1 /* 2 * Copyright 2011 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef GrRedBlackTree_DEFINED 9 #define GrRedBlackTree_DEFINED 10 11 #include "GrConfig.h" 12 #include "SkTypes.h" 13 14 template <typename T> 15 class GrLess { 16 public: 17 bool operator()(const T& a, const T& b) const { return a < b; } 18 }; 19 20 template <typename T> 21 class GrLess<T*> { 22 public: 23 bool operator()(const T* a, const T* b) const { return *a < *b; } 24 }; 25 26 class GrStrLess { 27 public: 28 bool operator()(const char* a, const char* b) const { return strcmp(a,b) < 0; } 29 }; 30 31 /** 32 * In debug build this will cause full traversals of the tree when the validate 33 * is called on insert and remove. Useful for debugging but very slow. 34 */ 35 #define DEEP_VALIDATE 0 36 37 /** 38 * A sorted tree that uses the red-black tree algorithm. Allows duplicate 39 * entries. Data is of type T and is compared using functor C. A single C object 40 * will be created and used for all comparisons. 41 */ 42 template <typename T, typename C = GrLess<T> > 43 class GrRedBlackTree : SkNoncopyable { 44 public: 45 /** 46 * Creates an empty tree. 47 */ 48 GrRedBlackTree(); 49 virtual ~GrRedBlackTree(); 50 51 /** 52 * Class used to iterater through the tree. The valid range of the tree 53 * is given by [begin(), end()). It is legal to dereference begin() but not 54 * end(). The iterator has preincrement and predecrement operators, it is 55 * legal to decerement end() if the tree is not empty to get the last 56 * element. However, a last() helper is provided. 57 */ 58 class Iter; 59 60 /** 61 * Add an element to the tree. Duplicates are allowed. 62 * @param t the item to add. 63 * @return an iterator to the item. 64 */ 65 Iter insert(const T& t); 66 67 /** 68 * Removes all items in the tree. 69 */ 70 void reset(); 71 72 /** 73 * @return true if there are no items in the tree, false otherwise. 74 */ 75 bool empty() const {return 0 == fCount;} 76 77 /** 78 * @return the number of items in the tree. 79 */ 80 int count() const {return fCount;} 81 82 /** 83 * @return an iterator to the first item in sorted order, or end() if empty 84 */ 85 Iter begin(); 86 /** 87 * Gets the last valid iterator. This is always valid, even on an empty. 88 * However, it can never be dereferenced. Useful as a loop terminator. 89 * @return an iterator that is just beyond the last item in sorted order. 90 */ 91 Iter end(); 92 /** 93 * @return an iterator that to the last item in sorted order, or end() if 94 * empty. 95 */ 96 Iter last(); 97 98 /** 99 * Finds an occurrence of an item. 100 * @param t the item to find. 101 * @return an iterator to a tree element equal to t or end() if none exists. 102 */ 103 Iter find(const T& t); 104 /** 105 * Finds the first of an item in iterator order. 106 * @param t the item to find. 107 * @return an iterator to the first element equal to t or end() if 108 * none exists. 109 */ 110 Iter findFirst(const T& t); 111 /** 112 * Finds the last of an item in iterator order. 113 * @param t the item to find. 114 * @return an iterator to the last element equal to t or end() if 115 * none exists. 116 */ 117 Iter findLast(const T& t); 118 /** 119 * Gets the number of items in the tree equal to t. 120 * @param t the item to count. 