Home | History | Annotate | Download | only in Intersection
      1 // Another approach is to start with the implicit form of one curve and solve
      2 // (seek implicit coefficients in QuadraticParameter.cpp
      3 // by substituting in the parametric form of the other.
      4 // The downside of this approach is that early rejects are difficult to come by.
      5 // http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step
      6 
      7 
      8 #include "CubicUtilities.h"
      9 #include "CurveIntersection.h"
     10 #include "Intersections.h"
     11 #include "QuadraticParameterization.h"
     12 #include "QuarticRoot.h"
     13 #include "QuadraticUtilities.h"
     14 #include "TSearch.h"
     15 
     16 #if SK_DEBUG
     17 #include "LineUtilities.h"
     18 #endif
     19 
     20 /* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F
     21  * and given x = at^2 + bt + c  (the parameterized form)
     22  *           y = dt^2 + et + f
     23  * then
     24  * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F
     25  */
     26 
     27 static int findRoots(const QuadImplicitForm& i, const Quadratic& q2, double roots[4],
     28         bool oneHint, int firstCubicRoot) {
     29     double a, b, c;
     30     set_abc(&q2[0].x, a, b, c);
     31     double d, e, f;
     32     set_abc(&q2[0].y, d, e, f);
     33     const double t4 =     i.x2() *  a * a
     34                     +     i.xy() *  a * d
     35                     +     i.y2() *  d * d;
     36     const double t3 = 2 * i.x2() *  a * b
     37                     +     i.xy() * (a * e +     b * d)
     38                     + 2 * i.y2() *  d * e;
     39     const double t2 =     i.x2() * (b * b + 2 * a * c)
     40                     +     i.xy() * (c * d +     b * e + a * f)
     41                     +     i.y2() * (e * e + 2 * d * f)
     42                     +     i.x()  *  a
     43                     +     i.y()  *  d;
     44     const double t1 = 2 * i.x2() *  b * c
     45                     +     i.xy() * (c * e + b * f)
     46                     + 2 * i.y2() *  e * f
     47                     +     i.x()  *  b
     48                     +     i.y()  *  e;
     49     const double t0 =     i.x2() *  c * c
     50                     +     i.xy() *  c * f
     51                     +     i.y2() *  f * f
     52                     +     i.x()  *  c
     53                     +     i.y()  *  f
     54                     +     i.c();
     55     int rootCount = reducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots);
     56     if (rootCount >= 0) {
     57         return rootCount;
     58     }
     59     return quarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots);
     60 }
     61 
     62 static int addValidRoots(const double roots[4], const int count, double valid[4]) {
     63     int result = 0;
     64     int index;
     65     for (index = 0; index < count; ++index) {
     66         if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) {
     67             continue;
     68         }
     69         double t = 1 - roots[index];
     70         if (approximately_less_than_zero(t)) {
     71             t = 0;
     72         } else if (approximately_greater_than_one(t)) {
     73             t = 1;
     74         }
     75         valid[result++] = t;
     76     }
     77     return result;
     78 }
     79 
     80 static bool onlyEndPtsInCommon(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
     81 // the idea here is to see at minimum do a quick reject by rotating all points
     82 // to either side of the line formed by connecting the endpoints
     83 // if the opposite curves points are on the line or on the other side, the
     84 // curves at most intersect at the endpoints
     85     for (int oddMan = 0; oddMan < 3; ++oddMan) {
     86         const _Point* endPt[2];
     87         for (int opp = 1; opp < 3; ++opp) {
     88             int end = oddMan ^ opp;
     89             if (end == 3) {
     90                 end = opp;
     91             }
     92             endPt[opp - 1] = &q1[end];
     93         }
