1 /* 2 * gdb server stub 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "config.h" 20 #include "qemu-common.h" 21 #ifdef CONFIG_USER_ONLY 22 #include <stdlib.h> 23 #include <stdio.h> 24 #include <stdarg.h> 25 #include <string.h> 26 #include <errno.h> 27 #include <unistd.h> 28 #include <fcntl.h> 29 30 #include "qemu.h" 31 #include "hw/hw.h" 32 #else 33 #include "monitor/monitor.h" 34 #include "sysemu/char.h" 35 #include "sysemu/sysemu.h" 36 #include "exec/gdbstub.h" 37 #include "exec/exec-all.h" 38 #endif 39 40 #define MAX_PACKET_LENGTH 4096 41 42 #include "qemu/sockets.h" 43 #include "sysemu/kvm.h" 44 45 46 enum { 47 GDB_SIGNAL_0 = 0, 48 GDB_SIGNAL_INT = 2, 49 GDB_SIGNAL_TRAP = 5, 50 GDB_SIGNAL_UNKNOWN = 143 51 }; 52 53 #ifdef CONFIG_USER_ONLY 54 55 /* Map target signal numbers to GDB protocol signal numbers and vice 56 * versa. For user emulation's currently supported systems, we can 57 * assume most signals are defined. 58 */ 59 60 static int gdb_signal_table[] = { 61 0, 62 TARGET_SIGHUP, 63 TARGET_SIGINT, 64 TARGET_SIGQUIT, 65 TARGET_SIGILL, 66 TARGET_SIGTRAP, 67 TARGET_SIGABRT, 68 -1, /* SIGEMT */ 69 TARGET_SIGFPE, 70 TARGET_SIGKILL, 71 TARGET_SIGBUS, 72 TARGET_SIGSEGV, 73 TARGET_SIGSYS, 74 TARGET_SIGPIPE, 75 TARGET_SIGALRM, 76 TARGET_SIGTERM, 77 TARGET_SIGURG, 78 TARGET_SIGSTOP, 79 TARGET_SIGTSTP, 80 TARGET_SIGCONT, 81 TARGET_SIGCHLD, 82 TARGET_SIGTTIN, 83 TARGET_SIGTTOU, 84 TARGET_SIGIO, 85 TARGET_SIGXCPU, 86 TARGET_SIGXFSZ, 87 TARGET_SIGVTALRM, 88 TARGET_SIGPROF, 89 TARGET_SIGWINCH, 90 -1, /* SIGLOST */ 91 TARGET_SIGUSR1, 92 TARGET_SIGUSR2, 93 #ifdef TARGET_SIGPWR 94 TARGET_SIGPWR, 95 #else 96 -1, 97 #endif 98 -1, /* SIGPOLL */ 99 -1, 100 -1, 101 -1, 102 -1, 103 -1, 104 -1, 105 -1, 106 -1, 107 -1, 108 -1, 109 -1, 110 #ifdef __SIGRTMIN 111 __SIGRTMIN + 1, 112 __SIGRTMIN + 2, 113 __SIGRTMIN + 3, 114 __SIGRTMIN + 4, 115 __SIGRTMIN + 5, 116 __SIGRTMIN + 6, 117 __SIGRTMIN + 7, 118 __SIGRTMIN + 8, 119 __SIGRTMIN + 9, 120 __SIGRTMIN + 10, 121 __SIGRTMIN + 11, 122 __SIGRTMIN + 12, 123 __SIGRTMIN + 13, 124 __SIGRTMIN + 14, 125 __SIGRTMIN + 15, 126 __SIGRTMIN + 16, 127 __SIGRTMIN + 17, 128 __SIGRTMIN + 18, 129 __SIGRTMIN + 19, 130 __SIGRTMIN + 20, 131 __SIGRTMIN + 21, 132 __SIGRTMIN + 22, 133 __SIGRTMIN + 23, 134 __SIGRTMIN + 24, 135 __SIGRTMIN + 25, 136 __SIGRTMIN + 26, 137 __SIGRTMIN + 27, 138 __SIGRTMIN + 28, 139 __SIGRTMIN + 29, 140 __SIGRTMIN + 30, 141 __SIGRTMIN + 31, 142 -1, /* SIGCANCEL */ 143 __SIGRTMIN, 144 __SIGRTMIN + 32, 145 __SIGRTMIN + 33, 146 __SIGRTMIN + 34, 147 __SIGRTMIN + 35, 148 __SIGRTMIN + 36, 149 __SIGRTMIN + 37, 150 __SIGRTMIN + 38, 151 __SIGRTMIN + 39, 152 __SIGRTMIN + 40, 153 __SIGRTMIN + 41, 154 __SIGRTMIN + 42, 155 __SIGRTMIN + 43, 156 __SIGRTMIN + 44, 157 __SIGRTMIN + 45, 158 __SIGRTMIN + 46, 159 __SIGRTMIN + 47, 160 __SIGRTMIN + 48, 161 __SIGRTMIN + 49, 162 __SIGRTMIN + 50, 163 __SIGRTMIN + 51, 164 __SIGRTMIN + 52, 165 __SIGRTMIN + 53, 166 __SIGRTMIN + 54, 167 __SIGRTMIN + 55, 168 __SIGRTMIN + 56, 169 __SIGRTMIN + 57, 170 __SIGRTMIN + 58, 171 __SIGRTMIN + 59, 172 __SIGRTMIN + 60, 173 __SIGRTMIN + 61, 174 __SIGRTMIN + 62, 175 __SIGRTMIN + 63, 176 __SIGRTMIN + 64, 177 __SIGRTMIN + 65, 178 __SIGRTMIN + 66, 179 __SIGRTMIN + 67, 180 __SIGRTMIN + 68, 181 __SIGRTMIN + 69, 182 __SIGRTMIN + 70, 183 __SIGRTMIN + 71, 184 __SIGRTMIN + 72, 185 __SIGRTMIN + 73, 186 __SIGRTMIN + 74, 187 __SIGRTMIN + 75, 188 __SIGRTMIN + 76, 189 __SIGRTMIN + 77, 190 __SIGRTMIN + 78, 191 __SIGRTMIN + 79, 192 __SIGRTMIN + 80, 193 __SIGRTMIN + 81, 194 __SIGRTMIN + 82, 195 __SIGRTMIN + 83, 196 __SIGRTMIN + 84, 197 __SIGRTMIN + 85, 198 __SIGRTMIN + 86, 199 __SIGRTMIN + 87, 200 __SIGRTMIN + 88, 201 __SIGRTMIN + 89, 202 __SIGRTMIN + 90, 203 __SIGRTMIN + 91, 204 __SIGRTMIN + 92, 205 __SIGRTMIN + 93, 206 __SIGRTMIN + 94, 207 __SIGRTMIN + 95, 208 -1, /* SIGINFO */ 209 -1, /* UNKNOWN */ 210 -1, /* DEFAULT */ 211 -1, 212 -1, 213 -1, 214 -1, 215 -1, 216 -1 217 #endif 218 }; 219 #else 220 /* In system mode we only need SIGINT and SIGTRAP; other signals 221 are not yet supported. */ 222 223 enum { 224 TARGET_SIGINT = 2, 225 TARGET_SIGTRAP = 5 226 }; 227 228 static int gdb_signal_table[] = { 229 -1, 230 -1, 231 TARGET_SIGINT, 232 -1, 233 -1, 234 TARGET_SIGTRAP 235 }; 236 #endif 237 238 #ifdef CONFIG_USER_ONLY 239 static int target_signal_to_gdb (int sig) 240 { 241 int i; 242 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++) 243 if (gdb_signal_table[i] == sig) 244 return i; 245 return GDB_SIGNAL_UNKNOWN; 246 } 247 #endif 248 249 static int gdb_signal_to_target (int sig) 250 { 251 if (sig < ARRAY_SIZE (gdb_signal_table)) 252 return gdb_signal_table[sig]; 253 else 254 return -1; 255 } 256 257 //#define DEBUG_GDB 258 259 typedef struct GDBRegisterState { 260 int base_reg; 261 int num_regs; 262 gdb_reg_cb get_reg; 263 gdb_reg_cb set_reg; 264 const char *xml; 265 struct GDBRegisterState *next; 266 } GDBRegisterState; 267 268 enum RSState { 269 RS_INACTIVE, 270 RS_IDLE, 271 RS_GETLINE, 272 RS_CHKSUM1, 273 RS_CHKSUM2, 274 RS_SYSCALL, 275 }; 276 typedef struct GDBState { 277 CPUArchState *c_cpu; /* current CPU for step/continue ops */ 278 CPUArchState *g_cpu; /* current CPU for other ops */ 279 CPUArchState *query_cpu; /* for q{f|s}ThreadInfo */ 280 enum RSState state; /* parsing state */ 281 char line_buf[MAX_PACKET_LENGTH]; 282 int line_buf_index; 283 int line_csum; 284 uint8_t last_packet[MAX_PACKET_LENGTH + 4]; 285 int last_packet_len; 286 int signal; 287 #ifdef CONFIG_USER_ONLY 288 int fd; 289 int running_state; 290 #else 291 CharDriverState *chr; 292 CharDriverState *mon_chr; 293 #endif 294 } GDBState; 295 296 /* By default use no IRQs and no timers while single stepping so as to 297 * make single stepping like an ICE HW step. 298 */ 299 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER; 300 301 static GDBState *gdbserver_state; 302 303 /* This is an ugly hack to cope with both new and old gdb. 304 If gdb sends qXfer:features:read then assume we're talking to a newish 305 gdb that understands target descriptions. */ 306 static int gdb_has_xml; 307 308 #ifdef CONFIG_USER_ONLY 309 /* XXX: This is not thread safe. Do we care? */ 310 static int gdbserver_fd = -1; 311 312 static int get_char(GDBState *s) 313 { 314 uint8_t ch; 315 int ret; 316 317 for(;;) { 318 ret = recv(s->fd, &ch, 1, 0); 319 if (ret < 0) { 320 if (errno == ECONNRESET) 321 s->fd = -1; 322 if (errno != EINTR && errno != EAGAIN) 323 return -1; 324 } else if (ret == 0) { 325 close(s->fd); 326 s->fd = -1; 327 return -1; 328 } else { 329 break; 330 } 331 } 332 return ch; 333 } 334 #endif 335 336 static gdb_syscall_complete_cb gdb_current_syscall_cb; 337 338 static enum { 339 GDB_SYS_UNKNOWN, 340 GDB_SYS_ENABLED, 341 GDB_SYS_DISABLED, 342 } gdb_syscall_mode; 343 344 /* If gdb is connected when the first semihosting syscall occurs then use 345 remote gdb syscalls. Otherwise use native file IO. */ 346 int use_gdb_syscalls(void) 347 { 348 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) { 349 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED 350 : GDB_SYS_DISABLED); 351 } 352 return gdb_syscall_mode == GDB_SYS_ENABLED; 353 } 354 355 /* Resume execution. */ 356 static inline void gdb_continue(GDBState *s) 357 { 358 #ifdef CONFIG_USER_ONLY 359 s->running_state = 1; 360 #else 361 vm_start(); 362 #endif 363 } 364 365 static void put_buffer(GDBState *s, const uint8_t *buf, int len) 