Home | History | Annotate | Download | only in rand
      1 /* crypto/rand/md_rand.c */
      2 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      3  * All rights reserved.
      4  *
      5  * This package is an SSL implementation written
      6  * by Eric Young (eay (at) cryptsoft.com).
      7  * The implementation was written so as to conform with Netscapes SSL.
      8  *
      9  * This library is free for commercial and non-commercial use as long as
     10  * the following conditions are aheared to.  The following conditions
     11  * apply to all code found in this distribution, be it the RC4, RSA,
     12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     13  * included with this distribution is covered by the same copyright terms
     14  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     15  *
     16  * Copyright remains Eric Young's, and as such any Copyright notices in
     17  * the code are not to be removed.
     18  * If this package is used in a product, Eric Young should be given attribution
     19  * as the author of the parts of the library used.
     20  * This can be in the form of a textual message at program startup or
     21  * in documentation (online or textual) provided with the package.
     22  *
     23  * Redistribution and use in source and binary forms, with or without
     24  * modification, are permitted provided that the following conditions
     25  * are met:
     26  * 1. Redistributions of source code must retain the copyright
     27  *    notice, this list of conditions and the following disclaimer.
     28  * 2. Redistributions in binary form must reproduce the above copyright
     29  *    notice, this list of conditions and the following disclaimer in the
     30  *    documentation and/or other materials provided with the distribution.
     31  * 3. All advertising materials mentioning features or use of this software
     32  *    must display the following acknowledgement:
     33  *    "This product includes cryptographic software written by
     34  *     Eric Young (eay (at) cryptsoft.com)"
     35  *    The word 'cryptographic' can be left out if the rouines from the library
     36  *    being used are not cryptographic related :-).
     37  * 4. If you include any Windows specific code (or a derivative thereof) from
     38  *    the apps directory (application code) you must include an acknowledgement:
     39  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     40  *
     41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     51  * SUCH DAMAGE.
     52  *
     53  * The licence and distribution terms for any publically available version or
     54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     55  * copied and put under another distribution licence
     56  * [including the GNU Public Licence.]
     57  */
     58 /* ====================================================================
     59  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
     60  *
     61  * Redistribution and use in source and binary forms, with or without
     62  * modification, are permitted provided that the following conditions
     63  * are met:
     64  *
     65  * 1. Redistributions of source code must retain the above copyright
     66  *    notice, this list of conditions and the following disclaimer.
     67  *
     68  * 2. Redistributions in binary form must reproduce the above copyright
     69  *    notice, this list of conditions and the following disclaimer in
     70  *    the documentation and/or other materials provided with the
     71  *    distribution.
     72  *
     73  * 3. All advertising materials mentioning features or use of this
     74  *    software must display the following acknowledgment:
     75  *    "This product includes software developed by the OpenSSL Project
     76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     77  *
     78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     79  *    endorse or promote products derived from this software without
     80  *    prior written permission. For written permission, please contact
     81  *    openssl-core (at) openssl.org.
     82  *
     83  * 5. Products derived from this software may not be called "OpenSSL"
     84  *    nor may "OpenSSL" appear in their names without prior written
     85  *    permission of the OpenSSL Project.
     86  *
     87  * 6. Redistributions of any form whatsoever must retain the following
     88  *    acknowledgment:
     89  *    "This product includes software developed by the OpenSSL Project
     90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     91  *
     92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    103  * OF THE POSSIBILITY OF SUCH DAMAGE.
    104  * ====================================================================
    105  *
    106  * This product includes cryptographic software written by Eric Young
    107  * (eay (at) cryptsoft.com).  This product includes software written by Tim
    108  * Hudson (tjh (at) cryptsoft.com).