     94         double origX = endPt[0]->x;
     95         double origY = endPt[0]->y;
     96         double adj = endPt[1]->x - origX;
     97         double opp = endPt[1]->y - origY;
     98         double sign = (q1[oddMan].y - origY) * adj - (q1[oddMan].x - origX) * opp;
     99         if (approximately_zero(sign)) {
    100             goto tryNextHalfPlane;
    101         }
    102         for (int n = 0; n < 3; ++n) {
    103             double test = (q2[n].y - origY) * adj - (q2[n].x - origX) * opp;
    104             if (test * sign > 0) {
    105                 goto tryNextHalfPlane;
    106             }
    107         }
    108         for (int i1 = 0; i1 < 3; i1 += 2) {
    109             for (int i2 = 0; i2 < 3; i2 += 2) {
    110                 if (q1[i1] == q2[i2]) {
    111                     i.insert(i1 >> 1, i2 >> 1, q1[i1]);
    112                 }
    113             }
    114         }
    115         SkASSERT(i.fUsed < 3);
    116         return true;
    117 tryNextHalfPlane:
    118         ;
    119     }
    120     return false;
    121 }
    122 
    123 // returns false if there's more than one intercept or the intercept doesn't match the point
    124 // returns true if the intercept was successfully added or if the
    125 // original quads need to be subdivided
    126 static bool addIntercept(const Quadratic& q1, const Quadratic& q2, double tMin, double tMax,
    127         Intersections& i, bool* subDivide) {
    128     double tMid = (tMin + tMax) / 2;
    129     _Point mid;
    130     xy_at_t(q2, tMid, mid.x, mid.y);
    131     _Line line;
    132     line[0] = line[1] = mid;
    133     _Vector dxdy = dxdy_at_t(q2, tMid);
    134     line[0] -= dxdy;
    135     line[1] += dxdy;
    136     Intersections rootTs;
    137     int roots = intersect(q1, line, rootTs);
    138     if (roots == 0) {
    139         if (subDivide) {
    140             *subDivide = true;
    141         }
    142         return true;
    143     }
    144     if (roots == 2) {
    145         return false;
    146     }
    147     _Point pt2;
    148     xy_at_t(q1, rootTs.fT[0][0], pt2.x, pt2.y);
    149     if (!pt2.approximatelyEqualHalf(mid)) {
    150         return false;
    151     }
    152     i.insertSwap(rootTs.fT[0][0], tMid, pt2);
    153     return true;
    154 }
    155 
    156 static bool isLinearInner(const Quadratic& q1, double t1s, double t1e, const Quadratic& q2,
    157         double t2s, double t2e, Intersections& i, bool* subDivide) {
    158     Quadratic hull;
    159     sub_divide(q1, t1s, t1e, hull);
    160     _Line line = {hull[2], hull[0]};
    161     const _Line* testLines[] = { &line, (const _Line*) &hull[0], (const _Line*) &hull[1] };
    162     size_t testCount = sizeof(testLines) / sizeof(testLines[0]);
    163     SkTDArray<double> tsFound;
    164     for (size_t index = 0; index < testCount; ++index) {
    165         Intersections rootTs;
    166         int roots = intersect(q2, *testLines[index], rootTs);
    167         for (int idx2 = 0; idx2 < roots; ++idx2) {
    168             double t = rootTs.fT[0][idx2];
    169 #if SK_DEBUG
    170         _Point qPt, lPt;
    171         xy_at_t(q2, t, qPt.x, qPt.y);
    172         xy_at_t(*testLines[index], rootTs.fT[1][idx2], lPt.x, lPt.y);
    173         SkASSERT(qPt.approximatelyEqual(lPt));
    174 #endif
    175             if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) {
    176                 continue;
    177             }
    178             *tsFound.append() = rootTs.fT[0][idx2];
    179         }
    180     }
    181     int tCount = tsFound.count();
    182     if (!tCount) {
    183         return true;
    184     }
    185     double tMin, tMax;
    186     if (tCount == 1) {
    187         tMin = tMax = tsFound[0];
    188     } else if (tCount > 1) {
    189         QSort<double>(tsFound.begin(), tsFound.end() - 1);
    190         tMin = tsFound[0];
    191         tMax = tsFound[tsFound.count() - 1];
    192     }
    193     _Point end;
    194     xy_at_t(q2, t2s, end.x, end.y);
    195     bool startInTriangle = point_in_hull(hull, end);
