Home | History | Annotate | Download | only in core
      1 #include "SkBitmapScaler.h"
      2 #include "SkBitmapFilter.h"
      3 #include "SkRect.h"
      4 #include "SkTArray.h"
      5 #include "SkErrorInternals.h"
      6 #include "SkConvolver.h"
      7 
      8 // SkResizeFilter ----------------------------------------------------------------
      9 
     10 // Encapsulates computation and storage of the filters required for one complete
     11 // resize operation.
     12 class SkResizeFilter {
     13 public:
     14     SkResizeFilter(SkBitmapScaler::ResizeMethod method,
     15                    int srcFullWidth, int srcFullHeight,
     16                    float destWidth, float destHeight,
     17                    const SkRect& destSubset,
     18                    const SkConvolutionProcs& convolveProcs);
     19     ~SkResizeFilter() {
     20         SkDELETE( fBitmapFilter );
     21     }
     22 
     23     // Returns the filled filter values.
     24     const SkConvolutionFilter1D& xFilter() { return fXFilter; }
     25     const SkConvolutionFilter1D& yFilter() { return fYFilter; }
     26 
     27 private:
     28 
     29     SkBitmapFilter* fBitmapFilter;
     30 
     31     // Computes one set of filters either horizontally or vertically. The caller
     32     // will specify the "min" and "max" rather than the bottom/top and
     33     // right/bottom so that the same code can be re-used in each dimension.
     34     //
     35     // |srcDependLo| and |srcDependSize| gives the range for the source
     36     // depend rectangle (horizontally or vertically at the caller's discretion
     37     // -- see above for what this means).
     38     //
     39     // Likewise, the range of destination values to compute and the scale factor
     40     // for the transform is also specified.
     41 
     42     void computeFilters(int srcSize,
     43                         float destSubsetLo, float destSubsetSize,
     44                         float scale,
     45                         SkConvolutionFilter1D* output,
     46                         const SkConvolutionProcs& convolveProcs);
     47 
     48     SkConvolutionFilter1D fXFilter;
     49     SkConvolutionFilter1D fYFilter;
     50 };
     51 
     52 SkResizeFilter::SkResizeFilter(SkBitmapScaler::ResizeMethod method,
     53                                int srcFullWidth, int srcFullHeight,
     54                                float destWidth, float destHeight,
     55                                const SkRect& destSubset,
     56                                const SkConvolutionProcs& convolveProcs) {
     57 
     58     // method will only ever refer to an "algorithm method".
     59     SkASSERT((SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
     60              (method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD));
     61 
     62     switch(method) {
     63         case SkBitmapScaler::RESIZE_BOX:
     64             fBitmapFilter = SkNEW(SkBoxFilter);
     65             break;
     66         case SkBitmapScaler::RESIZE_TRIANGLE:
     67             fBitmapFilter = SkNEW(SkTriangleFilter);
     68             break;
     69         case SkBitmapScaler::RESIZE_MITCHELL:
     70             fBitmapFilter = SkNEW_ARGS(SkMitchellFilter, (1.f/3.f, 1.f/3.f));
     71             break;
     72         case SkBitmapScaler::RESIZE_HAMMING:
     73             fBitmapFilter = SkNEW(SkHammingFilter);
     74             break;
     75         case SkBitmapScaler::RESIZE_LANCZOS3:
     76             fBitmapFilter = SkNEW(SkLanczosFilter);
     77             break;
     78         default:
     79             // NOTREACHED:
     80             fBitmapFilter = SkNEW_ARGS(SkMitchellFilter, (1.f/3.f, 1.f/3.f));
     81             break;
     82     }
     83 
     84 
     85     float scaleX = destWidth / srcFullWidth;
     86     float scaleY = destHeight / srcFullHeight;
     87 
     88     this->computeFilters(srcFullWidth, destSubset.fLeft, destSubset.width(),
     89                          scaleX, &fXFilter, convolveProcs);
     90     if (srcFullWidth == srcFullHeight &&
     91         destSubset.fLeft == destSubset.fTop &&
     92         destSubset.width() == destSubset.height()&&
     93         scaleX == scaleY) {
     94         fYFilter = fXFilter;
     95     } else {
     96         this->computeFilters(srcFullHeight, destSubset.fTop, destSubset.height(),
     97                           scaleY, &fYFilter, convolveProcs);
     98     }
     99 }
    100 
    101 // TODO(egouriou): Take advantage of periods in the convolution.
    102 // Practical resizing filters are periodic outside of the border area.
    103 // For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the
    104 // source become p pixels in the destination) will have a period of p.
    105 // A nice consequence is a period of 1 when downscaling by an integral
    106 // factor. Downscaling from typical display resolutions is also bound
    107 // to produce interesting periods as those are chosen to have multiple
    108 // small factors.
    109 // Small periods reduce computational load and improve cache usage if
    110 // the coefficients can be shared. For periods of 1 we can consider
    111 // loading the factors only once outside the borders.