    109  *
    110  */
    111 
    112 #define OPENSSL_FIPSEVP
    113 
    114 #ifdef MD_RAND_DEBUG
    115 # ifndef NDEBUG
    116 #   define NDEBUG
    117 # endif
    118 #endif
    119 
    120 #include <assert.h>
    121 #include <stdio.h>
    122 #include <string.h>
    123 
    124 #include "e_os.h"
    125 
    126 #include <openssl/crypto.h>
    127 #include <openssl/rand.h>
    128 #include "rand_lcl.h"
    129 
    130 #include <openssl/err.h>
    131 
    132 #ifdef BN_DEBUG
    133 # define PREDICT
    134 #endif
    135 
    136 /* #define PREDICT	1 */
    137 
    138 #define STATE_SIZE	1023
    139 static int state_num=0,state_index=0;
    140 static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
    141 static unsigned char md[MD_DIGEST_LENGTH];
    142 static long md_count[2]={0,0};
    143 static double entropy=0;
    144 static int initialized=0;
    145 
    146 static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
    147                                            * holds CRYPTO_LOCK_RAND
    148                                            * (to prevent double locking) */
    149 /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
    150 static CRYPTO_THREADID locking_threadid; /* valid iff crypto_lock_rand is set */
    151 
    152 
    153 #ifdef PREDICT
    154 int rand_predictable=0;
    155 #endif
    156 
    157 const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT;
    158 
    159 static void ssleay_rand_cleanup(void);
    160 static void ssleay_rand_seed(const void *buf, int num);
    161 static void ssleay_rand_add(const void *buf, int num, double add_entropy);
    162 static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num);
    163 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
    164 static int ssleay_rand_status(void);
    165 
    166 RAND_METHOD rand_ssleay_meth={
    167 	ssleay_rand_seed,
    168 	ssleay_rand_nopseudo_bytes,
    169 	ssleay_rand_cleanup,
    170 	ssleay_rand_add,
    171 	ssleay_rand_pseudo_bytes,
    172 	ssleay_rand_status
    173 	};
    174 
    175 RAND_METHOD *RAND_SSLeay(void)
    176 	{
    177 	return(&rand_ssleay_meth);
    178 	}
    179 
    180 static void ssleay_rand_cleanup(void)
    181 	{
    182 	OPENSSL_cleanse(state,sizeof(state));
    183 	state_num=0;
    184 	state_index=0;
    185 	OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
    186 	md_count[0]=0;
    187 	md_count[1]=0;
    188 	entropy=0;
    189 	initialized=0;
    190 	}
    191 
    192 static void ssleay_rand_add(const void *buf, int num, double add)
    193 	{
    194 	int i,j,k,st_idx;
    195 	long md_c[2];
    196 	unsigned char local_md[MD_DIGEST_LENGTH];
    197 	EVP_MD_CTX m;
    198 	int do_not_lock;
    199 
    200 	if (!num)
    201 		return;
    202 
    203 	/*
    204 	 * (Based on the rand(3) manpage)
    205 	 *
    206 	 * The input is chopped up into units of 20 bytes (or less for
    207 	 * the last block).  Each of these blocks is run through the hash
    208 	 * function as follows:  The data passed to the hash function
    209 	 * is the current 'md', the same number of bytes from the 'state'
    210 	 * (the location determined by in incremented looping index) as
    211 	 * the current 'block', the new key data 'block', and 'count'
    212 	 * (which is incremented after each use).
    213 	 * The result of this is kept in 'md' and also xored into the
    214 	 * 'state' at the same locations that were used as input into the
    215          * hash function.