121 * @return number of items equal to t in the tree 122 */ 123 int countOf(const T& t) const; 124 125 /** 126 * Removes the item indicated by an iterator. The iterator will not be valid 127 * afterwards. 128 * 129 * @param iter iterator of item to remove. Must be valid (not end()). 130 */ 131 void remove(const Iter& iter) { deleteAtNode(iter.fN); } 132 133 private: 134 enum Color { 135 kRed_Color, 136 kBlack_Color 137 }; 138 139 enum Child { 140 kLeft_Child = 0, 141 kRight_Child = 1 142 }; 143 144 struct Node { 145 T fItem; 146 Color fColor; 147 148 Node* fParent; 149 Node* fChildren[2]; 150 }; 151 152 void rotateRight(Node* n); 153 void rotateLeft(Node* n); 154 155 static Node* SuccessorNode(Node* x); 156 static Node* PredecessorNode(Node* x); 157 158 void deleteAtNode(Node* x); 159 static void RecursiveDelete(Node* x); 160 161 int onCountOf(const Node* n, const T& t) const; 162 163 #ifdef SK_DEBUG 164 void validate() const; 165 int checkNode(Node* n, int* blackHeight) const; 166 // checks relationship between a node and its children. allowRedRed means 167 // node may be in an intermediate state where a red parent has a red child. 168 bool validateChildRelations(const Node* n, bool allowRedRed) const; 169 // place to stick break point if validateChildRelations is failing. 170 bool validateChildRelationsFailed() const { return false; } 171 #else 172 void validate() const {} 173 #endif 174 175 int fCount; 176 Node* fRoot; 177 Node* fFirst; 178 Node* fLast; 179 180 const C fComp; 181 }; 182 183 template <typename T, typename C> 184 class GrRedBlackTree<T,C>::Iter { 185 public: 186 Iter() {}; 187 Iter(const Iter& i) {fN = i.fN; fTree = i.fTree;} 188 Iter& operator =(const Iter& i) { 189 fN = i.fN; 190 fTree = i.fTree; 191 return *this; 192 } 193 // altering the sort value of the item using this method will cause 194 // errors. 195 T& operator *() const { return fN->fItem; } 196 bool operator ==(const Iter& i) const { 197 return fN == i.fN && fTree == i.fTree; 198 } 199 bool operator !=(const Iter& i) const { return !(*this == i); } 200 Iter& operator ++() { 201 SkASSERT(*this != fTree->end()); 202 fN = SuccessorNode(fN); 203 return *this; 204 } 205 Iter& operator --() { 206 SkASSERT(*this != fTree->begin()); 207 if (NULL != fN) { 208 fN = PredecessorNode(fN); 209 } else { 210 *this = fTree->last(); 211 } 212 return *this; 213 } 214 215 private: 216 friend class GrRedBlackTree; 217 explicit Iter(Node* n, GrRedBlackTree* tree) { 218 fN = n; 219 fTree = tree; 220 } 221 Node* fN; 222 GrRedBlackTree* fTree; 223 }; 224 225 template <typename T, typename C> 226 GrRedBlackTree<T,C>::GrRedBlackTree() : fComp() { 227 fRoot = NULL; 228 fFirst = NULL; 229 fLast = NULL; 230 fCount = 0; 231 validate(); 232 } 233 234 template <typename T, typename C> 235 GrRedBlackTree<T,C>::~GrRedBlackTree() { 236 RecursiveDelete(fRoot); 237 } 238 239 template <typename T, typename C> 240 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::begin() { 241 return Iter(fFirst, this); 242 } 243 244 template <typename T, typename C> 245 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::end() { 246 return Iter(NULL, this); 247 } 248 249 template <typename T, typename C> 250 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::last() { 251 return Iter(fLast, this); 252 } 253 254 template <typename T, typename C> 255 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::find(const T& t) { 256 Node* n = fRoot; 257 while (NULL != n) { 258 if (fComp(t, n->fItem)) { 259 n = n->fChildren[kLeft_Child]; 260 } else { 261 if (!fComp(n->fItem, t)) { 262 return Iter(n, this); 263 } 264 n = n->fChildren[kRight_Child]; 265 } 266 } 267 return end(); 268 } 269 270 template <typename T, typename C> 271 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findFirst(const T& t) { 272 Node* n = fRoot; 273 Node* leftMost = NULL; 274 while (NULL != n) { 275 if (fComp(t, n->fItem)) { 276 n = n->fChildren[kLeft_Child]; 277 } else { 278 if (!fComp(n->fItem, t)) { 279 // found one. check if another in left subtree. 280 leftMost = n; 281 n = n->fChildren[kLeft_Child]; 282 } else { 283 n = n->fChildren[kRight_Child]; 284 } 285 } 286 } 287 return Iter(leftMost, this); 288 } 289 290 template <typename T, typename C> 291 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findLast(const T& t) { 292 Node* n = fRoot; 293 Node* rightMost = NULL; 294 while (NULL != n) { 295 if (fComp(t, n->fItem)) { 296 n = n->fChildren[kLeft_Child]; 297 } else { 298 if (!fComp(n->fItem, t)) { 299 // found one. check if another in right subtree. 300 rightMost = n; 301 } 302 n = n->fChildren[kRight_Child]; 303 } 304 } 305 return Iter(rightMost, this); 306 } 307 308 template <typename T, typename C> 309 int GrRedBlackTree<T,C>::countOf(const T& t) const { 310 return onCountOf(fRoot, t); 311 } 312 313 template <typename T, typename C> 314 int GrRedBlackTree<T,C>::onCountOf(const Node* n, const T& t) const { 315 // this is count*log(n) :( 316 while (NULL != n) { 317 if (fComp(t, n->fItem)) { 318 n = n->fChildren[kLeft_Child]; 319 } else { 320 if (!fComp(n->fItem, t)) { 321 int count = 1; 322 count += onCountOf(n->fChildren[kLeft_Child], t); 323 count += onCountOf(n->fChildren[kRight_Child], t); 324 return count; 325 } 326 n = n->fChildren[kRight_Child]; 327 } 328 } 329 return 0; 330 331 } 332 333 template <typename T, typename C> 334 void GrRedBlackTree<T,C>::reset() { 335 RecursiveDelete(fRoot); 336 fRoot = NULL; 337 fFirst = NULL; 338 fLast = NULL; 339 fCount = 0; 340 } 341 342 template <typename T, typename C> 343 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) { 344 validate(); 345 346 ++fCount; 347 348 Node* x = SkNEW(Node); 349 x->fChildren[kLeft_Child] = NULL; 350 x->fChildren[kRight_Child] = NULL; 351 x->fItem = t; 352 353 Node* returnNode = x; 354 355 Node* gp = NULL; 356 Node* p = NULL; 357 Node* n = fRoot; 358 Child pc = kLeft_Child; // suppress uninit warning 359 Child gpc = kLeft_Child; 360 361 bool first = true; 362 bool last = true; 363 while (NULL != n) { 364 gpc = pc; 365 pc = fComp(x->fItem, n->fItem) ? kLeft_Child : kRight_Child; 366 first = first && kLeft_Child == pc; 367 last = last && kRight_Child == pc; 368 gp = p; 369 p = n; 370 n = p->fChildren[pc]; 371 } 372 if (last) { 373 fLast = x; 374 } 375 if (first) { 376 fFirst = x; 377 } 378 379 if (NULL == p) { 380 fRoot = x; 381 x->fColor = kBlack_Color; 382 x->fParent = NULL; 383 SkASSERT(1 == fCount); 384 return Iter(returnNode, this); 385 } 386 p->fChildren[pc] = x; 387 x->fColor = kRed_Color; 388 x->fParent = p; 389 390 do { 391 // assumptions at loop start. 392 SkASSERT(NULL != x); 393 SkASSERT(kRed_Color == x->fColor); 394 // can't have a grandparent but no parent. 395 SkASSERT(!