366 { 367 #ifdef CONFIG_USER_ONLY 368 int ret; 369 370 while (len > 0) { 371 ret = send(s->fd, buf, len, 0); 372 if (ret < 0) { 373 if (errno != EINTR && errno != EAGAIN) 374 return; 375 } else { 376 buf += ret; 377 len -= ret; 378 } 379 } 380 #else 381 qemu_chr_write(s->chr, buf, len); 382 #endif 383 } 384 385 static inline int fromhex(int v) 386 { 387 if (v >= '0' && v <= '9') 388 return v - '0'; 389 else if (v >= 'A' && v <= 'F') 390 return v - 'A' + 10; 391 else if (v >= 'a' && v <= 'f') 392 return v - 'a' + 10; 393 else 394 return 0; 395 } 396 397 static inline int tohex(int v) 398 { 399 if (v < 10) 400 return v + '0'; 401 else 402 return v - 10 + 'a'; 403 } 404 405 static void memtohex(char *buf, const uint8_t *mem, int len) 406 { 407 int i, c; 408 char *q; 409 q = buf; 410 for(i = 0; i < len; i++) { 411 c = mem[i]; 412 *q++ = tohex(c >> 4); 413 *q++ = tohex(c & 0xf); 414 } 415 *q = '\0'; 416 } 417 418 static void hextomem(uint8_t *mem, const char *buf, int len) 419 { 420 int i; 421 422 for(i = 0; i < len; i++) { 423 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]); 424 buf += 2; 425 } 426 } 427 428 /* return -1 if error, 0 if OK */ 429 static int put_packet_binary(GDBState *s, const char *buf, int len) 430 { 431 int csum, i; 432 uint8_t *p; 433 434 for(;;) { 435 p = s->last_packet; 436 *(p++) = '$'; 437 memcpy(p, buf, len); 438 p += len; 439 csum = 0; 440 for(i = 0; i < len; i++) { 441 csum += buf[i]; 442 } 443 *(p++) = '#'; 444 *(p++) = tohex((csum >> 4) & 0xf); 445 *(p++) = tohex((csum) & 0xf); 446 447 s->last_packet_len = p - s->last_packet; 448 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len); 449 450 #ifdef CONFIG_USER_ONLY 451 i = get_char(s); 452 if (i < 0) 453 return -1; 454 if (i == '+') 455 break; 456 #else 457 break; 458 #endif 459 } 460 return 0; 461 } 462 463 /* return -1 if error, 0 if OK */ 464 static int put_packet(GDBState *s, const char *buf) 465 { 466 #ifdef DEBUG_GDB 467 printf("reply='%s'\n", buf); 468 #endif 469 470 return put_packet_binary(s, buf, strlen(buf)); 471 } 472 473 /* The GDB remote protocol transfers values in target byte order. This means 474 we can use the raw memory access routines to access the value buffer. 475 Conveniently, these also handle the case where the buffer is mis-aligned. 476 */ 477 #define GET_REG8(val) do { \ 478 stb_p(mem_buf, val); \ 479 return 1; \ 480 } while(0) 481 #define GET_REG16(val) do { \ 482 stw_p(mem_buf, val); \ 483 return 2; \ 484 } while(0) 485 #define GET_REG32(val) do { \ 486 stl_p(mem_buf, val); \ 487 return 4; \ 488 } while(0) 489 #define GET_REG64(val) do { \ 490 stq_p(mem_buf, val); \ 491 return 8; \ 492 } while(0) 493 494 #if TARGET_LONG_BITS == 64 495 #define GET_REGL(val) GET_REG64(val) 496 #define ldtul_p(addr) ldq_p(addr) 497 #else 498 #define GET_REGL(val) GET_REG32(val) 499 #define ldtul_p(addr) ldl_p(addr) 500 #endif 501 502 #if defined(TARGET_I386) 503 504 #ifdef TARGET_X86_64 505 static const int gpr_map[16] = { 506 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP, 507 8, 9, 10, 11, 12, 13, 14, 15 508 }; 509 #else 510 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7}; 511 #endif 512 513 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25) 514 515 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n) 516 { 517 if (n < CPU_NB_REGS) { 518 GET_REGL(env->regs[gpr_map[n]]); 519 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) { 520 /* FIXME: byteswap float values. */ 521 #ifdef USE_X86LDOUBLE 522 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10); 523 #else 524 memset(mem_buf, 0, 10); 525 #endif 526 return 10; 527 } else if (n >= CPU_NB_REGS + 24) { 528 n -= CPU_NB_REGS + 24; 529 if (n < CPU_NB_REGS) { 530 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0)); 531 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1)); 532 return 16; 533 } else if (n == CPU_NB_REGS) { 534 GET_REG32(env->mxcsr); 535 } 536 } else { 537 n -= CPU_NB_REGS; 538 switch (n) { 539 case 0: GET_REGL(env->eip); 540 case 1: GET_REG32(env->eflags); 541 case 2: GET_REG32(env->segs[R_CS].selector); 542 case 3: GET_REG32(env->segs[R_SS].selector); 543 case 4: GET_REG32(env->segs[R_DS].selector); 544 case 5: GET_REG32(env->segs[R_ES].selector); 545 case 6: GET_REG32(env->segs[R_FS].selector); 546 case 7: GET_REG32(env->segs[R_GS].selector); 547 /* 8...15 x87 regs. */ 548 case 16: GET_REG32(env->fpuc); 549 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11); 550 case 18: GET_REG32(0); /* ftag */ 551 case 19: GET_REG32(0); /* fiseg */ 552 case 20: GET_REG32(0); /* fioff */ 553 case 21: GET_REG32(0); /* foseg */ 554 case 22: GET_REG32(0); /* fooff */ 555 case 23: GET_REG32(0); /* fop */ 556 /* 24+ xmm regs. */ 557 } 558 } 559 return 0; 560 } 561 562 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int i) 563 { 564 uint32_t tmp; 565 566 if (i < CPU_NB_REGS) { 567 env->regs[gpr_map[i]] = ldtul_p(mem_buf); 568 return sizeof(target_ulong); 569 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) { 570 i -= CPU_NB_REGS + 8; 571 #ifdef USE_X86LDOUBLE 572 memcpy(&env->fpregs[i], mem_buf, 10); 573 #endif 574 return 10; 575 } else if (i >= CPU_NB_REGS + 24) { 576 i -= CPU_NB_REGS + 24; 577 if (i < CPU_NB_REGS) { 578 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf); 579 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8); 580 return 16; 581 } else if (i == CPU_NB_REGS) { 582 env->mxcsr = ldl_p(mem_buf); 583 return 4; 584 } 585 } else { 586 i -= CPU_NB_REGS; 587 switch (i) { 588 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong); 589 case 1: env->eflags = ldl_p(mem_buf); return 4; 590 #if defined(CONFIG_USER_ONLY) 591 #define LOAD_SEG(index, sreg)\ 592 tmp = ldl_p(mem_buf);\ 593 if (tmp != env->segs[sreg].selector)\ 594 cpu_x86_load_seg(env, sreg, tmp); 595 #else 596 /* FIXME: Honor segment registers. Needs to avoid raising an exception 597 when the selector is invalid. */ 598 #define LOAD_SEG(index, sreg) do {} while(0) 599 #endif 600 case 2: LOAD_SEG(10, R_CS); return 4; 601 case 3: LOAD_SEG(11, R_SS); return 4; 602 case 4: LOAD_SEG(12, R_DS); return 4; 603 case 5: LOAD_SEG(13, R_ES); return 4; 604 case 6: LOAD_SEG(14, R_FS); return 4; 605 case 7: LOAD_SEG(15, R_GS); return 4; 606 /* 8...15 x87 regs. */ 607 case 16: env->fpuc = ldl_p(mem_buf); return 4; 608 case 17: 609 tmp = ldl_p(mem_buf); 610 env->fpstt = (tmp >> 11) & 7; 611 env->fpus = tmp & ~0x3800; 612 return 4; 613 case 18: /* ftag */ return 4; 614 case 19: /* fiseg */ return 4; 615 case 20: /* fioff */ return 4; 616 case 21: /* foseg */ return 4; 617 case 22: /* fooff */ return 4; 618 case 23: /* fop */ return 4; 619 /* 24+ xmm regs. */ 620 } 621 } 622 /* Unrecognised register. */ 623 return 0; 624 } 625 626 #elif defined (TARGET_PPC) 627 628 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only 629 expects whatever the target description contains. Due to a 630 historical mishap the FP registers appear in between core integer 631 regs and PC, MSR, CR, and so forth. We hack round this by giving the 632 FP regs zero size when talking to a newer gdb. */ 633 #define NUM_CORE_REGS 71 634 #if defined (TARGET_PPC64) 635 #define GDB_CORE_XML "power64-core.xml" 636 #else 637 #define GDB_CORE_XML "power-core.xml" 638 #endif 639 640 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n) 641 { 642 if (n < 32) { 643 /* gprs */ 644 GET_REGL(env->gpr[n]); 645 } else if (n < 64) { 646 /* fprs */ 647 if (gdb_has_xml) 648 return 0; 649 stfq_p(mem_buf, env->fpr[n-32]); 650 return 8; 651 } else { 652 switch (n) { 653 case 64: GET_REGL(env->nip); 654 case 65: GET_REGL(env->msr); 655 case 66: 656 { 657 uint32_t cr = 0; 658 int i; 659 for (i = 0; i < 8; i++) 660 cr |= env->crf[i] << (32 - ((i + 1) * 4)); 661 GET_REG32(cr); 662 } 663 case 67: GET_REGL(env->lr); 664 case 68: GET_REGL(env->ctr); 665 case 69: GET_REGL(env->xer); 666 case 70: 667 { 668 if (gdb_has_xml) 669 return 0; 670 GET_REG32(0); /* fpscr */ 671 } 672 } 673 } 674 return 0; 675 } 676 677 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n) 678 { 679 if (n < 32) { 680 /* gprs */ 681 env->gpr[n] = ldtul_p(mem_buf); 682 return sizeof(target_ulong); 683 } else if (n < 64) { 684 /* fprs */ 685 if (gdb_has_xml) 686 return 0; 687 env->fpr[n-32] = ldfq_p(mem_buf); 688 return 8; 689 } else { 690 switch (n) { 691 case 64: 692 env->nip = ldtul_p(mem_buf); 693 return sizeof(target_ulong); 694 case 65: 695 ppc_store_msr(env, ldtul_p(mem_buf)); 696 return sizeof(target_ulong); 697 case 66: 698 { 699 uint32_t cr = ldl_p(mem_buf); 700 int i; 701 for (i = 0; i < 8; i++) 702 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF; 703 return 4; 704 } 705 case 67: 706 env->lr = ldtul_p(mem_buf); 707 return sizeof(target_ulong); 708 case 68: 709 env->ctr = ldtul_p(mem_buf); 710 return sizeof(target_ulong); 711 case 69: 712 env->xer = ldtul_p(mem_buf); 713 return sizeof(target_ulong); 714 case 70: 715 /* fpscr */ 716 if (gdb_has_xml) 717 return 0; 718 return 4; 719 } 720 } 721 return 0; 722 } 723 724 #elif defined (TARGET_SPARC) 725 726 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 727 #define NUM_CORE_REGS 86 728 #else 729 #define NUM_CORE_REGS 72 730 #endif 731 732 #ifdef TARGET_ABI32 733 #define GET_REGA(val) GET_REG32(val) 734 #else 735 #define GET_REGA(val) GET_REGL(val) 736 #endif 737 738 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n) 739 { 740 if (n < 8) { 741 /* g0..g7 */ 742 GET_REGA(env->gregs[n]); 743 } 744 if (n < 32) { 745 /* register window */ 746 GET_REGA(env->regwptr[n - 8]); 747 } 748 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64) 749 if (n < 64) { 750 /* fprs */ 751 GET_REG32(*((uint32_t *)&env->fpr[n - 32])); 752 } 753 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ 754 switch (n) { 755 case 64: GET_REGA(env->y); 756 case 65: GET_REGA(GET_PSR(env)); 757 case 66: GET_REGA(env->wim); 758 case 67: GET_REGA(env->tbr); 759 case 68: GET_REGA(env->pc); 760 case 69: GET_REGA(env->npc); 761 case 70: GET_REGA(env->fsr); 762 case 71: GET_REGA(0); /* csr */ 763 default: GET_REGA(0); 764 } 765 #else 766 if (n < 64) { 767 /* f0-f31 */ 768 GET_REG32(*((uint32_t *)&env->fpr[n - 32])); 769 } 770 if (n < 80) { 771 /* f32-f62 (double width, even numbers only) */ 772 uint64_t val; 773 774 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32; 775 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]); 776 GET_REG64(val); 777 } 778 switch (n) { 779 case 80: GET_REGL(env->pc); 780 case 81: GET_REGL(env->npc); 781 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) | 782 ((env->asi & 0xff) << 24) | 783 ((env->pstate & 0xfff) << 8) | 784 GET_CWP64(env)); 785 case 83: GET_REGL(env->fsr); 786 case 84: GET_REGL(env->fprs); 787 case 85: GET_REGL(env->y); 788 } 789 #endif 790 return 0; 791 } 792 793 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n) 794 { 795 #if defined(TARGET_ABI32) 796 abi_ulong tmp; 797 798 tmp = ldl_p(mem_buf); 799 #else 800 target_ulong tmp; 801 802 tmp = ldtul_p(mem_buf); 803 #endif 804 805 if (n < 8) { 806 /* g0..g7 */ 807 env->gregs[n] = tmp; 808 } else if (n < 32) { 809 /* register window */ 810 env->regwptr[n - 8] = tmp; 811 } 812 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64) 813 else if (n < 64) { 814 /* fprs */ 815 *((uint32_t *)&env->fpr[n - 32]) = tmp; 816 } else { 817 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ 818 switch (n) { 819 case 64: env->y = tmp; break; 820 case 65: PUT_PSR(env, tmp); break; 821 case 66: env->wim = tmp; break; 822 case 67: env->tbr = tmp; break; 823 case 68: env->pc = tmp; break; 824 case 69: env->npc = tmp; break; 825 case 70: env->fsr = tmp; break; 826 default: return 0; 827 } 828 } 829 return 4; 830 #else 831 else if (n < 64) { 832 /* f0-f31 */ 833 env->fpr[n] = ldfl_p(mem_buf); 834 return 4; 835 } else if (n < 80) { 836 /* f32-f62 (double width, even numbers only) */ 837 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32; 838 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp; 839 } else { 840 switch (n) { 841 case 80: env->pc = tmp; break; 842 case 81: env->npc = tmp; break; 843 case 82: 844 PUT_CCR(env, tmp >> 32); 845 env->asi = (tmp >> 24) & 0xff; 846 env->pstate = (tmp >> 8) & 0xfff; 847 PUT_CWP64(env, tmp & 0xff); 848 break; 849 case 83: env->fsr = tmp; break; 850 case 84: env->fprs = tmp; break; 851 case 85: env->y = tmp; break; 852 default: return 0; 853 } 854 } 855 return 8; 856 #endif 857 } 858 #elif defined (TARGET_ARM) 859 860 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect 861 whatever the target description contains. Due to a historical mishap 862 the FPA registers appear in between core integer regs and the CPSR. 863 We hack round this by giving the FPA regs zero size when talking to a 864 newer gdb. */ 865 #define NUM_CORE_REGS 26 866 #define GDB_CORE_XML "arm-core.xml" 867 868 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n) 869 { 870 if (n < 16) { 871 /* Core integer register. */ 872 GET_REG32(env->regs[n]); 873 } 874 if (n < 24) { 875 /* FPA registers. */ 876 if (gdb_has_xml) 877 return 0; 878 memset(mem_buf, 0, 12); 879 return 12; 880 } 881 switch (n) { 882 case 24: 883 /* FPA status register. */ 884 if (gdb_has_xml) 885 return 0; 886 GET_REG32(0); 887 case 25: 888 /* CPSR */ 889 GET_REG32(cpsr_read(env)); 890 } 891 /* Unknown register. */ 892 return 0; 893 } 894 895 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n) 896 { 897 uint32_t tmp; 898 899 tmp = ldl_p(mem_buf); 900 901 /* Mask out low bit of PC to workaround gdb bugs. This will probably 902 cause problems if we ever implement the Jazelle DBX extensions. */ 903 if (n == 15) 904 tmp &= ~1; 905 906 if (n < 16) { 907 /* Core integer register. */ 908 env->regs[n] = tmp; 909 return 4; 910 } 911 if (n < 24) { /* 16-23 */ 912 /* FPA registers (ignored). */ 913 if (gdb_has_xml) 914 return 0; 915 return 12; 916 } 917 switch (n) { 918 case 24: 919 /* FPA status register (ignored). */ 920 if (gdb_has_xml) 921 return 0; 922 return 4; 923 case 25: 924 /* CPSR */ 925 cpsr_write (env, tmp, 0xffffffff); 926 return 4; 927 } 928 /* Unknown register. */ 929 return 0; 930 } 931 932 #elif defined (TARGET_M68K) 933 934 #define NUM_CORE_REGS 18 935 936 #define GDB_CORE_XML "cf-core.xml" 937 938 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n) 939 { 940 if (n < 8) { 941 /* D0-D7 */ 942 GET_REG32(env->dregs[n]); 943 } else if (n < 16) { 944 /* A0-A7 */ 945 GET_REG32(env->aregs[n - 8]); 946 } else { 947 switch (n) { 948 case 16: GET_REG32(env->sr); 949 case 17: GET_REG32(env->pc); 950 } 951 } 952 /* FP registers not included here because they vary between 953 ColdFire and m68k. Use XML bits for these. */ 954 return 0; 955 } 956 957 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n) 958 { 959 uint32_t tmp; 960 961 tmp = ldl_p(mem_buf); 962 963 if (n < 8) { 