Home | History | Annotate | Download | only in Intersection
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "CubicUtilities.h"
      9 #include "CurveIntersection.h"
     10 #include "Intersections.h"
     11 #include "IntersectionUtilities.h"
     12 #include "LineIntersection.h"
     13 #include "LineUtilities.h"
     14 #include "QuadraticUtilities.h"
     15 #include "TSearch.h"
     16 
     17 #if 0
     18 #undef ONE_OFF_DEBUG
     19 #define ONE_OFF_DEBUG 0
     20 #endif
     21 
     22 #if ONE_OFF_DEBUG
     23 static const double tLimits1[2][2] = {{0.36, 0.37}, {0.63, 0.64}};
     24 static const double tLimits2[2][2] = {{-0.865211397, -0.865215212}, {-0.865207696, -0.865208078}};
     25 #endif
     26 
     27 #define DEBUG_QUAD_PART 0
     28 #define SWAP_TOP_DEBUG 0
     29 
     30 static int quadPart(const Cubic& cubic, double tStart, double tEnd, Quadratic& simple) {
     31     Cubic part;
     32     sub_divide(cubic, tStart, tEnd, part);
     33     Quadratic quad;
     34     demote_cubic_to_quad(part, quad);
     35     // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
     36     // extremely shallow quadratic?
     37     int order = reduceOrder(quad, simple, kReduceOrder_TreatAsFill);
     38 #if DEBUG_QUAD_PART
     39     SkDebugf("%s cubic=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g) t=(%1.17g,%1.17g)\n",
     40             __FUNCTION__, cubic[0].x, cubic[0].y, cubic[1].x, cubic[1].y, cubic[2].x, cubic[2].y,
     41             cubic[3].x, cubic[3].y, tStart, tEnd);
     42     SkDebugf("%s part=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)"
     43             " quad=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)\n", __FUNCTION__, part[0].x, part[0].y,
     44             part[1].x, part[1].y, part[2].x, part[2].y, part[3].x, part[3].y, quad[0].x, quad[0].y,
     45             quad[1].x, quad[1].y, quad[2].x, quad[2].y);
     46     SkDebugf("%s simple=(%1.17g,%1.17g", __FUNCTION__, simple[0].x, simple[0].y);
     47     if (order > 1) {
     48         SkDebugf(" %1.17g,%1.17g", simple[1].x, simple[1].y);
     49     }
     50     if (order > 2) {
     51         SkDebugf(" %1.17g,%1.17g", simple[2].x, simple[2].y);
     52     }
     53     SkDebugf(")\n");
     54     SkASSERT(order < 4 && order > 0);
     55 #endif
     56     return order;
     57 }
     58 
     59 static void intersectWithOrder(const Quadratic& simple1, int order1, const Quadratic& simple2,
     60         int order2, Intersections& i) {
     61     if (order1 == 3 && order2 == 3) {
     62         intersect2(simple1, simple2, i);
     63     } else if (order1 <= 2 && order2 <= 2) {
     64         intersect((const _Line&) simple1, (const _Line&) simple2, i);
     65     } else if (order1 == 3 && order2 <= 2) {
     66         intersect(simple1, (const _Line&) simple2, i);
     67     } else {
     68         SkASSERT(order1 <= 2 && order2 == 3);
     69         intersect(simple2, (const _Line&) simple1, i);
     70         for (int s = 0; s < i.fUsed; ++s) {
     71             SkTSwap(i.fT[0][s], i.fT[1][s]);
     72         }
     73     }
     74 }
     75 
     76 // this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
     77 // chase intersections near quadratic ends, requiring odd hacks to find them.