(NULL != gp && NULL == p)); 396 // make sure pc and gpc are correct 397 SkASSERT(NULL == p || p->fChildren[pc] == x); 398 SkASSERT(NULL == gp || gp->fChildren[gpc] == p); 399 400 // if x's parent is black then we didn't violate any of the 401 // red/black properties when we added x as red. 402 if (kBlack_Color == p->fColor) { 403 return Iter(returnNode, this); 404 } 405 // gp must be valid because if p was the root then it is black 406 SkASSERT(NULL != gp); 407 // gp must be black since it's child, p, is red. 408 SkASSERT(kBlack_Color == gp->fColor); 409 410 411 // x and its parent are red, violating red-black property. 412 Node* u = gp->fChildren[1-gpc]; 413 // if x's uncle (p's sibling) is also red then we can flip 414 // p and u to black and make gp red. But then we have to recurse 415 // up to gp since it's parent may also be red. 416 if (NULL != u && kRed_Color == u->fColor) { 417 p->fColor = kBlack_Color; 418 u->fColor = kBlack_Color; 419 gp->fColor = kRed_Color; 420 x = gp; 421 p = x->fParent; 422 if (NULL == p) { 423 // x (prev gp) is the root, color it black and be done. 424 SkASSERT(fRoot == x); 425 x->fColor = kBlack_Color; 426 validate(); 427 return Iter(returnNode, this); 428 } 429 gp = p->fParent; 430 pc = (p->fChildren[kLeft_Child] == x) ? kLeft_Child : 431 kRight_Child; 432 if (NULL != gp) { 433 gpc = (gp->fChildren[kLeft_Child] == p) ? kLeft_Child : 434 kRight_Child; 435 } 436 continue; 437 } break; 438 } while (true); 439 // Here p is red but u is black and we still have to resolve the fact 440 // that x and p are both red. 441 SkASSERT(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor); 442 SkASSERT(kRed_Color == x->fColor); 443 SkASSERT(kRed_Color == p->fColor); 444 SkASSERT(kBlack_Color == gp->fColor); 445 446 // make x be on the same side of p as p is of gp. If it isn't already 447 // the case then rotate x up to p and swap their labels. 448 if (pc != gpc) { 449 if (kRight_Child == pc) { 450 rotateLeft(p); 451 Node* temp = p; 452 p = x; 453 x = temp; 454 pc = kLeft_Child; 455 } else { 456 rotateRight(p); 457 Node* temp = p; 458 p = x; 459 x = temp; 460 pc = kRight_Child; 461 } 462 } 463 // we now rotate gp down, pulling up p to be it's new parent. 464 // gp's child, u, that is not affected we know to be black. gp's new 465 // child is p's previous child (x's pre-rotation sibling) which must be 466 // black since p is red. 467 SkASSERT(NULL == p->fChildren[1-pc] || 468 kBlack_Color == p->fChildren[1-pc]->fColor); 469 // Since gp's two children are black it can become red if p is made 470 // black. This leaves the black-height of both of p's new subtrees 471 // preserved and removes the red/red parent child relationship. 472 p->fColor = kBlack_Color; 473 gp->fColor = kRed_Color; 474 if (kLeft_Child == pc) { 475 rotateRight(gp); 476 } else { 477 rotateLeft(gp); 478 } 479 validate(); 480 return Iter(returnNode, this); 481 } 482 483 484 template <typename T, typename C> 485 void GrRedBlackTree<T,C>::rotateRight(Node* n) { 486 /* d? d? 487 * / / 488 * n s 489 * / \ ---> / \ 490 * s a? c? n 491 * / \ / \ 492 * c? b? b? a? 493 */ 494 Node* d = n->fParent; 495 Node* s = n->fChildren[kLeft_Child]; 496 SkASSERT(NULL != s); 497 Node* b = s->fChildren[kRight_Child]; 498 499 if (NULL != d) { 500 Child c = d->fChildren[kLeft_Child] == n ? kLeft_Child : 501 kRight_Child; 502 d->fChildren[c] = s; 503 } else { 504 SkASSERT(fRoot == n); 505 