964 /* D0-D7 */ 965 env->dregs[n] = tmp; 966 } else if (n < 8) { 967 /* A0-A7 */ 968 env->aregs[n - 8] = tmp; 969 } else { 970 switch (n) { 971 case 16: env->sr = tmp; break; 972 case 17: env->pc = tmp; break; 973 default: return 0; 974 } 975 } 976 return 4; 977 } 978 #elif defined (TARGET_MIPS) 979 980 #define NUM_CORE_REGS 73 981 982 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n) 983 { 984 if (n < 32) { 985 GET_REGL(env->active_tc.gpr[n]); 986 } 987 if (env->CP0_Config1 & (1 << CP0C1_FP)) { 988 if (n >= 38 && n < 70) { 989 if (env->CP0_Status & (1 << CP0St_FR)) 990 GET_REGL(env->active_fpu.fpr[n - 38].d); 991 else 992 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]); 993 } 994 switch (n) { 995 case 70: GET_REGL((int32_t)env->active_fpu.fcr31); 996 case 71: GET_REGL((int32_t)env->active_fpu.fcr0); 997 } 998 } 999 switch (n) { 1000 case 32: GET_REGL((int32_t)env->CP0_Status); 1001 case 33: GET_REGL(env->active_tc.LO[0]); 1002 case 34: GET_REGL(env->active_tc.HI[0]); 1003 case 35: GET_REGL(env->CP0_BadVAddr); 1004 case 36: GET_REGL((int32_t)env->CP0_Cause); 1005 case 37: GET_REGL(env->active_tc.PC); 1006 case 72: GET_REGL(0); /* fp */ 1007 case 89: GET_REGL((int32_t)env->CP0_PRid); 1008 } 1009 if (n >= 73 && n <= 88) { 1010 /* 16 embedded regs. */ 1011 GET_REGL(0); 1012 } 1013 1014 return 0; 1015 } 1016 1017 /* convert MIPS rounding mode in FCR31 to IEEE library */ 1018 static unsigned int ieee_rm[] = 1019 { 1020 float_round_nearest_even, 1021 float_round_to_zero, 1022 float_round_up, 1023 float_round_down 1024 }; 1025 #define RESTORE_ROUNDING_MODE \ 1026 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status) 1027 1028 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n) 1029 { 1030 target_ulong tmp; 1031 1032 tmp = ldtul_p(mem_buf); 1033 1034 if (n < 32) { 1035 env->active_tc.gpr[n] = tmp; 1036 return sizeof(target_ulong); 1037 } 1038 if (env->CP0_Config1 & (1 << CP0C1_FP) 1039 && n >= 38 && n < 73) { 1040 if (n < 70) { 1041 if (env->CP0_Status & (1 << CP0St_FR)) 1042 env->active_fpu.fpr[n - 38].d = tmp; 1043 else 1044 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp; 1045 } 1046 switch (n) { 1047 case 70: 1048 env->active_fpu.fcr31 = tmp & 0xFF83FFFF; 1049 /* set rounding mode */ 1050 RESTORE_ROUNDING_MODE; 1051 #ifndef CONFIG_SOFTFLOAT 1052 /* no floating point exception for native float */ 1053 SET_FP_ENABLE(env->active_fpu.fcr31, 0); 1054 #endif 1055 break; 1056 case 71: env->active_fpu.fcr0 = tmp; break; 1057 } 1058 return sizeof(target_ulong); 1059 } 1060 switch (n) { 1061 case 32: env->CP0_Status = tmp; break; 1062 case 33: env->active_tc.LO[0] = tmp; break; 1063 case 34: env->active_tc.HI[0] = tmp; break; 1064 case 35: env->CP0_BadVAddr = tmp; break; 1065 case 36: env->CP0_Cause = tmp; break; 1066 case 37: env->active_tc.PC = tmp; break; 1067 case 72: /* fp, ignored */ break; 1068 default: 1069 if (n > 89) 1070 return 0; 1071 /* Other registers are readonly. Ignore writes. */ 1072 break; 1073 } 1074 1075 return sizeof(target_ulong); 1076 } 1077 #elif defined (TARGET_SH4) 1078 1079 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */ 1080 /* FIXME: We should use XML for this. */ 1081 1082 #define NUM_CORE_REGS 59 1083 1084 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n) 1085 { 1086 if (n < 8) { 1087 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) { 1088 GET_REGL(env->gregs[n + 16]); 1089 } else { 1090 GET_REGL(env->gregs[n]); 1091 } 1092 } else if (n < 16) { 1093 GET_REGL(env->gregs[n - 8]); 1094 } else if (n >= 25 && n < 41) { 1095 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]); 1096 } else if (n >= 43 && n < 51) { 1097 GET_REGL(env->gregs[n - 43]); 1098 } else if (n >= 51 && n < 59) { 1099 GET_REGL(env->gregs[n - (51 - 16)]); 1100 } 1101 switch (n) { 1102 case 16: GET_REGL(env->pc); 1103 case 17: GET_REGL(env->pr); 1104 case 18: GET_REGL(env->gbr); 1105 case 19: GET_REGL(env->vbr); 1106 case 20: GET_REGL(env->mach); 1107 case 21: GET_REGL(env->macl); 1108 case 22: GET_REGL(env->sr); 1109 case 23: GET_REGL(env->fpul); 1110 case 24: GET_REGL(env->fpscr); 1111 case 41: GET_REGL(env->ssr); 1112 case 42: GET_REGL(env->spc); 1113 } 1114 1115 return 0; 1116 } 1117 1118 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n) 1119 { 1120 uint32_t tmp; 1121 1122 tmp = ldl_p(mem_buf); 1123 1124 if (n < 8) { 1125 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) { 1126 env->gregs[n + 16] = tmp; 1127 } else { 1128 env->gregs[n] = tmp; 1129 } 1130 return 4; 1131 } else if (n < 16) { 1132 env->gregs[n - 8] = tmp; 1133 return 4; 1134 } else if (n >= 25 && n < 41) { 1135 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp; 1136 } else if (n >= 43 && n < 51) { 1137 env->gregs[n - 43] = tmp; 1138 return 4; 1139 } else if (n >= 51 && n < 59) { 1140 env->gregs[n - (51 - 16)] = tmp; 1141 return 4; 1142 } 1143 switch (n) { 1144 case 16: env->pc = tmp; 1145 case 17: env->pr = tmp; 1146 case 18: env->gbr = tmp; 1147 case 19: env->vbr = tmp; 1148 case 20: env->mach = tmp; 1149 case 21: env->macl = tmp; 1150 case 22: env->sr = tmp; 1151 case 23: env->fpul = tmp; 1152 case 24: env->fpscr = tmp; 1153 case 41: env->ssr = tmp; 1154 case 42: env->spc = tmp; 1155 default: return 0; 1156 } 1157 1158 return 4; 1159 } 1160 #elif defined (TARGET_MICROBLAZE) 1161 1162 #define NUM_CORE_REGS (32 + 5) 1163 1164 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n) 1165 { 1166 if (n < 32) { 1167 GET_REG32(env->regs[n]); 1168 } else { 1169 GET_REG32(env->sregs[n - 32]); 1170 } 1171 return 0; 1172 } 1173 1174 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n) 1175 { 1176 uint32_t tmp; 1177 1178 if (n > NUM_CORE_REGS) 1179 return 0; 1180 1181 tmp = ldl_p(mem_buf); 1182 1183 if (n < 32) { 1184 env->regs[n] = tmp; 1185 } else { 1186 env->sregs[n - 32] = tmp; 1187 } 1188 return 4; 1189 } 1190 #elif defined (TARGET_CRIS) 1191 1192 #define NUM_CORE_REGS 49 1193 1194 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n) 1195 { 1196 uint8_t srs; 1197 1198 srs = env->pregs[PR_SRS]; 1199 if (n < 16) { 1200 GET_REG32(env->regs[n]); 1201 } 1202 1203 if (n >= 21 && n < 32) { 1204 GET_REG32(env->pregs[n - 16]); 1205 } 1206 if (n >= 33 && n < 49) { 1207 GET_REG32(env->sregs[srs][n - 33]); 1208 } 1209 switch (n) { 1210 case 16: GET_REG8(env->pregs[0]); 1211 case 17: GET_REG8(env->pregs[1]); 1212 case 18: GET_REG32(env->pregs[2]); 1213 case 19: GET_REG8(srs); 1214 case 20: GET_REG16(env->pregs[4]); 1215 case 32: GET_REG32(env->pc); 1216 } 1217 1218 return 0; 1219 } 1220 1221 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n) 1222 { 1223 uint32_t tmp; 1224 1225 if (n > 49) 1226 return 0; 1227 1228 tmp = ldl_p(mem_buf); 1229 1230 if (n < 16) { 1231 env->regs[n] = tmp; 1232 } 1233 1234 if (n >= 21 && n < 32) { 1235 env->pregs[n - 16] = tmp; 1236 } 1237 1238 /* FIXME: Should support function regs be writable? */ 1239 switch (n) { 1240 case 16: return 1; 1241 case 17: return 1; 1242 case 18: env->pregs[PR_PID] = tmp; break; 1243 case 19: return 1; 1244 case 20: return 2; 1245 case 32: env->pc = tmp; break; 1246 } 1247 1248 return 4; 1249 } 1250 #elif defined (TARGET_ALPHA) 1251 1252 #define NUM_CORE_REGS 65 1253 1254 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n) 1255 { 1256 if (n < 31) { 1257 GET_REGL(env->ir[n]); 1258 } 1259 else if (n == 31) { 1260 GET_REGL(0); 1261 } 1262 else if (n<63) { 1263 uint64_t