    216 	 */
    217 
    218 	/* check if we already have the lock */
    219 	if (crypto_lock_rand)
    220 		{
    221 		CRYPTO_THREADID cur;
    222 		CRYPTO_THREADID_current(&cur);
    223 		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
    224 		do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
    225 		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
    226 		}
    227 	else
    228 		do_not_lock = 0;
    229 
    230 	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
    231 	st_idx=state_index;
    232 
    233 	/* use our own copies of the counters so that even
    234 	 * if a concurrent thread seeds with exactly the
    235 	 * same data and uses the same subarray there's _some_
    236 	 * difference */
    237 	md_c[0] = md_count[0];
    238 	md_c[1] = md_count[1];
    239 
    240 	memcpy(local_md, md, sizeof md);
    241 
    242 	/* state_index <= state_num <= STATE_SIZE */
    243 	state_index += num;
    244 	if (state_index >= STATE_SIZE)
    245 		{
    246 		state_index%=STATE_SIZE;
    247 		state_num=STATE_SIZE;
    248 		}
    249 	else if (state_num < STATE_SIZE)
    250 		{
    251 		if (state_index > state_num)
    252 			state_num=state_index;
    253 		}
    254 	/* state_index <= state_num <= STATE_SIZE */
    255 
    256 	/* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
    257 	 * are what we will use now, but other threads may use them
    258 	 * as well */
    259 
    260 	md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
    261 
    262 	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
    263 
    264 	EVP_MD_CTX_init(&m);
    265 	for (i=0; i<num; i+=MD_DIGEST_LENGTH)
    266 		{
    267 		j=(num-i);
    268 		j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
    269 
    270 		MD_Init(&m);
    271 		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
    272 		k=(st_idx+j)-STATE_SIZE;
    273 		if (k > 0)
    274 			{
    275 			MD_Update(&m,&(state[st_idx]),j-k);
    276 			MD_Update(&m,&(state[0]),k);
    277 			}
    278 		else
    279 			MD_Update(&m,&(state[st_idx]),j);
    280 
    281 		/* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
    282 		MD_Update(&m,buf,j);
    283 		/* We know that line may cause programs such as
    284 		   purify and valgrind to complain about use of
    285 		   uninitialized data.  The problem is not, it's
    286 		   with the caller.  Removing that line will make
    287 		   sure you get really bad randomness and thereby
    288 		   other problems such as very insecure keys. */
    289 
    290 		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
    291 		MD_Final(&m,local_md);
    292 		md_c[1]++;
    293 
    294 		buf=(const char *)buf + j;
    295 
    296 		for (k=0; k<j; k++)
    297 			{
    298 			/* Parallel threads may interfere with this,
    299 			 * but always each byte of the new state is
    300 			 * the XOR of some previous value of its
    301 			 * and local_md (itermediate values may be lost).
    302 			 * Alway using locking could hurt performance more
    303 			 * than necessary given that conflicts occur only
    304 			 * when the total seeding is longer than the random
    305 			 * state. */
    306 			state[st_idx++]^=local_md[k];
    307 			if (st_idx >= STATE_SIZE)
    308 				st_idx=0;
    309 			}
    310 		}
    311 	EVP_MD_CTX_cleanup(&m);
    312 
    313 	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
    314 	/* Don't just copy back local_md into md -- this could mean that
    315 	 * other thread's seeding remains without effect (except for
    316 	 * the incremented counter).  By XORing it we keep at least as
    317 	 * much entropy as fits into md. */
    318 	for (k = 0; k < (int)sizeof(md); k++)
    319 		{
    320 		md[k] ^= local_md[k];
    321 		}
    322 	if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
    323 	    entropy += add;
    324 	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
    325 
    326 #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
    327 	assert(md_c[1] == md_count[1]);
    328 #endif
    329 	}
    330 
    331 static void ssleay_rand_seed(const void *buf, int num)
    332 	{
    333 	ssleay_rand_add(buf, num, (double)num);
    334 	}
    335 
    336 int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo, int lock)
    337 	{
    338 	static volatile int stirred_pool = 0;
    339 	int i,j,k,st_num,st_idx;
    340 	int num_ceil;
    341 	int ok;
    342 	long md_c[2];
    343 	unsigned char local_md[MD_DIGEST_LENGTH];
    344 	EVP_MD_CTX m;
    345 #ifndef GETPID_IS_MEANINGLESS
    346 	pid_t curr_pid = getpid();
    347 #endif
    348 	int do_stir_pool = 0;
    349 
    350 #ifdef PREDICT
    351 	if (rand_predictable)
    352 		{
    353 		static unsigned char val=0;
    354 
    355 		for (i=0; i<num; i++)
    356 			buf[i]=val++;
    357 		return(1);
    358 		}
    359 #endif
    360 
    361 	if (num <= 0)
    362 		return 1;
    363 
    364 	EVP_MD_CTX_init(&m);
    365 	/* round upwards to multiple of MD_DIGEST_LENGTH/2 */
    366 	num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
    367 
    368 	/*
    369 	 * (Based on the rand(3) manpage:)
    370 	 *
    371 	 * For each group of 10 bytes (or less), we do the following:
    372 	 *
    373 	 * Input into the hash function the local 'md' (which is initialized from
    374 	 * the global 'md' before any bytes are generated), the bytes that are to
    375 	 * be overwritten by the random bytes, and bytes from the 'state'
    376 	 * (incrementing looping index). From this digest output (which is kept
    377 	 * in 'md'), the top (up to) 10 bytes are returned to the caller and the
    378 	 * bottom 10 bytes are xored into the 'state'.