fRoot = s; 506 } 507 s->fParent = d; 508 s->fChildren[kRight_Child] = n; 509 n->fParent = s; 510 n->fChildren[kLeft_Child] = b; 511 if (NULL != b) { 512 b->fParent = n; 513 } 514 515 GR_DEBUGASSERT(validateChildRelations(d, true)); 516 GR_DEBUGASSERT(validateChildRelations(s, true)); 517 GR_DEBUGASSERT(validateChildRelations(n, false)); 518 GR_DEBUGASSERT(validateChildRelations(n->fChildren[kRight_Child], true)); 519 GR_DEBUGASSERT(validateChildRelations(b, true)); 520 GR_DEBUGASSERT(validateChildRelations(s->fChildren[kLeft_Child], true)); 521 } 522 523 template <typename T, typename C> 524 void GrRedBlackTree<T,C>::rotateLeft(Node* n) { 525 526 Node* d = n->fParent; 527 Node* s = n->fChildren[kRight_Child]; 528 SkASSERT(NULL != s); 529 Node* b = s->fChildren[kLeft_Child]; 530 531 if (NULL != d) { 532 Child c = d->fChildren[kRight_Child] == n ? kRight_Child : 533 kLeft_Child; 534 d->fChildren[c] = s; 535 } else { 536 SkASSERT(fRoot == n); 537 fRoot = s; 538 } 539 s->fParent = d; 540 s->fChildren[kLeft_Child] = n; 541 n->fParent = s; 542 n->fChildren[kRight_Child] = b; 543 if (NULL != b) { 544 b->fParent = n; 545 } 546 547 GR_DEBUGASSERT(validateChildRelations(d, true)); 548 GR_DEBUGASSERT(validateChildRelations(s, true)); 549 GR_DEBUGASSERT(validateChildRelations(n, true)); 550 GR_DEBUGASSERT(validateChildRelations(n->fChildren[kLeft_Child], true)); 551 GR_DEBUGASSERT(validateChildRelations(b, true)); 552 GR_DEBUGASSERT(validateChildRelations(s->fChildren[kRight_Child], true)); 553 } 554 555 template <typename T, typename C> 556 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x) { 557 SkASSERT(NULL != x); 558 if (NULL != x->fChildren[kRight_Child]) { 559 x = x->fChildren[kRight_Child]; 560 while (NULL != x->fChildren[kLeft_Child]) { 561 x = x->fChildren[kLeft_Child]; 562 } 563 return x; 564 } 565 while (NULL != x->fParent && x == x->fParent->fChildren[kRight_Child]) { 566 x = x->fParent; 567 } 568 return x->fParent; 569 } 570 571 template <typename T, typename C> 572 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x) { 573 SkASSERT(NULL != x); 574 if (NULL != x->fChildren[kLeft_Child]) { 575 x = x->fChildren[kLeft_Child]; 576 while (NULL != x->fChildren[kRight_Child]) { 577 x = x->fChildren[kRight_Child]; 578 } 579 return x; 580 } 581 while (NULL != x->fParent && x == x->fParent->fChildren[kLeft_Child]) { 582 x = x->fParent; 583 } 584 return x->fParent; 585 } 586 587 template <typename T, typename C> 588 void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { 589 SkASSERT(NULL != x); 590 validate(); 591 --fCount; 592 593 bool hasLeft = NULL != x->fChildren[kLeft_Child]; 594 bool hasRight = NULL != x->fChildren[kRight_Child]; 595 Child c = hasLeft ? kLeft_Child : kRight_Child; 596 597 if (hasLeft && hasRight) { 598 // first and last can't have two children. 599 SkASSERT(fFirst != x); 600 SkASSERT(fLast != x); 601 // if x is an interior node then we find it's successor 602 // and swap them. 603 Node* s = x->fChildren[kRight_Child]; 604 while (NULL != s->fChildren[kLeft_Child]) { 605 s = s->fChildren[kLeft_Child]; 606 } 607 SkASSERT(NULL != s); 608 // this might be expensive relative to swapping node ptrs around. 609 // depends on T. 610 x->fItem = s->fItem; 611 x = s; 612 c = kRight_Child; 613 } else if (NULL == x->fParent) { 614 // if x was the root we just replace it with its child and make 615 // the new root (if the tree is not empty) black. 