     78 static bool intersect3(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2,
     79         double t2s, double t2e, double precisionScale, Intersections& i) {
     80     i.upDepth();
     81     bool result = false;
     82     Cubic c1, c2;
     83     sub_divide(cubic1, t1s, t1e, c1);
     84     sub_divide(cubic2, t2s, t2e, c2);
     85     SkTDArray<double> ts1;
     86     // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
     87     cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1);
     88     SkTDArray<double> ts2;
     89     cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2);
     90     double t1Start = t1s;
     91     int ts1Count = ts1.count();
     92     for (int i1 = 0; i1 <= ts1Count; ++i1) {
     93         const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
     94         const double t1 = t1s + (t1e - t1s) * tEnd1;
     95         Quadratic s1;
     96         int o1 = quadPart(cubic1, t1Start, t1, s1);
     97         double t2Start = t2s;
     98         int ts2Count = ts2.count();
     99         for (int i2 = 0; i2 <= ts2Count; ++i2) {
    100             const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
    101             const double t2 = t2s + (t2e - t2s) * tEnd2;
    102             if (cubic1 == cubic2 && t1Start >= t2Start) {
    103                 t2Start = t2;
    104                 continue;
    105             }
    106             Quadratic s2;
    107             int o2 = quadPart(cubic2, t2Start, t2, s2);
    108         #if ONE_OFF_DEBUG
    109             char tab[] = "                  ";
    110             if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
    111                     && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
    112                 Cubic cSub1, cSub2;
    113                 sub_divide(cubic1, t1Start, t1, cSub1);
    114                 sub_divide(cubic2, t2Start, t2, cSub2);
    115                 SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, __FUNCTION__,
    116                         t1Start, t1, t2Start, t2);
    117                 Intersections xlocals;
    118                 intersectWithOrder(s1, o1, s2, o2, xlocals);
    119                 SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
    120             }
    121         #endif
    122             Intersections locals;
    123             intersectWithOrder(s1, o1, s2, o2, locals);
    124             double coStart[2] = { -1 };
    125             _Point coPoint;
    126             int tCount = locals.used();
    127             for (int tIdx = 0; tIdx < tCount; ++tIdx) {
    128                 double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
    129                 double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
    130     // if the computed t is not sufficiently precise, iterate
    131                 _Point p1 = xy_at_t(cubic1, to1);
    132                 _Point p2 = xy_at_t(cubic2, to2);
    133                 if (p1.approximatelyEqual(p2)) {
    134                     if (locals.fIsCoincident[0] & 1 << tIdx) {
    135                         if (coStart[0] < 0) {
    136                             coStart[0] = to1;
    137                             coStart[1] = to2;
    138                             coPoint = p1;
    139                         } else {
    140                             i.insertCoincidentPair(coStart[0], to1, coStart[1], to2, coPoint, p1);
    141                             coStart[0] = -1;
    142                         }
    143                         result = true;
    144                     } else if (cubic1 != cubic2 || !approximately_equal(to1, to2)) {
    145                         if (i.swapped()) { // FIXME: insert should respect swap
    146                             i.insert(to2, to1, p1);
    147                         } else {
    148                             i.insert(to1, to2, p1);
    149                         }
    150                         result = true;
    151                     }
    152                 } else {
    153                     double offset = precisionScale / 16; // FIME: const is arbitrary -- test & refine
    154 #if 1
    155                     double c1Bottom = tIdx == 0 ? 0 :
    156                             (t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2;
    157                     double c1Min = SkTMax(c1Bottom, to1 - offset);
    158                     double c1Top = tIdx == tCount - 1 ? 1 :
    159                             (t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2;
    160                     double c1Max = SkTMin(c1Top, to1 + offset);
    161                     double c2Min = SkTMax(0., to2 - offset);
    162                     double c2Max = SkTMin(1., to2 + offset);
    163                 #if ONE_OFF_DEBUG
    164                     SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__,
    165                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
    166                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
    167                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
    168                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
    169                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
    170                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
    171                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
    172                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
    173                     SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
    174                             " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
    175                             i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
    176                             to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
    177                     SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
    178                             " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
    179                 #endif
    180                     intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
    181                 #if ONE_OFF_DEBUG
    182                     SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(),
    183                             i.used() > 0 ? i.fT[0][i.used() - 1] : -1);
    184                 #endif
    185                     if (tCount > 1) {
    186                         c1Min = SkTMax(0., to1 - offset);
    187                         c1Max = SkTMin(1., to1 + offset);
    188                         double c2Bottom = tIdx == 0 ? to2 :
    189                                 (t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2;
    190                         double c2Top = tIdx == tCount - 1 ? to2 :
    191                                 (t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2;
    192                         if (c2Bottom > c2Top) {
    193                             SkTSwap(c2Bottom, c2Top);
    194                         }