    112 void SkResizeFilter::computeFilters(int srcSize,
    113                                   float destSubsetLo, float destSubsetSize,
    114                                   float scale,
    115                                   SkConvolutionFilter1D* output,
    116                                   const SkConvolutionProcs& convolveProcs) {
    117   float destSubsetHi = destSubsetLo + destSubsetSize;  // [lo, hi)
    118 
    119   // When we're doing a magnification, the scale will be larger than one. This
    120   // means the destination pixels are much smaller than the source pixels, and
    121   // that the range covered by the filter won't necessarily cover any source
    122   // pixel boundaries. Therefore, we use these clamped values (max of 1) for
    123   // some computations.
    124   float clampedScale = SkTMin(1.0f, scale);
    125 
    126   // This is how many source pixels from the center we need to count
    127   // to support the filtering function.
    128   float srcSupport = fBitmapFilter->width() / clampedScale;
    129 
    130   // Speed up the divisions below by turning them into multiplies.
    131   float invScale = 1.0f / scale;
    132 
    133   SkTArray<float> filterValues(64);
    134   SkTArray<short> fixedFilterValues(64);
    135 
    136   // Loop over all pixels in the output range. We will generate one set of
    137   // filter values for each one. Those values will tell us how to blend the
    138   // source pixels to compute the destination pixel.
    139   for (int destSubsetI = SkScalarFloorToInt(destSubsetLo); destSubsetI < SkScalarCeilToInt(destSubsetHi);
    140        destSubsetI++) {
    141     // Reset the arrays. We don't declare them inside so they can re-use the
    142     // same malloc-ed buffer.
    143     filterValues.reset();
    144     fixedFilterValues.reset();
    145 
    146     // This is the pixel in the source directly under the pixel in the dest.
    147     // Note that we base computations on the "center" of the pixels. To see
    148     // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x
    149     // downscale should "cover" the pixels around the pixel with *its center*
    150     // at coordinates (2.5, 2.5) in the source, not those around (0, 0).
    151     // Hence we need to scale coordinates (0.5, 0.5), not (0, 0).
    152     float srcPixel = (static_cast<float>(destSubsetI) + 0.5f) * invScale;
    153 
    154     // Compute the (inclusive) range of source pixels the filter covers.
    155     int srcBegin = SkTMax(0, SkScalarFloorToInt(srcPixel - srcSupport));
    156     int srcEnd = SkTMin(srcSize - 1, SkScalarCeilToInt(srcPixel + srcSupport));
    157 
    158     // Compute the unnormalized filter value at each location of the source
    159     // it covers.
    160     float filterSum = 0.0f;  // Sub of the filter values for normalizing.
    161     for (int curFilterPixel = srcBegin; curFilterPixel <= srcEnd;
    162          curFilterPixel++) {
    163       // Distance from the center of the filter, this is the filter coordinate
    164       // in source space. We also need to consider the center of the pixel
    165       // when comparing distance against 'srcPixel'. In the 5x downscale
    166       // example used above the distance from the center of the filter to
    167       // the pixel with coordinates (2, 2) should be 0, because its center
    168       // is at (2.5, 2.5).
    169       float srcFilterDist =
    170           ((static_cast<float>(curFilterPixel) + 0.5f) - srcPixel);
    171 
    172       // Since the filter really exists in dest space, map it there.
    173       float destFilterDist = srcFilterDist * clampedScale;
    174 
    175       // Compute the filter value at that location.
    176       float filterValue = fBitmapFilter->evaluate(destFilterDist);
    177       filterValues.push_back(filterValue);
    178 
    179       filterSum += filterValue;
    180     }
    181     SkASSERT(!filterValues.empty());
    182 
    183     // The filter must be normalized so that we don't affect the brightness of
    184     // the image. Convert to normalized fixed point.
    185     short fixedSum = 0;
    186     for (int i = 0; i < filterValues.count(); i++) {
    187       short curFixed = output->FloatToFixed(filterValues[i] / filterSum);
    188       fixedSum += curFixed;
    189       fixedFilterValues.push_back(curFixed);
    190     }
    191 
    192     // The conversion to fixed point will leave some rounding errors, which
    193     // we add back in to avoid affecting the brightness of the image. We
    194     // arbitrarily add this to the center of the filter array (this won't always
    195     // be the center of the filter function since it could get clipped on the
    196     // edges, but it doesn't matter enough to worry about that case).
    197     short leftovers = output->FloatToFixed(1.0f) - fixedSum;
    198     fixedFilterValues[fixedFilterValues.count() / 2] += leftovers;
    199 
    200     // Now it's ready to go.