616 SkASSERT(fRoot == x); 617 fRoot = x->fChildren[c]; 618 if (NULL != fRoot) { 619 fRoot->fParent = NULL; 620 fRoot->fColor = kBlack_Color; 621 if (x == fLast) { 622 SkASSERT(c == kLeft_Child); 623 fLast = fRoot; 624 } else if (x == fFirst) { 625 SkASSERT(c == kRight_Child); 626 fFirst = fRoot; 627 } 628 } else { 629 SkASSERT(fFirst == fLast && x == fFirst); 630 fFirst = NULL; 631 fLast = NULL; 632 SkASSERT(0 == fCount); 633 } 634 delete x; 635 validate(); 636 return; 637 } 638 639 Child pc; 640 Node* p = x->fParent; 641 pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : kRight_Child; 642 643 if (NULL == x->fChildren[c]) { 644 if (fLast == x) { 645 fLast = p; 646 SkASSERT(p == PredecessorNode(x)); 647 } else if (fFirst == x) { 648 fFirst = p; 649 SkASSERT(p == SuccessorNode(x)); 650 } 651 // x has two implicit black children. 652 Color xcolor = x->fColor; 653 p->fChildren[pc] = NULL; 654 delete x; 655 x = NULL; 656 // when x is red it can be with an implicit black leaf without 657 // violating any of the red-black tree properties. 658 if (kRed_Color == xcolor) { 659 validate(); 660 return; 661 } 662 // s is p's other child (x's sibling) 663 Node* s = p->fChildren[1-pc]; 664 665 //s cannot be an implicit black node because the original 666 // black-height at x was >= 2 and s's black-height must equal the 667 // initial black height of x. 668 SkASSERT(NULL != s); 669 SkASSERT(p == s->fParent); 670 671 // assigned in loop 672 Node* sl; 673 Node* sr; 674 bool slRed; 675 bool srRed; 676 677 do { 678 // When we start this loop x may already be deleted it is/was 679 // p's child on its pc side. x's children are/were black. The 680 // first time through the loop they are implict children. 681 // On later passes we will be walking up the tree and they will 682 // be real nodes. 683 // The x side of p has a black-height that is one less than the 684 // s side. It must be rebalanced. 685 SkASSERT(NULL != s); 686 SkASSERT(p == s->fParent); 687 SkASSERT(NULL == x || x->fParent == p); 688 689 //sl and sr are s's children, which may be implicit. 690 sl = s->fChildren[kLeft_Child]; 691 sr = s->fChildren[kRight_Child]; 692 693 // if the s is red we will rotate s and p, swap their colors so 694 // that x's new sibling is black 695 if (kRed_Color == s->fColor) { 696 // if s is red then it's parent must be black. 697 SkASSERT(kBlack_Color == p->fColor); 698 // s's children must also be black since s is red. They can't 699 // be implicit since s is red and it's black-height is >= 2. 700 SkASSERT(NULL != sl && kBlack_Color == sl->fColor); 701 SkASSERT(NULL != sr && kBlack_Color == sr->fColor); 702 p->fColor = kRed_Color; 703 s->fColor = kBlack_Color; 704 if (kLeft_Child == pc) { 705 rotateLeft(p); 706 s = sl; 707 } else { 708 rotateRight(p); 709 s = sr; 710 } 711 sl = s->fChildren[kLeft_Child]; 712 sr = s->fChildren[kRight_Child]; 713 } 714 // x and s are now both black. 715 SkASSERT(kBlack_Color == s->fColor); 716 SkASSERT(NULL == x || kBlack_Color == x->fColor); 717 SkASSERT(p == s->fParent); 718 SkASSERT(NULL == x || p == x->fParent); 719 720 // when x is deleted its subtree will have reduced black-height. 