    196     if (startInTriangle) {
    197         tMin = t2s;
    198     }
    199     xy_at_t(q2, t2e, end.x, end.y);
    200     bool endInTriangle = point_in_hull(hull, end);
    201     if (endInTriangle) {
    202         tMax = t2e;
    203     }
    204     int split = 0;
    205     _Vector dxy1, dxy2;
    206     if (tMin != tMax || tCount > 2) {
    207         dxy2 = dxdy_at_t(q2, tMin);
    208         for (int index = 1; index < tCount; ++index) {
    209             dxy1 = dxy2;
    210             dxy2 = dxdy_at_t(q2, tsFound[index]);
    211             double dot = dxy1.dot(dxy2);
    212             if (dot < 0) {
    213                 split = index - 1;
    214                 break;
    215             }
    216         }
    217 
    218     }
    219     if (split == 0) { // there's one point
    220         if (addIntercept(q1, q2, tMin, tMax, i, subDivide)) {
    221             return true;
    222         }
    223         i.swap();
    224         return isLinearInner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide);
    225     }
    226     // At this point, we have two ranges of t values -- treat each separately at the split
    227     bool result;
    228     if (addIntercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) {
    229         result = true;
    230     } else {
    231         i.swap();
    232         result = isLinearInner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide);
    233     }
    234     if (addIntercept(q1, q2, tsFound[split], tMax, i, subDivide)) {
    235         result = true;
    236     } else {
    237         i.swap();
    238         result |= isLinearInner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide);
    239     }
    240     return result;
    241 }
    242 
    243 static double flatMeasure(const Quadratic& q) {
    244     _Vector mid = q[1] - q[0];
    245     _Vector dxy = q[2] - q[0];
    246     double length = dxy.length(); // OPTIMIZE: get rid of sqrt
    247     return fabs(mid.cross(dxy) / length);
    248 }
    249 
    250 // FIXME ? should this measure both and then use the quad that is the flattest as the line?
    251 static bool isLinear(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
    252     double measure = flatMeasure(q1);
    253     // OPTIMIZE: (get rid of sqrt) use approximately_zero
    254     if (!approximately_zero_sqrt(measure)) {
    255         return false;
    256     }
    257     return isLinearInner(q1, 0, 1, q2, 0, 1, i, NULL);
    258 }
    259 
    260 // FIXME: if flat measure is sufficiently large, then probably the quartic solution failed
    261 static void relaxedIsLinear(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
    262     double m1 = flatMeasure(q1);
    263     double m2 = flatMeasure(q2);
    264 #if SK_DEBUG
    265     double min = SkTMin(m1, m2);
    266     if (min > 5) {
    267         SkDebugf("%s maybe not flat enough.. %1.9g\n", __FUNCTION__, min);
    268     }
    269 #endif
    270     i.reset();
    271     const Quadratic& rounder = m2 < m1 ? q1 : q2;
    272     const Quadratic& flatter = m2 < m1 ? q2 : q1;
    273     bool subDivide = false;
    274     isLinearInner(flatter, 0, 1, rounder, 0, 1, i, &subDivide);
    275     if (subDivide) {
    276         QuadraticPair pair;
    277         chop_at(flatter, pair, 0.5);
    278         Intersections firstI, secondI;
    279         relaxedIsLinear(pair.first(), rounder, firstI);
    280         for (int index = 0; index < firstI.used(); ++index) {
    281             i.insert(firstI.fT[0][index] * 0.5, firstI.fT[1][index], firstI.fPt[index]);
    282         }
    283         relaxedIsLinear(pair.second(), rounder, secondI);
    284         for (int index = 0; index < secondI.used(); ++index) {
    285             i.insert(0.5 + secondI.fT[0][index] * 0.5, secondI.fT[1][index], secondI.fPt[index]);
    286         }
    287     }
    288     if (m2 < m1) {
    289         i.swapPts();
    290     }
    291 }
    292 
    293 #if 0
    294 static void unsortableExpanse(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
    295     const Quadratic* qs[2] = { &q1, &q2 };
