Home | History | Annotate | Download | only in Intersection
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 #include "CurveIntersection.h"
      8 #include "QuadraticParameterization.h"
      9 #include "QuadraticUtilities.h"
     10 
     11 /* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1
     12  *
     13  * This paper proves that Syvester's method can compute the implicit form of
     14  * the quadratic from the parameterized form.
     15  *
     16  * Given x = a*t*t + b*t + c  (the parameterized form)
     17  *       y = d*t*t + e*t + f
     18  *
     19  * we want to find an equation of the implicit form:
     20  *
     21  * A*x*x + B*x*y + C*y*y + D*x + E*y + F = 0
     22  *
     23  * The implicit form can be expressed as a 4x4 determinant, as shown.
     24  *
     25  * The resultant obtained by Syvester's method is
     26  *
     27  * |   a   b   (c - x)     0     |
     28  * |   0   a      b     (c - x)  |
     29  * |   d   e   (f - y)     0     |
     30  * |   0   d      e     (f - y)  |
     31  *
     32  * which expands to
     33  *
     34  * d*d*x*x + -2*a*d*x*y + a*a*y*y
     35  *         + (-2*c*d*d + b*e*d - a*e*e + 2*a*f*d)*x
     36  *         + (-2*f*a*a + e*b*a - d*b*b + 2*d*c*a)*y
     37  *         +
     38  * |   a   b   c   0   |
     39  * |   0   a   b   c   | == 0.
     40  * |   d   e   f   0   |
     41  * |   0   d   e   f   |
     42  *
     43  * Expanding the constant determinant results in
     44  *
     45  *   | a b c |     | b c 0 |
     46  * a*| e f 0 | + d*| a b c | ==
     47  *   | d e f |     | d e f |
     48  *
     49  * a*(a*f*f + c*e*e - c*f*d - b*e*f) + d*(b*b*f + c*c*d - c*a*f - c*e*b)
     50  *
     51  */
     52 
     53 
     54 static bool straight_forward = true;
     55 
     56 QuadImplicitForm::QuadImplicitForm(const Quadratic& q) {
     57     double a, b, c;
     58     set_abc(&q[0].x, a, b, c);
     59     double d, e, f;
     60     set_abc(&q[0].y, d, e, f);
     61     // compute the implicit coefficients
     62     if (straight_forward) { // 42 muls, 13 adds
     63         p[xx_coeff] = d * d;
     64         p[xy_coeff] = -2 * a * d;
     65         p[yy_coeff] = a * a;
     66         p[x_coeff] = -2*c*d*d + b*e*d - a*e*e + 2*a*f*d;
     67         p[y_coeff] = -2*f*a*a + e*b*a - d*b*b + 2*d*c*a;
     68         p[c_coeff] = a*(a*f*f + c*e*e - c*f*d - b*e*f)
     69                    + d*(b*b*f + c*c*d - c*a*f - c*e*b);
     70     } else { // 26 muls, 11 adds
     71         double aa = a * a;
     72         double ad = a * d;
     73         double dd = d * d;
     74         p[xx_coeff] = dd;
     75         p[xy_coeff] = -2 * ad;
     76         p[yy_coeff] = aa;
     77         double be = b * e;
     78         double bde = be * d;
     79         double cdd = c * dd;
     80         double ee = e * e;
     81         p[x_coeff] =  -2*cdd + bde - a*ee + 2*ad*f;
     82         double aaf = aa * f;
     83         double abe = a * be;
     84         double ac = a * c;
     85         double bb_2ac = b*b - 2*ac;
     86         p[y_coeff] = -2*aaf + abe - d*bb_2ac;
     87         p[c_coeff] = aaf*f + ac*ee + d*f*bb_2ac - abe*f + c*cdd - c*bde;
     88     }
     89 }
     90 
     91  /* Given a pair of quadratics, determine their parametric coefficients.
     92   * If the scaled coefficients are nearly equal, then the part of the quadratics
     93   * may be coincident.
     94   * FIXME: optimization -- since comparison short-circuits on no match,
     95   * lazily compute the coefficients, comparing the easiest to compute first.
     96   * xx and yy first; then xy; and so on.
     97   */
     98 bool QuadImplicitForm::implicit_match(const QuadImplicitForm& p2) const {
     99     int first = 0;
    100     for (int index = 0; index < coeff_count; ++index) {
    101         if (approximately_zero(p[index]) && approximately_zero(p2.p[index])) {
    102             first += first == index;
    103             continue;
    104         }
    105         if (first == index) {
    106             continue;
    107         }
    108         if (!AlmostEqualUlps(p[index] * p2.p[first], p[first] * p2.p[index])) {
    109             return false;
    110         }
    111     }
    112     return true;
    113 }
    114 
    115 bool implicit_matches(const Quadratic& quad1, const Quadratic& quad2) {
    116     QuadImplicitForm i1(quad1);  // a'xx , b'xy , c'yy , d'x , e'y , f
    117     QuadImplicitForm i2(quad2);
    118     return i1.implicit_match(i2);
    119 }
    120 
    121 static double tangent(const double* quadratic, double t) {
    122     double a, b, c;
    123     set_abc(quadratic, a, b, c);
    124     return 2 * a * t + b;
    125 }
    126 
    127 void tangent(const Quadratic& quadratic, double t, _Point& result) {
    128     result.x = tangent(&quadratic[0].x, t);
    129     result.y = tangent(&quadratic[0].y, t);
    130 }
    131 
    132 
    133 
    134 // unit test to return and validate parametric coefficients
    135 #include "QuadraticParameterization_TestUtility.cpp"
    136