721 slRed = (NULL != sl && kRed_Color == sl->fColor); 722 srRed = (NULL != sr && kRed_Color == sr->fColor); 723 if (!slRed && !srRed) { 724 // if s can be made red that will balance out x's removal 725 // to make both subtrees of p have the same black-height. 726 if (kBlack_Color == p->fColor) { 727 s->fColor = kRed_Color; 728 // now subtree at p has black-height of one less than 729 // p's parent's other child's subtree. We move x up to 730 // p and go through the loop again. At the top of loop 731 // we assumed x and x's children are black, which holds 732 // by above ifs. 733 // if p is the root there is no other subtree to balance 734 // against. 735 x = p; 736 p = x->fParent; 737 if (NULL == p) { 738 SkASSERT(fRoot == x); 739 validate(); 740 return; 741 } else { 742 pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : 743 kRight_Child; 744 745 } 746 s = p->fChildren[1-pc]; 747 SkASSERT(NULL != s); 748 SkASSERT(p == s->fParent); 749 continue; 750 } else if (kRed_Color == p->fColor) { 751 // we can make p black and s red. This balance out p's 752 // two subtrees and keep the same black-height as it was 753 // before the delete. 754 s->fColor = kRed_Color; 755 p->fColor = kBlack_Color; 756 validate(); 757 return; 758 } 759 } 760 break; 761 } while (true); 762 // if we made it here one or both of sl and sr is red. 763 // s and x are black. We make sure that a red child is on 764 // the same side of s as s is of p. 765 SkASSERT(slRed || srRed); 766 if (kLeft_Child == pc && !srRed) { 767 s->fColor = kRed_Color; 768 sl->fColor = kBlack_Color; 769 rotateRight(s); 770 sr = s; 771 s = sl; 772 //sl = s->fChildren[kLeft_Child]; don't need this 773 } else if (kRight_Child == pc && !slRed) { 774 s->fColor = kRed_Color; 775 sr->fColor = kBlack_Color; 776 rotateLeft(s); 777 sl = s; 778 s = sr; 779 //sr = s->fChildren[kRight_Child]; don't need this 780 } 781 // now p is either red or black, x and s are red and s's 1-pc 782 // child is red. 783 // We rotate p towards x, pulling s up to replace p. We make 784 // p be black and s takes p's old color. 785 // Whether p was red or black, we've increased its pc subtree 786 // rooted at x by 1 (balancing the imbalance at the start) and 787 // we've also its subtree rooted at s's black-height by 1. This 788 // can be balanced by making s's red child be black. 789 s->fColor = p->fColor; 790 p->fColor = kBlack_Color; 791 if (kLeft_Child == pc) { 792 SkASSERT(NULL != sr && kRed_Color == sr->fColor); 793 sr->fColor = kBlack_Color; 794 rotateLeft(p); 795 } else { 796 SkASSERT(NULL != sl && kRed_Color == sl->fColor); 797 sl->fColor = kBlack_Color; 798 rotateRight(p); 799 } 800 } 801 else { 802 // x has exactly one implicit black child. x cannot be red. 803 // Proof by contradiction: Assume X is red. Let c0 be x's implicit 804 // child and c1 be its non-implicit child. c1 must be black because 805 // red nodes always have two black children. Then the two subtrees 806 // of x rooted at c0 and c1 will have different black-heights. 807 SkASSERT(kBlack_Color == x->fColor); 808 // So we know x is black and has one implicit black child, c0. c1 809 // must be red, otherwise the subtree at c1 will have a different 810 // black-height than the subtree rooted at c0. 811 SkASSERT(kRed_Color == x->fChildren[c]->fColor); 812 // replace x with c1, making c1 black, preserves all red-black tree 813 // props. 