    296     // need t values for start and end of unsortable expanse on both curves
    297     // try projecting lines parallel to the end points
    298     i.fT[0][0] = 0;
    299     i.fT[0][1] = 1;
    300     int flip = -1; // undecided
    301     for (int qIdx = 0; qIdx < 2; qIdx++) {
    302         for (int t = 0; t < 2; t++) {
    303             _Point dxdy;
    304             dxdy_at_t(*qs[qIdx], t, dxdy);
    305             _Line perp;
    306             perp[0] = perp[1] = (*qs[qIdx])[t == 0 ? 0 : 2];
    307             perp[0].x += dxdy.y;
    308             perp[0].y -= dxdy.x;
    309             perp[1].x -= dxdy.y;
    310             perp[1].y += dxdy.x;
    311             Intersections hitData;
    312             int hits = intersectRay(*qs[qIdx ^ 1], perp, hitData);
    313             SkASSERT(hits <= 1);
    314             if (hits) {
    315                 if (flip < 0) {
    316                     _Point dxdy2;
    317                     dxdy_at_t(*qs[qIdx ^ 1], hitData.fT[0][0], dxdy2);
    318                     double dot = dxdy.dot(dxdy2);
    319                     flip = dot < 0;
    320                     i.fT[1][0] = flip;
    321                     i.fT[1][1] = !flip;
    322                 }
    323                 i.fT[qIdx ^ 1][t ^ flip] = hitData.fT[0][0];
    324             }
    325         }
    326     }
    327     i.fUnsortable = true; // failed, probably coincident or near-coincident
    328     i.fUsed = 2;
    329 }
    330 #endif
    331 
    332 // each time through the loop, this computes values it had from the last loop
    333 // if i == j == 1, the center values are still good
    334 // otherwise, for i != 1 or j != 1, four of the values are still good
    335 // and if i == 1 ^ j == 1, an additional value is good
    336 static bool binarySearch(const Quadratic& quad1, const Quadratic& quad2, double& t1Seed,
    337         double& t2Seed, _Point& pt) {
    338     double tStep = ROUGH_EPSILON;
    339     _Point t1[3], t2[3];
    340     int calcMask = ~0;
    341     do {
    342         if (calcMask & (1 << 1)) t1[1] = xy_at_t(quad1, t1Seed);
    343         if (calcMask & (1 << 4)) t2[1] = xy_at_t(quad2, t2Seed);
    344         if (t1[1].approximatelyEqual(t2[1])) {
    345             pt = t1[1];
    346     #if ONE_OFF_DEBUG
    347             SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __FUNCTION__,
    348                     t1Seed, t2Seed, t1[1].x, t1[1].y, t1[2].x, t1[2].y);
    349     #endif
    350             return true;
    351         }
    352         if (calcMask & (1 << 0)) t1[0] = xy_at_t(quad1, t1Seed - tStep);
    353         if (calcMask & (1 << 2)) t1[2] = xy_at_t(quad1, t1Seed + tStep);
    354         if (calcMask & (1 << 3)) t2[0] = xy_at_t(quad2, t2Seed - tStep);
    355         if (calcMask & (1 << 5)) t2[2] = xy_at_t(quad2, t2Seed + tStep);
    356         double dist[3][3];
    357         // OPTIMIZE: using calcMask value permits skipping some distance calcuations
    358         //   if prior loop's results are moved to correct slot for reuse
    359         dist[1][1] = t1[1].distanceSquared(t2[1]);
    360         int best_i = 1, best_j = 1;
    361         for (int i = 0; i < 3; ++i) {
    362             for (int j = 0; j < 3; ++j) {
    363                 if (i == 1 && j == 1) {
    364                     continue;
    365                 }
    366                 dist[i][j] = t1[i].distanceSquared(t2[j]);
    367                 if (dist[best_i][best_j] > dist[i][j]) {
    368                     best_i = i;
    369                     best_j = j;
    370                 }
    371             }
    372         }
    373         if (best_i == 1 && best_j == 1) {
    374             tStep /= 2;
    375             if (tStep < FLT_EPSILON_HALF) {
    376                 break;
    377             }
    378             calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5);
    379             continue;
    380         }
    381         if (best_i == 0) {
    382             t1Seed -= tStep;
    383             t1[2] = t1[1];
    384             t1[1] = t1[0];