val; 1264 1265 val=*((uint64_t *)&env->fir[n-32]); 1266 GET_REGL(val); 1267 } 1268 else if (n==63) { 1269 GET_REGL(env->fpcr); 1270 } 1271 else if (n==64) { 1272 GET_REGL(env->pc); 1273 } 1274 else { 1275 GET_REGL(0); 1276 } 1277 1278 return 0; 1279 } 1280 1281 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n) 1282 { 1283 target_ulong tmp; 1284 tmp = ldtul_p(mem_buf); 1285 1286 if (n < 31) { 1287 env->ir[n] = tmp; 1288 } 1289 1290 if (n > 31 && n < 63) { 1291 env->fir[n - 32] = ldfl_p(mem_buf); 1292 } 1293 1294 if (n == 64 ) { 1295 env->pc=tmp; 1296 } 1297 1298 return 8; 1299 } 1300 #else 1301 1302 #define NUM_CORE_REGS 0 1303 1304 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n) 1305 { 1306 return 0; 1307 } 1308 1309 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n) 1310 { 1311 return 0; 1312 } 1313 1314 #endif 1315 1316 static int num_g_regs = NUM_CORE_REGS; 1317 1318 #ifdef GDB_CORE_XML 1319 /* Encode data using the encoding for 'x' packets. */ 1320 static int memtox(char *buf, const char *mem, int len) 1321 { 1322 char *p = buf; 1323 char c; 1324 1325 while (len--) { 1326 c = *(mem++); 1327 switch (c) { 1328 case '#': case '$': case '*': case '}': 1329 *(p++) = '}'; 1330 *(p++) = c ^ 0x20; 1331 break; 1332 default: 1333 *(p++) = c; 1334 break; 1335 } 1336 } 1337 return p - buf; 1338 } 1339 1340 static const char *get_feature_xml(const char *p, const char **newp) 1341 { 1342 extern const char *const xml_builtin[][2]; 1343 size_t len; 1344 int i; 1345 const char *name; 1346 static char target_xml[1024]; 1347 1348 len = 0; 1349 while (p[len] && p[len] != ':') 1350 len++; 1351 *newp = p + len; 1352 1353 name = NULL; 1354 if (strncmp(p, "target.xml", len) == 0) { 1355 /* Generate the XML description for this CPU. */ 1356 if (!target_xml[0]) { 1357 GDBRegisterState *r; 1358 1359 snprintf(target_xml, sizeof(target_xml), 1360 "<?xml version=\"1.0\"?>" 1361 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">" 1362 "<target>" 1363 "<xi:include href=\"%s\"/>", 1364 GDB_CORE_XML); 1365 1366 for (r = QTAILQ_FIRST(&cpus)->gdb_regs; r; r = r->next) { 1367 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\""); 1368 pstrcat(target_xml, sizeof(target_xml), r->xml); 1369 pstrcat(target_xml, sizeof(target_xml), "\"/>"); 1370 } 1371 pstrcat(target_xml, sizeof(target_xml), "</target>"); 1372 } 1373 return target_xml; 1374 } 1375 for (i = 0; ; i++) { 1376 name = xml_builtin[i][0]; 1377 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len)) 1378 break; 1379 } 1380 return name ? xml_builtin[i][1] : NULL; 1381 } 1382 #endif 1383 1384 static int gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int reg) 1385 { 1386 GDBRegisterState *r; 1387 CPUState *cpu = ENV_GET_CPU(env); 1388 1389 if (reg < NUM_CORE_REGS) 1390 return cpu_gdb_read_register(env, mem_buf, reg); 1391 1392 for (r = cpu->gdb_regs; r; r = r->next) { 1393 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) { 1394 return r->get_reg(env, mem_buf, reg - r->base_reg); 1395 } 1396 } 1397 return 0; 1398 } 1399 1400 static int gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int reg) 1401 { 1402 GDBRegisterState *r; 1403 CPUState *cpu = ENV_GET_CPU(env); 1404 1405 if (reg < NUM_CORE_REGS) 1406 return cpu_gdb_write_register(env, mem_buf, reg); 1407 1408 for (r = cpu->gdb_regs; r; r = r->next) { 1409 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) { 1410 return r->set_reg(env, mem_buf, reg - r->base_reg); 1411 } 1412 } 1413 return 0; 1414 } 1415 1416 /* Register a supplemental set of CPU registers. If g_pos is nonzero it 1417 specifies the first register number and these registers are included in 1418 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is 1419 gdb reading a CPU register, and set_reg is gdb modifying a CPU register. 1420 */ 1421 1422 void gdb_register_coprocessor(CPUState *cpu, 1423 gdb_reg_cb get_reg, gdb_reg_cb set_reg, 1424 int num_regs, const char *xml, int g_pos) 1425 { 1426 GDBRegisterState *s; 1427 GDBRegisterState **p; 1428 static int last_reg = NUM_CORE_REGS; 1429 1430 s = (GDBRegisterState *)g_malloc0(sizeof(GDBRegisterState)); 1431 s->base_reg = last_reg; 1432 s->num_regs = num_regs; 1433 s->get_reg = get_reg; 1434 s->set_reg = set_reg; 1435 s->xml = xml; 1436 p = &cpu->gdb_regs; 1437 while (*p) { 1438 /* Check for duplicates. */ 1439 if (strcmp((*p)->xml, xml) == 0) 1440 return; 1441 p = &(*p)->next; 1442 } 1443 /* Add to end of list. */ 1444 last_reg += num_regs; 1445 *p = s; 1446 if (g_pos) { 1447 if (g_pos != s->base_reg) { 1448 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n" 1449 "Expected %d got %d\n", xml, g_pos, s->base_reg); 1450 } else { 1451 num_g_regs = last_reg; 1452 } 1453 } 1454 } 1455 1456 #ifndef CONFIG_USER_ONLY 1457 static const int xlat_gdb_type[] = { 1458 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE, 1459 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ, 1460 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS, 1461 }; 1462 #endif 1463 1464 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type) 1465 { 1466 CPUState *cpu; 1467 int err = 0; 1468 1469 if (kvm_enabled()) 1470 return kvm_insert_breakpoint(ENV_GET_CPU(gdbserver_state->c_cpu), addr, len, type); 1471 1472 switch (type) { 1473 case GDB_BREAKPOINT_SW: 1474 case GDB_BREAKPOINT_HW: 1475 CPU_FOREACH(cpu) { 1476 err = cpu_breakpoint_insert(cpu->env_ptr, addr, BP_GDB, NULL); 1477 if (err) 1478 break; 1479 } 1480 return err; 1481 #ifndef CONFIG_USER_ONLY 1482 case GDB_WATCHPOINT_WRITE: 1483 case GDB_WATCHPOINT_READ: 1484 case GDB_WATCHPOINT_ACCESS: 1485 CPU_FOREACH(cpu) { 1486 err = cpu_watchpoint_insert(cpu->env_ptr, addr, len, xlat_gdb_type[type], 1487 NULL); 1488 if (err) 1489 break; 1490 } 1491 return err; 1492 #endif 1493 default: 1494 return -ENOSYS; 1495 } 1496 } 1497 1498 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type) 1499 { 1500 CPUState *cpu; 1501 int err = 0; 1502 1503 if (kvm_enabled()) 1504 return kvm_remove_breakpoint(ENV_GET_CPU(gdbserver_state->c_cpu), addr, len, type); 1505 1506 switch (type) { 1507 case GDB_BREAKPOINT_SW: 1508 case GDB_BREAKPOINT_HW: 1509 CPU_FOREACH(cpu) { 1510 err = cpu_breakpoint_remove(cpu->env_ptr, addr, BP_GDB); 1511 if (err) 1512 break; 1513 } 1514 return err; 1515 #ifndef CONFIG_USER_ONLY 1516 case GDB_WATCHPOINT_WRITE: 1517 case GDB_WATCHPOINT_READ: 1518 case GDB_WATCHPOINT_ACCESS: 1519 CPU_FOREACH(cpu) { 1520 err = cpu_watchpoint_remove(cpu->env_ptr, addr, len, xlat_gdb_type[type]); 1521 if (err) 1522 break; 1523 } 1524 return err; 1525 #endif 1526 default: 1527 return -ENOSYS; 1528 } 1529 } 1530 1531 static void gdb_breakpoint_remove_all(void) 1532 { 1533 CPUState *cpu; 1534 1535 if (kvm_enabled()) { 1536 kvm_remove_all_breakpoints(ENV_GET_CPU(gdbserver_state->c_cpu)); 1537 return; 1538 } 1539 1540 CPU_FOREACH(cpu) { 1541 cpu_breakpoint_remove_all(cpu->env_ptr, BP_GDB); 1542 #ifndef CONFIG_USER_ONLY 1543 cpu_watchpoint_remove_all(cpu->env_ptr, BP_GDB); 1544 #endif 1545 } 1546 } 1547 1548 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc) 1549 { 1550 #if defined(TARGET_I386) 1551 s->c_cpu->eip = pc; 1552 cpu_synchronize_state(ENV_GET_CPU(s->c_cpu), 1); 1553 #elif defined (TARGET_PPC) 1554 s->c_cpu->nip = pc; 1555 #elif defined (TARGET_SPARC) 1556 s->c_cpu->pc = pc; 1557 s->c_cpu->npc = pc + 4; 1558 #elif defined (TARGET_ARM) 1559 s->c_cpu->regs[15] = pc; 1560 #elif