    201     output->AddFilter(srcBegin, &fixedFilterValues[0],
    202                       static_cast<int>(fixedFilterValues.count()));
    203   }
    204 
    205   if (convolveProcs.fApplySIMDPadding) {
    206       convolveProcs.fApplySIMDPadding( output );
    207   }
    208 }
    209 
    210 static SkBitmapScaler::ResizeMethod ResizeMethodToAlgorithmMethod(
    211                                     SkBitmapScaler::ResizeMethod method) {
    212     // Convert any "Quality Method" into an "Algorithm Method"
    213     if (method >= SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD &&
    214     method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD) {
    215         return method;
    216     }
    217     // The call to SkBitmapScalerGtv::Resize() above took care of
    218     // GPU-acceleration in the cases where it is possible. So now we just
    219     // pick the appropriate software method for each resize quality.
    220     switch (method) {
    221         // Users of RESIZE_GOOD are willing to trade a lot of quality to
    222         // get speed, allowing the use of linear resampling to get hardware
    223         // acceleration (SRB). Hence any of our "good" software filters
    224         // will be acceptable, so we use a triangle.
    225         case SkBitmapScaler::RESIZE_GOOD:
    226             return SkBitmapScaler::RESIZE_TRIANGLE;
    227         // Users of RESIZE_BETTER are willing to trade some quality in order
    228         // to improve performance, but are guaranteed not to devolve to a linear
    229         // resampling. In visual tests we see that Hamming-1 is not as good as
    230         // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is
    231         // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed
    232         // an acceptable trade-off between quality and speed.
    233         case SkBitmapScaler::RESIZE_BETTER:
    234             return SkBitmapScaler::RESIZE_HAMMING;
    235         default:
    236 #ifdef SK_HIGH_QUALITY_IS_LANCZOS
    237             return SkBitmapScaler::RESIZE_LANCZOS3;
    238 #else
    239             return SkBitmapScaler::RESIZE_MITCHELL;
    240 #endif
    241     }
    242 }
    243 
    244 // static
    245 bool SkBitmapScaler::Resize(SkBitmap* resultPtr,
    246                             const SkBitmap& source,
    247                             ResizeMethod method,
    248                             float destWidth, float destHeight,
    249                             const SkConvolutionProcs& convolveProcs,
    250                             SkBitmap::Allocator* allocator) {
    251 
    252   SkRect destSubset = { 0, 0, destWidth, destHeight };
    253 
    254   // Ensure that the ResizeMethod enumeration is sound.
    255     SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) &&
    256         (method <= RESIZE_LAST_QUALITY_METHOD)) ||
    257         ((RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
    258         (method <= RESIZE_LAST_ALGORITHM_METHOD)));
    259 
    260     SkRect dest = { 0, 0, destWidth, destHeight };
    261     if (!dest.contains(destSubset)) {
    262         SkErrorInternals::SetError( kInvalidArgument_SkError,
    263                                     "Sorry, the destination bitmap scale subset "
    264                                     "falls outside the full destination bitmap." );
    265     }
    266 
    267     // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just
    268     // return empty.
    269     if (source.width() < 1 || source.height() < 1 ||
    270         destWidth < 1 || destHeight < 1) {
    271         // todo: seems like we could handle negative dstWidth/Height, since that
    272         // is just a negative scale (flip)
    273         return false;
    274     }
    275 
    276     method = ResizeMethodToAlgorithmMethod(method);
    277 
    278     // Check that we deal with an "algorithm methods" from this point onward.
    279     SkASSERT((SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
    280         (method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD));
    281 
    282     SkAutoLockPixels locker(source);
    283     if (!source.readyToDraw() ||
    284         source.colorType() != kN32_SkColorType) {
    285         return false;
    286     }
    287 
    288     SkResizeFilter filter(method, source.width(), source.height(),
    289                           destWidth, destHeight, destSubset, convolveProcs);
    290 
    291     // Get a source bitmap encompassing this touched area. We construct the
    292     // offsets and row strides such that it looks like a new bitmap, while
    293     // referring to the old data.
    294     const unsigned char* sourceSubset =
    295         reinterpret_cast<const unsigned char*>(source.getPixels());
    296 
    297     // Convolve into the result.
    298     SkBitmap result;
    299     result.setInfo(SkImageInfo::MakeN32(SkScalarCeilToInt(destSubset.width()),
    300                                         SkScalarCeilToInt(destSubset.height()),
    301                                         source.alphaType()));
    302     result.allocPixels(allocator, NULL);
    303     if (!result.readyToDraw()) {
    304         return false;
    305     }
    306 
    307     BGRAConvolve2D(sourceSubset, static_cast<int>(source.rowBytes()),
    308         !source.isOpaque(), filter.xFilter(), filter.yFilter(),
    309         static_cast<int>(result.rowBytes()),
    310         static_cast<unsigned char*>(result.getPixels()),
    311         convolveProcs, true);
    312 
    313     *resultPtr = result;
    314     resultPtr->lockPixels();
    315     SkASSERT(NULL != resultPtr->getPixels());
    316     return true;
    317 }
    318