    385             calcMask = 1 << 0;
    386         } else if (best_i == 2) {
    387             t1Seed += tStep;
    388             t1[0] = t1[1];
    389             t1[1] = t1[2];
    390             calcMask = 1 << 2;
    391         } else {
    392             calcMask = 0;
    393         }
    394         if (best_j == 0) {
    395             t2Seed -= tStep;
    396             t2[2] = t2[1];
    397             t2[1] = t2[0];
    398             calcMask |= 1 << 3;
    399         } else if (best_j == 2) {
    400             t2Seed += tStep;
    401             t2[0] = t2[1];
    402             t2[1] = t2[2];
    403             calcMask |= 1 << 5;
    404         }
    405     } while (true);
    406 #if ONE_OFF_DEBUG
    407     SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCTION__,
    408         t1Seed, t2Seed, t1[1].x, t1[1].y, t1[2].x, t1[2].y);
    409 #endif
    410     return false;
    411 }
    412 
    413 bool intersect2(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
    414     // if the quads share an end point, check to see if they overlap
    415 
    416     if (onlyEndPtsInCommon(q1, q2, i)) {
    417         return i.intersected();
    418     }
    419     if (onlyEndPtsInCommon(q2, q1, i)) {
    420         i.swapPts();
    421         return i.intersected();
    422     }
    423     // see if either quad is really a line
    424     if (isLinear(q1, q2, i)) {
    425         return i.intersected();
    426     }
    427     if (isLinear(q2, q1, i)) {
    428         i.swapPts();
    429         return i.intersected();
    430     }
    431     QuadImplicitForm i1(q1);
    432     QuadImplicitForm i2(q2);
    433     if (i1.implicit_match(i2)) {
    434         // FIXME: compute T values
    435         // compute the intersections of the ends to find the coincident span
    436         bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y);
    437         double t;
    438         if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) {
    439             i.insertCoincident(t, 0, q2[0]);
    440         }
    441         if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) {
    442             i.insertCoincident(t, 1, q2[2]);
    443         }
    444         useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y);
    445         if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) {
    446             i.insertCoincident(0, t, q1[0]);
    447         }
    448         if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) {
    449             i.insertCoincident(1, t, q1[2]);
    450         }
    451         SkASSERT(i.coincidentUsed() <= 2);
    452         return i.coincidentUsed() > 0;
    453     }
    454     int index;
    455     bool useCubic = q1[0] == q2[0] || q1[0] == q2[2] || q1[2] == q2[0];
    456     double roots1[4];
    457     int rootCount = findRoots(i2, q1, roots1, useCubic, 0);
    458     // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1
    459     double roots1Copy[4];
    460     int r1Count = addValidRoots(roots1, rootCount, roots1Copy);
    461     _Point pts1[4];
    462     for (index = 0; index < r1Count; ++index) {
    463         xy_at_t(q1, roots1Copy[index], pts1[index].x, pts1[index].y);
    464     }
    465     double roots2[4];
    466     int rootCount2 = findRoots(i1, q2, roots2, useCubic, 0);
    467     double roots2Copy[4];
    468     int r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
    469     _Point pts2[4];
    470     for (index = 0; index < r2Count; ++index) {
    471         xy_at_t(q2, roots2Copy[index], pts2[index].x, pts2[index].y);
    472     }
    473     if (r1Count == r2Count && r1Count <= 1) {
    474         if (r1Count == 1) {
    475             if (pts1[0].approximatelyEqualHalf(pts2[0])) {
    476                 i.insert(roots1Copy[0], roots2Copy[0], pts1[0]);
    477             } else if (pts1[0].moreRoughlyEqual(pts2[0])) {
    478                 // experiment: see if a different cubic solution provides the correct quartic answer
    479             #if 0
    480                 for (int cu1 = 0; cu1 < 3; ++cu1) {