    379 	 *
    380 	 * Finally, after we have finished 'num' random bytes for the
    381 	 * caller, 'count' (which is incremented) and the local and global 'md'
    382 	 * are fed into the hash function and the results are kept in the
    383 	 * global 'md'.
    384 	 */
    385 	if (lock)
    386 		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
    387 
    388 	/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
    389 	CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
    390 	CRYPTO_THREADID_current(&locking_threadid);
    391 	CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
    392 	crypto_lock_rand = 1;
    393 
    394 	if (!initialized)
    395 		{
    396 		RAND_poll();
    397 		initialized = 1;
    398 		}
    399 
    400 	if (!stirred_pool)
    401 		do_stir_pool = 1;
    402 
    403 	ok = (entropy >= ENTROPY_NEEDED);
    404 	if (!ok)
    405 		{
    406 		/* If the PRNG state is not yet unpredictable, then seeing
    407 		 * the PRNG output may help attackers to determine the new
    408 		 * state; thus we have to decrease the entropy estimate.
    409 		 * Once we've had enough initial seeding we don't bother to
    410 		 * adjust the entropy count, though, because we're not ambitious
    411 		 * to provide *information-theoretic* randomness.
    412 		 *
    413 		 * NOTE: This approach fails if the program forks before
    414 		 * we have enough entropy. Entropy should be collected
    415 		 * in a separate input pool and be transferred to the
    416 		 * output pool only when the entropy limit has been reached.
    417 		 */
    418 		entropy -= num;
    419 		if (entropy < 0)
    420 			entropy = 0;
    421 		}
    422 
    423 	if (do_stir_pool)
    424 		{
    425 		/* In the output function only half of 'md' remains secret,
    426 		 * so we better make sure that the required entropy gets
    427 		 * 'evenly distributed' through 'state', our randomness pool.
    428 		 * The input function (ssleay_rand_add) chains all of 'md',
    429 		 * which makes it more suitable for this purpose.
    430 		 */
    431 
    432 		int n = STATE_SIZE; /* so that the complete pool gets accessed */
    433 		while (n > 0)
    434 			{
    435 #if MD_DIGEST_LENGTH > 20
    436 # error "Please adjust DUMMY_SEED."