    195                         if (c2Bottom == to2) {
    196                             c2Bottom = 0;
    197                         }
    198                         if (c2Top == to2) {
    199                             c2Top = 1;
    200                         }
    201                         c2Min = SkTMax(c2Bottom, to2 - offset);
    202                         c2Max = SkTMin(c2Top, to2 + offset);
    203                     #if ONE_OFF_DEBUG
    204                         SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__,
    205                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
    206                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
    207                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
    208                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
    209                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
    210                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
    211                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
    212                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
    213                         SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
    214                                 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
    215                                 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
    216                                 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
    217                         SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
    218                                 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
    219                     #endif
    220                         intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
    221                 #if ONE_OFF_DEBUG
    222                     SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(),
    223                             i.used() > 0 ? i.fT[0][i.used() - 1] : -1);
    224                 #endif
    225                         c1Min = SkTMax(c1Bottom, to1 - offset);
    226                         c1Max = SkTMin(c1Top, to1 + offset);
    227                     #if ONE_OFF_DEBUG
    228                         SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__,
    229                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
    230                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
    231                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
    232                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
    233                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
    234                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
    235                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
    236                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
    237                         SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
    238                                 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
    239                                 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
    240                                 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
    241                         SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
    242                                 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
    243                     #endif
    244                         intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
    245                 #if ONE_OFF_DEBUG
    246                     SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(),
    247                             i.used() > 0 ? i.fT[0][i.used() - 1] : -1);
    248                 #endif
    249                     }
    250 #else
    251                     double c1Bottom = tIdx == 0 ? 0 :
    252                             (t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2;
    253                     double c1Min = SkTMax(c1Bottom, to1 - offset);
    254                     double c1Top = tIdx == tCount - 1 ? 1 :
    255                             (t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2;
    256                     double c1Max = SkTMin(c1Top, to1 + offset);
    257                     double c2Bottom = tIdx == 0 ? to2 :
    258                             (t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2;
    259                     double c2Top = tIdx == tCount - 1 ? to2 :
    260                             (t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2;
    261                     if (c2Bottom > c2Top) {
    262                         SkTSwap(c2Bottom, c2Top);
    263                     }
    264                     if (c2Bottom == to2) {
    265                         c2Bottom = 0;
    266                     }
    267                     if (c2Top == to2) {
    268                         c2Top = 1;
    269                     }
    270                     double c2Min = SkTMax(c2Bottom, to2 - offset);
    271                     double c2Max = SkTMin(c2Top, to2 + offset);
    272                 #if ONE_OFF_DEBUG
    273                     SkDebugf("%s contains1=%d/%d contains2=%d/%d\n", __FUNCTION__,
    274                             c1Min <= 0.210357794 && 0.210357794 <= c1Max
    275                          && c2Min <= 0.223476406 && 0.223476406 <= c2Max,
    276                             to1 - offset <= 0.210357794 && 0.210357794 <= to1 + offset
    277                          && to2 - offset <= 0.223476406 && 0.223476406 <= to2 + offset,
    278                             c1Min <= 0.211324707 && 0.211324707 <= c1Max
    279                          && c2Min <= 0.211327209 && 0.211327209 <= c2Max,
    280                             to1 - offset <= 0.211324707 && 0.211324707 <= to1 + offset
    281                          && to2 - offset <= 0.211327209 && 0.211327209 <= to2 + offset);
    282                     SkDebugf("%s c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
    283                             " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
    284                             __FUNCTION__, c1Bottom, c1Top, c2Bottom, c2Top,
    285                             to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
    286                     SkDebugf("%s to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
    287                             " c2Max=%1.9g\n", __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
    288                 #endif
    289 #endif
    290                     intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
    291                     // TODO: if no intersection is found, either quadratics intersected where
    292                     // cubics did not, or the intersection was missed. In the former case, expect
    293                     // the quadratics to be nearly parallel at the point of intersection, and check
    294                     // for that.