defined (TARGET_SH4) 1561 s->c_cpu->pc = pc; 1562 #elif defined (TARGET_MIPS) 1563 s->c_cpu->active_tc.PC = pc; 1564 #elif defined (TARGET_MICROBLAZE) 1565 s->c_cpu->sregs[SR_PC] = pc; 1566 #elif defined (TARGET_CRIS) 1567 s->c_cpu->pc = pc; 1568 #elif defined (TARGET_ALPHA) 1569 s->c_cpu->pc = pc; 1570 #endif 1571 } 1572 1573 static inline int gdb_id(CPUState *cpu) 1574 { 1575 #if defined(CONFIG_USER_ONLY) && defined(USE_NPTL) 1576 return cpu->host_tid; 1577 #else 1578 return cpu->cpu_index + 1; 1579 #endif 1580 } 1581 1582 static CPUArchState *find_cpu(uint32_t thread_id) 1583 { 1584 CPUState *cpu; 1585 1586 CPU_FOREACH(cpu) { 1587 if (gdb_id(cpu) == thread_id) { 1588 return cpu->env_ptr; 1589 } 1590 } 1591 1592 return NULL; 1593 } 1594 1595 static int gdb_handle_packet(GDBState *s, const char *line_buf) 1596 { 1597 CPUArchState *env; 1598 const char *p; 1599 uint32_t thread; 1600 int ch, reg_size, type, res; 1601 char buf[MAX_PACKET_LENGTH]; 1602 uint8_t mem_buf[MAX_PACKET_LENGTH]; 1603 uint8_t *registers; 1604 target_ulong addr, len; 1605 1606 #ifdef DEBUG_GDB 1607 printf("command='%s'\n", line_buf); 1608 #endif 1609 p = line_buf; 1610 ch = *p++; 1611 switch(ch) { 1612 case '?': 1613 /* TODO: Make this return the correct value for user-mode. */ 1614 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP, 1615 gdb_id(ENV_GET_CPU(s->c_cpu))); 1616 put_packet(s, buf); 1617 /* Remove all the breakpoints when this query is issued, 1618 * because gdb is doing and initial connect and the state 1619 * should be cleaned up. 1620 */ 1621 gdb_breakpoint_remove_all(); 1622 break; 1623 case 'c': 1624 if (*p != '\0') { 1625 addr = strtoull(p, (char **)&p, 16); 1626 gdb_set_cpu_pc(s, addr); 1627 } 1628 s->signal = 0; 1629 gdb_continue(s); 1630 return RS_IDLE; 1631 case 'C': 1632 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16)); 1633 if (s->signal == -1) 1634 s->signal = 0; 1635 gdb_continue(s); 1636 return RS_IDLE; 1637 case 'k': 1638 /* Kill the target */ 1639 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n"); 1640 exit(0); 1641 case 'D': 1642 /* Detach packet */ 1643 gdb_breakpoint_remove_all(); 1644 gdb_continue(s); 1645 put_packet(s, "OK"); 1646 break; 1647 case 's': 1648 if (*p != '\0') { 1649 addr = strtoull(p, (char **)&p, 16); 1650 gdb_set_cpu_pc(s, addr); 1651 } 1652 cpu_single_step(ENV_GET_CPU(s->c_cpu), sstep_flags); 1653 gdb_continue(s); 1654 return RS_IDLE; 1655 case 'F': 1656 { 1657 target_ulong ret; 1658 target_ulong err; 1659 1660 ret = strtoull(p, (char **)&p, 16); 1661 if (*p == ',') { 1662 p++; 1663 err = strtoull(p, (char **)&p, 16); 1664 } else { 1665 err = 0; 1666 } 1667 if (*p == ',') 1668 p++; 1669 type = *p; 1670 if (gdb_current_syscall_cb) 1671 gdb_current_syscall_cb(ENV_GET_CPU(s->c_cpu), ret, err); 1672 if (type == 'C') { 1673 put_packet(s, "T02"); 1674 } else { 1675 gdb_continue(s); 1676 } 1677 } 1678 break; 1679 case 'g': 1680 cpu_synchronize_state(ENV_GET_CPU(s->g_cpu), 0); 1681 len = 0; 1682 for (addr = 0; addr < num_g_regs; addr++) { 1683 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr); 1684 len += reg_size; 1685 } 1686 memtohex(buf, mem_buf, len); 1687 put_packet(s, buf); 1688 break; 1689 case 'G': 1690 registers = mem_buf; 1691 len = strlen(p) / 2; 1692 hextomem((uint8_t *)registers, p, len); 1693 for (addr = 0; addr < num_g_regs && len > 0; addr++) { 1694 reg_size = gdb_write_register(s->g_cpu, registers, addr); 1695 len -= reg_size; 1696 registers += reg_size; 1697 } 1698 cpu_synchronize_state(ENV_GET_CPU(s->g_cpu), 1); 1699 put_packet(s, "OK"); 1700 break; 1701 case 'm': 1702 addr = strtoull(p, (char **)&p, 16); 1703 if (*p == ',') 1704 p++; 1705 len = strtoull(p, NULL, 16); 1706 if (cpu_memory_rw_debug(ENV_GET_CPU(s->g_cpu), addr, mem_buf, len, 0) != 0) { 1707 put_packet (s, "E14"); 1708 } else { 1709 memtohex(buf, mem_buf, len); 1710 put_packet(s, buf); 1711 } 1712 break; 1713 case 'M': 1714 addr = strtoull(p, (char **)&p, 16); 1715 if (*p == ',') 1716 p++; 1717 len = strtoull(p, (char **)&p, 16); 1718 if (*p == ':') 1719 p++; 1720 hextomem(mem_buf, p, len); 1721 if (cpu_memory_rw_debug(ENV_GET_CPU(s->g_cpu), addr, mem_buf, len, 1) != 0) 1722 put_packet(s, "E14"); 1723 else 1724 put_packet(s, "OK"); 1725 break; 1726 case 'p': 1727 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable. 1728 This works, but can be very slow. Anything new enough to 1729 understand XML also knows how to use this properly. */ 1730 if (!gdb_has_xml) 1731 goto unknown_command; 1732 addr = strtoull(p, (char **)&p, 16); 1733 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr); 1734 if (reg_size) { 1735 memtohex(buf, mem_buf, reg_size); 1736 put_packet(s, buf); 1737 } else { 1738 put_packet(s, "E14"); 1739 } 1740 break; 1741 case 'P': 1742 if (!gdb_has_xml) 1743 goto unknown_command; 1744 addr = strtoull(p, (char **)&p, 16); 1745 if (*p == '=') 1746 p++; 1747 reg_size = strlen(p) / 2; 1748 hextomem(mem_buf, p, reg_size); 1749 gdb_write_register(s->g_cpu, mem_buf, addr); 1750 put_packet(s, "OK"); 1751 break; 1752 case 'Z': 1753 case 'z': 1754 type = strtoul(p, (char **)&p, 16); 1755 if (*p == ',') 1756 p++; 1757 addr = strtoull(p, (char **)&p, 16); 1758 if (*p == ',') 1759 p++; 1760 len = strtoull(p, (char **)&p, 16); 1761 if (ch == 'Z') 1762 res = gdb_breakpoint_insert(addr, len, type); 1763 else 1764 res = gdb_breakpoint_remove(addr, len, type); 1765 if (res >= 0) 1766 put_packet(s, "OK"); 1767 else if (res == -ENOSYS) 1768 put_packet(s, ""); 1769 else 1770 put_packet(s, "E22"); 1771 break; 1772 case 'H': 1773 type = *p++; 1774 thread = strtoull(p, (char **)&p, 16); 1775 if (thread == -1 || thread == 0) { 1776 put_packet(s, "OK"); 1777 break; 1778 } 1779 env = find_cpu(thread); 1780 if (env == NULL) { 1781 put_packet(s, "E22"); 1782 break; 1783 } 1784 switch (type) { 1785 case 'c': 1786 s->c_cpu = env; 1787 put_packet(s, "OK"); 1788 break; 1789 case 'g': 1790 s->g_cpu = env; 1791 put_packet(s, "OK"); 1792 break; 1793 default: 1794 put_packet(s, "E22"); 1795 break; 1796 } 1797 break; 1798 case 'T': 1799 thread = strtoull(p, (char **)&p, 16); 1800 env = find_cpu(thread); 1801 1802 if (env != NULL) { 1803 put_packet(s, "OK"); 1804 } else { 1805 put_packet(s, "E22"); 1806 } 1807 break; 1808 case 'q': 1809 case 'Q': 1810 /* parse any 'q' packets here */ 1811 if (!strcmp(p,"qemu.sstepbits")) { 1812 /* Query Breakpoint bit definitions */ 1813 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x", 1814 SSTEP_ENABLE, 1815 SSTEP_NOIRQ, 1816 SSTEP_NOTIMER); 1817 put_packet(s, buf); 1818 break; 1819 } else if (strncmp(p,"qemu.sstep",10) == 0) { 1820 /* Display or change the sstep_flags */ 1821 p += 10; 1822 if (*p != '=') { 1823 /* Display current setting */ 1824 snprintf(buf, sizeof(buf), "0x%x", sstep_flags); 1825 put_packet(s, buf); 1826 break; 1827 } 1828 p++; 1829 type = strtoul(p, (char **)&p, 16); 1830 sstep_flags = type; 1831 put_packet(s, "OK"); 1832 break; 1833 } else if (strcmp(p,"C") == 0) { 1834 /* "Current thread" remains vague in the spec, so always return 1835 * the first CPU (gdb returns the first thread). */ 1836 put_packet(s, "QC1"); 1837 break; 1838 } else if (strcmp(p,"fThreadInfo") == 0) { 1839 s->query_cpu = QTAILQ_FIRST(&cpus)->env_ptr; 1840 goto report_cpuinfo; 1841 } else if (strcmp(p,"sThreadInfo") == 0) { 1842 report_cpuinfo: 1843 if (s->query_cpu) { 1844 