    437 #endif
    438 #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
    439 			/* Note that the seed does not matter, it's just that
    440 			 * ssleay_rand_add expects to have something to hash. */
    441 			ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
    442 			n -= MD_DIGEST_LENGTH;
    443 			}
    444 		if (ok)
    445 			stirred_pool = 1;
    446 		}
    447 
    448 	st_idx=state_index;
    449 	st_num=state_num;
    450 	md_c[0] = md_count[0];
    451 	md_c[1] = md_count[1];
    452 	memcpy(local_md, md, sizeof md);
    453 
    454 	state_index+=num_ceil;
    455 	if (state_index > state_num)
    456 		state_index %= state_num;
    457 
    458 	/* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
    459 	 * are now ours (but other threads may use them too) */
    460 
    461 	md_count[0] += 1;
    462 
    463 	/* before unlocking, we must clear 'crypto_lock_rand' */
    464 	crypto_lock_rand = 0;
    465 	if (lock)
    466 		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
    467 
    468 	while (num > 0)
    469 		{
    470 		/* num_ceil -= MD_DIGEST_LENGTH/2 */
    471 		j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
    472 		num-=j;
    473 		MD_Init(&m);
    474 #ifndef GETPID_IS_MEANINGLESS
    475 		if (curr_pid) /* just in the first iteration to save time */
    476 			{
    477 			MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
    478 			curr_pid = 0;
    479 			}
    480 #endif
    481 		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
    482 		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
    483 
    484 #ifndef PURIFY /* purify complains */
    485 		/* The following line uses the supplied buffer as a small
    486 		 * source of entropy: since this buffer is often uninitialised
    487 		 * it may cause programs such as purify or valgrind to
    488 		 * complain. So for those builds it is not used: the removal
    489 		 * of such a small source of entropy has negligible impact on
    490 		 * security.
    491 		 */
    492 		MD_Update(&m,buf,j);
    493 #endif
    494 
    495 		k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
    496 		if (k > 0)
    497 			{
    498 			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
    499 			MD_Update(&m,&(state[0]),k);
    500 			}
    501 		else
    502 			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
    503 		MD_Final(&m,local_md);
    504 
    505 		for (i=0; i<MD_DIGEST_LENGTH/2; i++)
    506 			{
    507 			state[st_idx++]^=local_md[i]; /* may compete with other threads */
    508 			if (st_idx >= st_num)
    509 				st_idx=0;
    510 			if (i < j)
    511 				*(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
    512 			}
    513 		}
    514 
    515 	MD_Init(&m);
    516 	MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
    517 	MD_Update(&m,local_md,MD_DIGEST_LENGTH);
    518 	if (lock)
    519 		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
    520 	MD_Update(&m,md,MD_DIGEST_LENGTH);
    521 	MD_Final(&m,md);
    522 	if (lock)
    523 		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
    524 
    525 	EVP_MD_CTX_cleanup(&m);
    526 	if (ok)
    527 		return(1);
    528 	else if (pseudo)
    529 		return 0;
    530 	else
    531 		{
    532 		RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
    533 		ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
    534 			"http://www.openssl.org/support/faq.html");
    535 		return(0);
    536 		}
    537 	}
    538 
    539 static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num)
    540 	{
    541 	return ssleay_rand_bytes(buf, num, 0, 1);
    542 	}
    543 
    544 /* pseudo-random bytes that are guaranteed to be unique but not
    545    unpredictable */
    546 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
    547 	{
    548 	return ssleay_rand_bytes(buf, num, 1, 1);
    549 	}
    550 
    551 static int ssleay_rand_status(void)
    552 	{
    553 	CRYPTO_THREADID cur;
    554 	int ret;
    555 	int do_not_lock;
    556 
    557 	CRYPTO_THREADID_current(&cur);
    558 	/* check if we already have the lock
    559 	 * (could happen if a RAND_poll() implementation calls RAND_status()) */
    560 	if (crypto_lock_rand)
    561 		{
    562 		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
    563 		do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
    564 		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
    565 		}
    566 	else
    567 		do_not_lock = 0;
    568 
    569 	if (!do_not_lock)
    570 		{
    571 		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
    572 
    573 		/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
    574 		CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
    575 		CRYPTO_THREADID_cpy(&locking_threadid, &cur);
    576 		CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
    577 		crypto_lock_rand = 1;
    578 		}
    579 
    580 	if (!initialized)
    581 		{
    582 		RAND_poll();
    583 		initialized = 1;
    584 		}
    585 
    586 	ret = entropy >= ENTROPY_NEEDED;
    587 
    588 	if (!do_not_lock)
    589 		{
    590 		/* before unlocking, we must clear 'crypto_lock_rand' */
    591 		crypto_lock_rand = 0;
    592 
    593 		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
    594 		}
    595 
    596 	return ret;
    597 	}
    598