    295                 }
    296             }
    297             SkASSERT(coStart[0] == -1);
    298             t2Start = t2;
    299         }
    300         t1Start = t1;
    301     }
    302     i.downDepth();
    303     return result;
    304 }
    305 
    306 #if 0
    307 #define LINE_FRACTION (1.0 / gPrecisionUnit)
    308 #else
    309 #define LINE_FRACTION 0.1
    310 #endif
    311 
    312 // intersect the end of the cubic with the other. Try lines from the end to control and opposite
    313 // end to determine range of t on opposite cubic.
    314 static bool intersectEnd(const Cubic& cubic1, bool start, const Cubic& cubic2, const _Rect& bounds2,
    315         Intersections& i) {
    316  //   bool selfIntersect = cubic1 == cubic2;
    317     _Line line;
    318     int t1Index = start ? 0 : 3;
    319     line[0] = cubic1[t1Index];
    320     // don't bother if the two cubics are connnected
    321 #if 0
    322     if (!selfIntersect && (line[0].approximatelyEqual(cubic2[0])
    323             || line[0].approximatelyEqual(cubic2[3]))) {
    324         return false;
    325     }
    326 #endif
    327     bool result = false;
    328     SkTDArray<double> tVals; // OPTIMIZE: replace with hard-sized array
    329     for (int index = 0; index < 4; ++index) {
    330         if (index == t1Index) {
    331             continue;
    332         }
    333         _Vector dxy1 = cubic1[index] - line[0];
    334         dxy1 /= gPrecisionUnit;
    335         line[1] = line[0] + dxy1;
    336         _Rect lineBounds;
    337         lineBounds.setBounds(line);
    338         if (!bounds2.intersects(lineBounds)) {
    339             continue;
    340         }
    341         Intersections local;
    342         if (!intersect(cubic2, line, local)) {
    343             continue;
    344         }
    345         for (int idx2 = 0; idx2 < local.used(); ++idx2) {
    346             double foundT = local.fT[0][idx2];
    347             if (approximately_less_than_zero(foundT)
    348                     || approximately_greater_than_one(foundT)) {
    349                 continue;
    350             }
    351             if (local.fPt[idx2].approximatelyEqual(line[0])) {
    352                 if (i.swapped()) { // FIXME: insert should respect swap
    353                     i.insert(foundT, start ? 0 : 1, line[0]);
    354                 } else {
    355                     i.insert(start ? 0 : 1, foundT, line[0]);
    356                 }
    357                 result = true;
    358             } else {
    359                 *tVals.append() = local.fT[0][idx2];
    360             }
    361         }
    362     }
    363     if (tVals.count() == 0) {
    364         return result;
    365     }
    366     QSort<double>(tVals.begin(), tVals.end() - 1);
    367     double tMin1 = start ? 0 : 1 - LINE_FRACTION;
    368     double tMax1 = start ? LINE_FRACTION : 1;
    369     int tIdx = 0;
    370     do {
    371         int tLast = tIdx;
    372         while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
    373             ++tLast;
    374         }
    375         double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
    376         double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
    377         int lastUsed = i.used();
    378         result |= intersect3(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
    379         if (lastUsed == i.used()) {
    380             tMin2 = SkTMax(tVals[tIdx] - (1.0 / gPrecisionUnit), 0.0);
    381             tMax2 = SkTMin(tVals[tLast] + (1.0 / gPrecisionUnit), 1.0);
    382             result |= intersect3(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
    383         }
    384         tIdx = tLast + 1;
    385     } while (tIdx < tVals.count());