    481                     rootCount = findRoots(i2, q1, roots1, useCubic, cu1);
    482                     r1Count = addValidRoots(roots1, rootCount, roots1Copy);
    483                     if (r1Count == 0) {
    484                         continue;
    485                     }
    486                     for (int cu2 = 0; cu2 < 3; ++cu2) {
    487                         if (cu1 == 0 && cu2 == 0) {
    488                             continue;
    489                         }
    490                         rootCount2 = findRoots(i1, q2, roots2, useCubic, cu2);
    491                         r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
    492                         if (r2Count == 0) {
    493                             continue;
    494                         }
    495                         SkASSERT(r1Count == 1 && r2Count == 1);
    496                         SkDebugf("*** [%d,%d] (%1.9g,%1.9g) %s (%1.9g,%1.9g)\n", cu1, cu2,
    497                                 pts1[0].x, pts1[0].y, pts1[0].approximatelyEqualHalf(pts2[0])
    498                                 ? "==" : "!=", pts2[0].x, pts2[0].y);
    499                     }
    500                 }
    501             #endif
    502                 // experiment: try to find intersection by chasing t
    503                 rootCount = findRoots(i2, q1, roots1, useCubic, 0);
    504                 r1Count = addValidRoots(roots1, rootCount, roots1Copy);
    505                 rootCount2 = findRoots(i1, q2, roots2, useCubic, 0);
    506                 r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
    507                 if (binarySearch(q1, q2, roots1Copy[0], roots2Copy[0], pts1[0])) {
    508                     i.insert(roots1Copy[0], roots2Copy[0], pts1[0]);
    509                 }
    510             }
    511         }
    512         return i.intersected();
    513     }
    514     int closest[4];
    515     double dist[4];
    516     bool foundSomething = false;
    517     for (index = 0; index < r1Count; ++index) {
    518         dist[index] = DBL_MAX;
    519         closest[index] = -1;
    520         for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) {
    521             if (!pts2[ndex2].approximatelyEqualHalf(pts1[index])) {
    522                 continue;
    523             }
    524             double dx = pts2[ndex2].x - pts1[index].x;
    525             double dy = pts2[ndex2].y - pts1[index].y;
    526             double distance = dx * dx + dy * dy;
    527             if (dist[index] <= distance) {
    528                 continue;
    529             }
    530             for (int outer = 0; outer < index; ++outer) {
    531                 if (closest[outer] != ndex2) {
    532                     continue;
    533                 }
    534                 if (dist[outer] < distance) {
    535                     goto next;
    536                 }
    537                 closest[outer] = -1;
    538             }
    539             dist[index] = distance;
    540             closest[index] = ndex2;
    541             foundSomething = true;
    542         next:
    543             ;
    544         }
    545     }
    546     if (r1Count && r2Count && !foundSomething) {
    547         relaxedIsLinear(q1, q2, i);
    548         return i.intersected();
    549     }
    550     int used = 0;
    551     do {
    552         double lowest = DBL_MAX;
    553         int lowestIndex = -1;
    554         for (index = 0; index < r1Count; ++index) {
    555             if (closest[index] < 0) {
    556                 continue;
    557             }
    558             if (roots1Copy[index] < lowest) {
    559                 lowestIndex = index;
    560                 lowest = roots1Copy[index];
    561             }
    562         }
    563         if (lowestIndex < 0) {
    564             break;
    565         }
    566         i.insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]],
    567                 pts1[lowestIndex]);
    568         closest[lowestIndex] = -1;
    569     } while (++used < r1Count);
    570     i.fFlip = false;
    571     return i.intersected();
    572 }
    573