snprintf(buf, sizeof(buf), "m%x", gdb_id(ENV_GET_CPU(s->query_cpu))); 1845 put_packet(s, buf); 1846 s->query_cpu = QTAILQ_NEXT(ENV_GET_CPU(s->query_cpu), node)->env_ptr; 1847 } else 1848 put_packet(s, "l"); 1849 break; 1850 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) { 1851 thread = strtoull(p+16, (char **)&p, 16); 1852 env = find_cpu(thread); 1853 if (env != NULL) { 1854 cpu_synchronize_state(ENV_GET_CPU(env), 0); 1855 len = snprintf((char *)mem_buf, sizeof(mem_buf), 1856 "CPU#%d [%s]", ENV_GET_CPU(env)->cpu_index, 1857 ENV_GET_CPU(env)->halted ? "halted " : "running"); 1858 memtohex(buf, mem_buf, len); 1859 put_packet(s, buf); 1860 } 1861 break; 1862 } 1863 #ifdef CONFIG_USER_ONLY 1864 else if (strncmp(p, "Offsets", 7) == 0) { 1865 TaskState *ts = s->c_cpu->opaque; 1866 1867 snprintf(buf, sizeof(buf), 1868 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx 1869 ";Bss=" TARGET_ABI_FMT_lx, 1870 ts->info->code_offset, 1871 ts->info->data_offset, 1872 ts->info->data_offset); 1873 put_packet(s, buf); 1874 break; 1875 } 1876 #else /* !CONFIG_USER_ONLY */ 1877 else if (strncmp(p, "Rcmd,", 5) == 0) { 1878 int len = strlen(p + 5); 1879 1880 if ((len % 2) != 0) { 1881 put_packet(s, "E01"); 1882 break; 1883 } 1884 hextomem(mem_buf, p + 5, len); 1885 len = len / 2; 1886 mem_buf[len++] = 0; 1887 qemu_chr_read(s->mon_chr, mem_buf, len); 1888 put_packet(s, "OK"); 1889 break; 1890 } 1891 #endif /* !CONFIG_USER_ONLY */ 1892 if (strncmp(p, "Supported", 9) == 0) { 1893 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH); 1894 #ifdef GDB_CORE_XML 1895 pstrcat(buf, sizeof(buf), ";qXfer:features:read+"); 1896 #endif 1897 put_packet(s, buf); 1898 break; 1899 } 1900 #ifdef GDB_CORE_XML 1901 if (strncmp(p, "Xfer:features:read:", 19) == 0) { 1902 const char *xml; 1903 target_ulong total_len; 1904 1905 gdb_has_xml = 1; 1906 p += 19; 1907 xml = get_feature_xml(p, &p); 1908 if (!xml) { 1909 snprintf(buf, sizeof(buf), "E00"); 1910 put_packet(s, buf); 1911 break; 1912 } 1913 1914 if (*p == ':') 1915 p++; 1916 addr = strtoul(p, (char **)&p, 16); 1917 if (*p == ',') 1918 p++; 1919 len = strtoul(p, (char **)&p, 16); 1920 1921 total_len = strlen(xml); 1922 if (addr > total_len) { 1923 snprintf(buf, sizeof(buf), "E00"); 1924 put_packet(s, buf); 1925 break; 1926 } 1927 if (len > (MAX_PACKET_LENGTH - 5) / 2) 1928 len = (MAX_PACKET_LENGTH - 5) / 2; 1929 if (len < total_len - addr) { 1930 buf[0] = 'm'; 1931 len = memtox(buf + 1, xml + addr, len); 1932 } else { 1933 buf[0] = 'l'; 1934 len = memtox(buf + 1, xml + addr, total_len - addr); 1935 } 1936 put_packet_binary(s, buf, len + 1); 1937 break; 1938 } 1939 #endif 1940 /* Unrecognised 'q' command. */ 1941 goto unknown_command; 1942 1943 default: 1944 unknown_command: 1945 /* put empty packet */ 1946 buf[0] = '\0'; 1947 put_packet(s, buf); 1948 break; 1949 } 1950 return RS_IDLE; 1951 } 1952 1953 void gdb_set_stop_cpu(CPUState *cpu) 1954 { 1955 gdbserver_state->c_cpu = cpu->env_ptr; 1956 gdbserver_state->g_cpu = cpu->env_ptr; 1957 } 1958 1959 #ifndef CONFIG_USER_ONLY 1960 static void gdb_vm_state_change(void *opaque, int running, int reason) 1961 { 1962 GDBState *s = gdbserver_state; 1963 CPUArchState *env = s->c_cpu; 1964 CPUState *cpu = ENV_GET_CPU(env); 1965 char buf[256]; 1966 const char *type; 1967 int ret; 1968 1969 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) || 1970 s->state == RS_INACTIVE || s->state == RS_SYSCALL) 1971 return; 1972 1973 /* disable single step if it was enable */ 1974 cpu_single_step(cpu, 0); 1975 1976 if (reason == EXCP_DEBUG) { 1977 if (env->watchpoint_hit) { 1978 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) { 1979 case BP_MEM_READ: 1980 type = "r"; 1981 break; 1982 case BP_MEM_ACCESS: 1983 type = "a"; 1984 break; 1985 default: 1986 type = ""; 1987 break; 1988 } 1989 snprintf(buf, sizeof(buf), 1990 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";", 1991 GDB_SIGNAL_TRAP, gdb_id(cpu), type, 1992 env->watchpoint_hit->vaddr); 1993 put_packet(s, buf); 1994 env->watchpoint_hit = NULL; 1995 return; 1996 } 1997 tb_flush(env); 1998 ret = GDB_SIGNAL_TRAP; 1999 } else { 2000 ret = GDB_SIGNAL_INT; 2001 } 2002 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(cpu)); 2003 put_packet(s, buf); 2004 } 2005 #endif 2006 2007 /* Send a gdb syscall request. 2008 This accepts limited printf-style format specifiers, specifically: 2009 %x - target_ulong argument printed in hex. 2010 %lx - 64-bit argument printed in hex. 2011 %s - string pointer (target_ulong) and length (int) pair. */ 2012 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...) 2013 { 2014 va_list va; 2015 char buf[256]; 2016 char *p; 2017 target_ulong addr; 2018 uint64_t i64; 2019 GDBState *s; 2020 2021 s = gdbserver_state; 2022 if (!s) 2023 return; 2024 gdb_current_syscall_cb = cb; 2025 s->state = RS_SYSCALL; 2026 #ifndef CONFIG_USER_ONLY 2027 vm_stop(EXCP_DEBUG); 2028 #endif 2029 s->state = RS_IDLE; 2030 va_start(va, fmt); 2031 p = buf; 2032 *(p++) = 'F'; 2033 while (*fmt) { 2034 if (*fmt == '%') { 2035 fmt++; 2036 switch (*fmt++) { 2037 case 'x': 2038 addr = va_arg(va, target_ulong); 2039 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr); 2040 break; 2041 case 'l': 2042 if (*(fmt++) != 'x') 2043 goto bad_format; 2044 i64 = va_arg(va, uint64_t); 2045 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64); 2046 break; 2047 case 's': 2048 addr = va_arg(va, target_ulong); 2049 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x", 2050 addr, va_arg(va, int)); 2051 break; 2052 default: 2053 bad_format: 2054 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n", 2055 fmt - 1); 2056 break; 2057 } 2058 } else { 2059 *(p++) = *(fmt++); 2060 } 2061 } 2062 *p = 0; 2063 va_end(va); 2064 put_packet(s, buf); 2065 #ifdef CONFIG_USER_ONLY 2066 gdb_handlesig(s->c_cpu, 0); 2067 #else 2068 cpu_exit(ENV_GET_CPU(s->c_cpu)); 2069 #endif 2070 } 2071 2072 static void gdb_read_byte(GDBState *s, int ch) 2073 { 2074 int i, csum; 2075 uint8_t reply; 2076 2077 #ifndef CONFIG_USER_ONLY 2078 if (s->last_packet_len) { 2079 /* Waiting for a response to the last packet. If we see the start 2080 of a new command then abandon the previous response. */ 2081 if (ch == '-') { 2082 #ifdef DEBUG_GDB 2083 printf("Got NACK, retransmitting\n"); 2084 #endif 2085 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len); 2086 } 2087 #ifdef DEBUG_GDB 2088 else if (ch == '+') 2089 printf("Got ACK\n"); 2090 else 2091 printf("Got '%c' when expecting ACK/NACK\n", ch); 2092 #endif 2093 if (ch == '+' || ch == '$') 2094 s->last_packet_len = 0; 2095 if (ch != '$') 2096 return; 2097 } 2098 if (vm_running) { 2099 /* when the CPU is running, we cannot do anything except stop 2100 it when receiving a char */ 2101 vm_stop(EXCP_INTERRUPT); 2102 } else 2103 #endif 2104 { 2105 switch(s->state) { 2106 case RS_IDLE: 2107 if (ch == '$') { 2108 s->line_buf_index = 0; 2109 s->state = RS_GETLINE; 2110 } 2111 break; 2112 case RS_GETLINE: 2113 if (ch == '#') { 2114 s->state = RS_CHKSUM1; 2115 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) { 2116 s->state = RS_IDLE; 2117 } else { 2118 s->line_buf[s->line_buf_index++] = ch; 2119 } 2120 break; 2121 case RS_CHKSUM1: 2122 s->line_buf[s->line_buf_index] = '\0'; 2123 s->line_csum = fromhex(ch) << 4; 2124 s->state = RS_CHKSUM2; 2125 break; 2126 case RS_CHKSUM2: 2127 s->line_csum |= fromhex(ch); 2128 csum = 0; 2129 for(i = 0; i < s->line_buf_index; i++) { 