    386     return result;
    387 }
    388 
    389 const double CLOSE_ENOUGH = 0.001;
    390 
    391 static bool closeStart(const Cubic& cubic, int cubicIndex, Intersections& i, _Point& pt) {
    392     if (i.fT[cubicIndex][0] != 0 || i.fT[cubicIndex][1] > CLOSE_ENOUGH) {
    393         return false;
    394     }
    395     pt = xy_at_t(cubic, (i.fT[cubicIndex][0] + i.fT[cubicIndex][1]) / 2);
    396     return true;
    397 }
    398 
    399 static bool closeEnd(const Cubic& cubic, int cubicIndex, Intersections& i, _Point& pt) {
    400     int last = i.used() - 1;
    401     if (i.fT[cubicIndex][last] != 1 || i.fT[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
    402         return false;
    403     }
    404     pt = xy_at_t(cubic, (i.fT[cubicIndex][last] + i.fT[cubicIndex][last - 1]) / 2);
    405     return true;
    406 }
    407 
    408 bool intersect3(const Cubic& c1, const Cubic& c2, Intersections& i) {
    409     bool result = intersect3(c1, 0, 1, c2, 0, 1, 1, i);
    410     // FIXME: pass in cached bounds from caller
    411     _Rect c1Bounds, c2Bounds;
    412     c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
    413     c2Bounds.setBounds(c2);
    414     result |= intersectEnd(c1, false, c2, c2Bounds, i);
    415     result |= intersectEnd(c1, true, c2, c2Bounds, i);
    416     bool selfIntersect = c1 == c2;
    417     if (!selfIntersect) {
    418         i.swap();
    419         result |= intersectEnd(c2, false, c1, c1Bounds, i);
    420         result |= intersectEnd(c2, true, c1, c1Bounds, i);
    421         i.swap();
    422     }
    423     // If an end point and a second point very close to the end is returned, the second
    424     // point may have been detected because the approximate quads
    425     // intersected at the end and close to it. Verify that the second point is valid.
    426     if (i.used() <= 1 || i.coincidentUsed()) {
    427         return result;
    428     }
    429     _Point pt[2];
    430     if (closeStart(c1, 0, i, pt[0]) && closeStart(c2, 1, i, pt[1])
    431             && pt[0].approximatelyEqual(pt[1])) {
    432         i.removeOne(1);
    433     }
    434     if (closeEnd(c1, 0, i, pt[0]) && closeEnd(c2, 1, i, pt[1])
    435             && pt[0].approximatelyEqual(pt[1])) {
    436         i.removeOne(i.used() - 2);
    437     }
    438     return result;
    439 }
    440 
    441 // Up promote the quad to a cubic.
    442 // OPTIMIZATION If this is a common use case, optimize by duplicating
    443 // the intersect 3 loop to avoid the promotion  / demotion code
    444 int intersect(const Cubic& cubic, const Quadratic& quad, Intersections& i) {
    445     Cubic up;
    446     toCubic(quad, up);
    447     (void) intersect3(cubic, up, i);
    448     return i.used();
    449 }
    450 
    451 /* http://www.ag.jku.at/compass/compasssample.pdf
    452 ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
    453 Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth (at) math.uio.no
    454 SINTEF Applied Mathematics http://www.sintef.no )
    455 describes a method to find the self intersection of a cubic by taking the gradient of the implicit
    456 form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/
    457 
    458 int intersect(const Cubic& c, Intersections& i) {
    459     // check to see if x or y end points are the extrema. Are other quick rejects possible?
    460     if (ends_are_extrema_in_x_or_y(c)) {
    461         return false;
    462     }
    463     (void) intersect3(c, c, i);
    464     if (i.used() > 0) {
    465         SkASSERT(i.used() == 1);
    466         if (i.fT[0][0] > i.fT[1][0]) {
    467             SkTSwap(i.fT[0][0], i.fT[1][0]);
    468         }
    469     }
    470     return i.used();
    471 }
    472