    struct intel_context *intel = intel_context(ctx);
   1097 
   1098    intel_check_front_buffer_rendering(intel);
   1099    intel->vtbl.render_start(intel_context(ctx));
   1100    intel->vtbl.emit_state(intel);
   1101 }
   1102 
   1103 static void
   1104 intelRenderFinish(struct gl_context * ctx)
   1105 {
   1106    struct intel_context *intel = intel_context(ctx);
   1107 
   1108    if (intel->RenderIndex & INTEL_FALLBACK_BIT)
   1109       _swrast_flush(ctx);
   1110 
   1111    INTEL_FIREVERTICES(intel);
   1112 }
   1113 
   1114 
   1115 
   1116 
   1117  /* System to flush dma and emit state changes based on the rasterized
   1118   * primitive.
   1119   */
   1120 static void
   1121 intelRasterPrimitive(struct gl_context * ctx, GLenum rprim, GLuint hwprim)
   1122 {
   1123    struct intel_context *intel = intel_context(ctx);
   1124 
   1125    if (0)
   1126       fprintf(stderr, "%s %s %x\n", __FUNCTION__,
   1127               _mesa_lookup_enum_by_nr(rprim), hwprim);
   1128 
   1129    intel->vtbl.reduced_primitive_state(intel, rprim);
   1130 
   1131    /* Start a new primitive.  Arrange to have it flushed later on.
   1132     */
   1133    if (hwprim != intel->prim.primitive) {
   1134       INTEL_FIREVERTICES(intel);
   1135 
   1136       intel_set_prim(intel, hwprim);
   1137    }
   1138 }
   1139 
   1140 
   1141  /*
   1142   */
   1143 static void
   1144 intelRenderPrimitive(struct gl_context * ctx, GLenum prim)
   1145 {
   1146    struct intel_context *intel = intel_context(ctx);
   1147 
   1148    if (0)
   1149       fprintf(stderr, "%s %s\n", __FUNCTION__, _mesa_lookup_enum_by_nr(prim));
   1150 
   1151    /* Let some clipping routines know which primitive they're dealing
   1152     * with.
   1153     */
   1154    intel->render_primitive = prim;
   1155 
   1156    /* Shortcircuit this when called for unfilled triangles.  The rasterized
   1157     * primitive will always be reset by lower level functions in that case,
   1158     * potentially pingponging the state:
   1159     */
   1160    if (reduced_prim[prim] == GL_TRIANGLES &&
   1161        (ctx->_TriangleCaps & DD_TRI_UNFILLED))
   1162       return;
   1163 
   1164    /* Set some primitive-dependent state and Start? a new primitive.
   1165     */
   1166    intelRasterPrimitive(ctx, reduced_prim[prim], hw_prim[prim]);
   1167 }
   1168 
   1169 
   1170  /**********************************************************************/
   1171  /*           Transition to/from hardware rasterization.               */
   1172  /**********************************************************************/
   1173 
   1174 static char *fallbackStrings[] = {
   1175    [0] = "Draw buffer",
   1176    [1] = "Read buffer",
   1177    [2] = "Depth buffer",
   1178    [3] = "Stencil buffer",
   1179    [4] = "User disable",
   1180    [5] = "Render mode",
   1181 
   1182    [12] = "Texture",
   1183    [13] = "Color mask",
   1184    [14] = "Stencil",
   1185    [15] = "Stipple",
   1186    [16] = "Program",
   1187    [17] = "Logic op",
   1188    [18] = "Smooth polygon",
   1189    [19] = "Smooth point",
   1190    [20] = "point sprite coord origin",
   1191    [21] = "depth/color drawing offset",
   1192    [22] = "coord replace(SPRITE POINT ENABLE)",
   1193 };
   1194 
   1195 
   1196 static char *
   1197 getFallbackString(GLuint bit)
   1198 {
   1199    int i = 0;
   1200    while (bit > 1) {
   1201       i++;
   1202       bit >>= 1;
   1203    }
   1204    return fallbackStrings[i];
   1205 }
   1206 
   1207 
   1208 
   1209 /**
   1210  * Enable/disable a fallback flag.
   1211  * \param bit  one of INTEL_FALLBACK_x flags.
   1212  */
   1213 void
   1214 intelFallback(struct intel_context *intel, GLbitfield bit, bool mode)
   1215 {
   1216    struct gl_context *ctx = &intel->ctx;
   1217    TNLcontext *tnl = TNL_CONTEXT(ctx);
   1218    const GLbitfield oldfallback = intel->Fallback;
   1219 
   1220    if (mode) {
   1221       intel->Fallback |= bit;
   1222       if (oldfallback == 0) {
   1223 	 assert(!intel->tnl_pipeline_running);
   1224 
   1225          intel_flush(ctx);
   1226          if (INTEL_DEBUG & DEBUG_PERF)
   1227             fprintf(stderr, "ENTER FALLBACK %x: %s\n",
   1228                     bit, getFallbackString(bit));
   1229          _swsetup_Wakeup(ctx);
   1230          intel->RenderIndex = ~0;
   1231       }
   1232    }
   1233    else {
   1234       intel->Fallback &= ~bit;
   1235       if (oldfallback == bit) {
   1236 	 assert(!intel->tnl_pipeline_running);
   1237 
   1238          _swrast_flush(ctx);
   1239          if (INTEL_DEBUG & DEBUG_PERF)
   1240             fprintf(stderr, "LEAVE FALLBACK %s\n", getFallbackString(bit));
   1241          tnl->Driver.Render.Start = intelRenderStart;
   1242          tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
   1243          tnl->Driver.Render.Finish = intelRenderFinish;
   1244          tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
   1245          tnl->Driver.Render.CopyPV = _tnl_copy_pv;
   1246          tnl->Driver.Render.Interp = _tnl_interp;
   1247 
   1248          _tnl_invalidate_vertex_state(ctx, ~0);
   1249          _tnl_invalidate_vertices(ctx, ~0);
   1250          _tnl_install_attrs(ctx,
   1251                             intel->vertex_attrs,
   1252                             intel->vertex_attr_count,
   1253                             intel->ViewportMatrix.m, 0);
   1254 
   1255          intel->NewGLState |= _INTEL_NEW_RENDERSTATE;
   1256       }
   1257    }
   1258 }
   1259 
   1260 union fi
   1261 {
   1262    GLfloat f;
   1263    GLint i;
   1264 };
   1265 
   1266 /**********************************************************************/
   1267 /*                            Initialization.                         */
   1268 /**********************************************************************/
   1269 
   1270 
   1271 void
   1272 intelInitTriFuncs(struct gl_context * ctx)
   1273 {
   1274    TNLcontext *tnl = TNL_CONTEXT(ctx);
   1275    static int firsttime = 1;
   1276 
   1277    if (firsttime) {
   1278       init_rast_tab();
   1279       firsttime = 0;
   1280    }
   1281 
   1282    tnl->Driver.RunPipeline = intelRunPipeline;
   1283    tnl->Driver.Render.Start = intelRenderStart;
   1284    tnl->Driver.Render.Finish = intelRenderFinish;
   1285    tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
   1286    tnl->Driver.Render.ResetLineStipple = _swrast_ResetLineStipple;
   1287    tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
   1288    tnl->Driver.Render.CopyPV = _tnl_copy_pv;
   1289    tnl->Driver.Render.Interp = _tnl_interp;
   1290 }
   1291