2130 csum += s->line_buf[i]; 2131 } 2132 if (s->line_csum != (csum & 0xff)) { 2133 reply = '-'; 2134 put_buffer(s, &reply, 1); 2135 s->state = RS_IDLE; 2136 } else { 2137 reply = '+'; 2138 put_buffer(s, &reply, 1); 2139 s->state = gdb_handle_packet(s, s->line_buf); 2140 } 2141 break; 2142 default: 2143 abort(); 2144 } 2145 } 2146 } 2147 2148 #ifdef CONFIG_USER_ONLY 2149 int 2150 gdb_queuesig (void) 2151 { 2152 GDBState *s; 2153 2154 s = gdbserver_state; 2155 2156 if (gdbserver_fd < 0 || s->fd < 0) 2157 return 0; 2158 else 2159 return 1; 2160 } 2161 2162 int 2163 gdb_handlesig (CPUState *cpu, int sig) 2164 { 2165 GDBState *s; 2166 char buf[256]; 2167 int n; 2168 2169 s = gdbserver_state; 2170 if (gdbserver_fd < 0 || s->fd < 0) 2171 return sig; 2172 2173 /* disable single step if it was enabled */ 2174 cpu_single_step(cpu, 0); 2175 tb_flush(cpu->env_ptr); 2176 2177 if (sig != 0) 2178 { 2179 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig)); 2180 put_packet(s, buf); 2181 } 2182 /* put_packet() might have detected that the peer terminated the 2183 connection. */ 2184 if (s->fd < 0) 2185 return sig; 2186 2187 sig = 0; 2188 s->state = RS_IDLE; 2189 s->running_state = 0; 2190 while (s->running_state == 0) { 2191 n = read (s->fd, buf, 256); 2192 if (n > 0) 2193 { 2194 int i; 2195 2196 for (i = 0; i < n; i++) 2197 gdb_read_byte (s, buf[i]); 2198 } 2199 else if (n == 0 || errno != EAGAIN) 2200 { 2201 /* XXX: Connection closed. Should probably wait for annother 2202 connection before continuing. */ 2203 return sig; 2204 } 2205 } 2206 sig = s->signal; 2207 s->signal = 0; 2208 return sig; 2209 } 2210 2211 /* Tell the remote gdb that the process has exited. */ 2212 void gdb_exit(CPUState *cpu, int code) 2213 { 2214 GDBState *s; 2215 char buf[4]; 2216 2217 s = gdbserver_state; 2218 if (gdbserver_fd < 0 || s->fd < 0) 2219 return; 2220 2221 snprintf(buf, sizeof(buf), "W%02x", code); 2222 put_packet(s, buf); 2223 } 2224 2225 /* Tell the remote gdb that the process has exited due to SIG. */ 2226 void gdb_signalled(CPUState *cpu, int sig) 2227 { 2228 GDBState *s; 2229 char buf[4]; 2230 2231 s = gdbserver_state; 2232 if (gdbserver_fd < 0 || s->fd < 0) 2233 return; 2234 2235 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig)); 2236 put_packet(s, buf); 2237 } 2238 2239 static void gdb_accept(void) 2240 { 2241 GDBState *s; 2242 struct sockaddr_in sockaddr; 2243 socklen_t len; 2244 int val, fd; 2245 2246 for(;;) { 2247 len = sizeof(sockaddr); 2248 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len); 2249 if (fd < 0 && errno != EINTR) { 2250 perror("accept"); 2251 return; 2252 } else if (fd >= 0) { 2253 break; 2254 } 2255 } 2256 2257 /* set short latency */ 2258 val = 1; 2259 qemu_setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val)); 2260 2261 s = g_malloc0(sizeof(GDBState)); 2262 s->c_cpu = QTAILQ_FIRST(&cpus); 2263 s->g_cpu = QTAILQ_FIRST(&cpus); 2264 s->fd = fd; 2265 gdb_has_xml = 0; 2266 2267 gdbserver_state = s; 2268 2269 fcntl(fd, F_SETFL, O_NONBLOCK); 2270 } 2271 2272 static int gdbserver_open(int port) 2273 { 2274 struct sockaddr_in sockaddr; 2275 int fd, val, ret; 2276 2277 fd = socket(PF_INET, SOCK_STREAM, 0); 2278 if (fd < 0) { 2279 perror("socket"); 2280 return -1; 2281 } 2282 2283 /* allow fast reuse */ 2284 val = 1; 2285 qemu_setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val)); 2286 2287 sockaddr.sin_family = AF_INET; 2288 sockaddr.sin_port = htons(port); 2289 sockaddr.sin_addr.s_addr = 0; 2290 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); 2291 if (ret < 0) { 2292 perror("bind"); 2293 return -1; 2294 } 2295 ret = listen(fd, 0); 2296 if (ret < 0) { 2297 perror("listen"); 2298 return -1; 2299 } 2300 return fd; 2301 } 2302 2303 int gdbserver_start(int port) 2304 { 2305 gdbserver_fd = gdbserver_open(port); 2306 if (gdbserver_fd < 0) 2307 return -1; 2308 /* accept connections */ 2309 gdb_accept(); 2310 return 0; 2311 } 2312 2313 /* Disable gdb stub for child processes. */ 2314 void gdbserver_fork(CPUArchState *env) 2315 { 2316 GDBState *s = gdbserver_state; 2317 if (gdbserver_fd < 0 || s->fd < 0) 2318 return; 2319 close(s->fd); 2320 s->fd = -1; 2321 cpu_breakpoint_remove_all(env, BP_GDB); 2322 cpu_watchpoint_remove_all(env, BP_GDB); 2323 } 2324 #else 2325 static int gdb_chr_can_receive(void *opaque) 2326 { 2327 /* We can handle an arbitrarily large amount of data. 2328 Pick the maximum packet size, which is as good as anything. */ 2329 return MAX_PACKET_LENGTH; 2330 } 2331 2332 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size) 2333 { 2334 int i; 2335 2336 for (i = 0; i < size; i++) { 2337 gdb_read_byte(gdbserver_state, buf[i]); 2338 } 2339 } 2340 2341 static void gdb_chr_event(void *opaque, int event) 2342 { 2343 switch (event) { 2344 case CHR_EVENT_OPENED: 2345 vm_stop(EXCP_INTERRUPT); 2346 gdb_has_xml = 0; 2347 break; 2348 default: 2349 break; 2350 } 2351 } 2352 2353 static void gdb_monitor_output(GDBState *s, const char *msg, int len) 2354 { 2355 char buf[MAX_PACKET_LENGTH]; 2356 2357 buf[0] = 'O'; 2358 if (len > (MAX_PACKET_LENGTH/2) - 1) 2359 len = (MAX_PACKET_LENGTH/2) - 1; 2360 memtohex(buf + 1, (uint8_t *)msg, len); 2361 put_packet(s, buf); 2362 } 2363 2364 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len) 2365 { 2366 const char *p = (const char *)buf; 2367 int max_sz; 2368 2369 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2; 2370 for (;;) { 2371 if (len <= max_sz) { 2372 gdb_monitor_output(gdbserver_state, p, len); 2373 break; 2374 } 2375 gdb_monitor_output(gdbserver_state, p, max_sz); 2376 p += max_sz; 2377 len -= max_sz; 2378 } 2379 return len; 2380 } 2381 2382 #ifndef _WIN32 2383 static void gdb_sigterm_handler(int signal) 2384 { 2385 if (vm_running) 2386 vm_stop(EXCP_INTERRUPT); 2387 } 2388 #endif 2389 2390 int gdbserver_start(const char *device) 2391 { 2392 GDBState *s; 2393 char gdbstub_device_name[128]; 2394 CharDriverState *chr = NULL; 2395 CharDriverState *mon_chr; 2396 2397 if (!device) 2398 return -1; 2399 if (strcmp(device, "none") != 0) { 2400 if (strstart(device, "tcp:", NULL)) { 2401 /* enforce required TCP attributes */ 2402 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name), 2403 "%s,nowait,nodelay,server", device); 2404 device = gdbstub_device_name; 2405 } 2406 #ifndef _WIN32 2407 else if (strcmp(device, "stdio") == 0) { 2408 struct sigaction act; 2409 2410 memset(&act, 0, sizeof(act)); 2411 act.sa_handler = gdb_sigterm_handler; 2412 sigaction(SIGINT, &act, NULL); 2413 } 2414 #endif 2415 chr = qemu_chr_open("gdb", device, NULL); 2416 if (!chr) 2417 return -1; 2418 2419 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive, 2420 gdb_chr_event, NULL); 2421 } 2422 2423 s = gdbserver_state; 2424 if (!s) { 2425 s = g_malloc0(sizeof(GDBState)); 2426 gdbserver_state = s; 2427 2428 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL); 2429 2430 /* Initialize a monitor terminal for gdb */ 2431 mon_chr = g_malloc0(sizeof(*mon_chr)); 2432 mon_chr->chr_write = gdb_monitor_write; 2433 monitor_init(mon_chr, 0); 2434 } else { 2435 if (s->chr) 2436 qemu_chr_close(s->chr); 2437 mon_chr = s->mon_chr; 2438 memset(s, 0, sizeof(GDBState)); 2439 } 2440 s->c_cpu = QTAILQ_FIRST(&cpus)->env_ptr; 2441 s->g_cpu = s->c_cpu; 2442 s->chr = chr; 2443 s->state = chr ? RS_IDLE : RS_INACTIVE; 2444 s->mon_chr = mon_chr; 2445 2446 return 0; 2447 } 2448 #endif 2449