814 Node* c1 = x->fChildren[c]; 815 if (x == fFirst) { 816 SkASSERT(c == kRight_Child); 817 fFirst = c1; 818 while (NULL != fFirst->fChildren[kLeft_Child]) { 819 fFirst = fFirst->fChildren[kLeft_Child]; 820 } 821 SkASSERT(fFirst == SuccessorNode(x)); 822 } else if (x == fLast) { 823 SkASSERT(c == kLeft_Child); 824 fLast = c1; 825 while (NULL != fLast->fChildren[kRight_Child]) { 826 fLast = fLast->fChildren[kRight_Child]; 827 } 828 SkASSERT(fLast == PredecessorNode(x)); 829 } 830 c1->fParent = p; 831 p->fChildren[pc] = c1; 832 c1->fColor = kBlack_Color; 833 delete x; 834 validate(); 835 } 836 validate(); 837 } 838 839 template <typename T, typename C> 840 void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) { 841 if (NULL != x) { 842 RecursiveDelete(x->fChildren[kLeft_Child]); 843 RecursiveDelete(x->fChildren[kRight_Child]); 844 delete x; 845 } 846 } 847 848 #ifdef SK_DEBUG 849 template <typename T, typename C> 850 void GrRedBlackTree<T,C>::validate() const { 851 if (fCount) { 852 SkASSERT(NULL == fRoot->fParent); 853 SkASSERT(NULL != fFirst); 854 SkASSERT(NULL != fLast); 855 856 SkASSERT(kBlack_Color == fRoot->fColor); 857 if (1 == fCount) { 858 SkASSERT(fFirst == fRoot); 859 SkASSERT(fLast == fRoot); 860 SkASSERT(0 == fRoot->fChildren[kLeft_Child]); 861 SkASSERT(0 == fRoot->fChildren[kRight_Child]); 862 } 863 } else { 864 SkASSERT(NULL == fRoot); 865 SkASSERT(NULL == fFirst); 866 SkASSERT(NULL == fLast); 867 } 868 #if DEEP_VALIDATE 869 int bh; 870 int count = checkNode(fRoot, &bh); 871 SkASSERT(count == fCount); 872 #endif 873 } 874 875 template <typename T, typename C> 876 int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const { 877 if (NULL != n) { 878 SkASSERT(validateChildRelations(n, false)); 879 if (kBlack_Color == n->fColor) { 880 *bh += 1; 881 } 882 SkASSERT(!fComp(n->fItem, fFirst->fItem)); 883 SkASSERT(!fComp(fLast->fItem, n->fItem)); 884 int leftBh = *bh; 885 int rightBh = *bh; 886 int cl = checkNode(n->fChildren[kLeft_Child], &leftBh); 887 int cr = checkNode(n->fChildren[kRight_Child], &rightBh); 888 SkASSERT(leftBh == rightBh); 889 *bh = leftBh; 890 return 1 + cl + cr; 891 } 892 return 0; 893 } 894 895 template <typename T, typename C> 896 bool GrRedBlackTree<T,C>::validateChildRelations(const Node* n, 897 bool allowRedRed) const { 898 if (NULL != n) { 899 if (NULL != n->fChildren[kLeft_Child] || 900 NULL != n->fChildren[kRight_Child]) { 901 if (n->fChildren[kLeft_Child] == n->fChildren[kRight_Child]) { 902 return validateChildRelationsFailed(); 903 } 904 if (n->fChildren[kLeft_Child] == n->fParent && 905 NULL != n->fParent) { 906 return validateChildRelationsFailed(); 907 } 908 if (n->fChildren[kRight_Child] == n->fParent && 909 NULL != n->fParent) { 910 return validateChildRelationsFailed(); 911 } 912 if (NULL != n->fChildren[kLeft_Child]) { 913 if (!allowRedRed && 914 kRed_Color == n->fChildren[kLeft_Child]->fColor && 915 kRed_Color == n->fColor) { 916 return validateChildRelationsFailed(); 917 } 918 if (n->fChildren[kLeft_Child]->fParent != n) { 919 return validateChildRelationsFailed(); 920 } 921 if (!(fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) || 922 (!fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) && 923 !fComp(n->fItem, n->fChildren[kLeft_Child]->fItem)))) { 924 return validateChildRelationsFailed(); 925 } 926 } 927 if (NULL != n->fChildren[kRight_Child]) { 928 if (!allowRedRed && 929 kRed_Color == n->fChildren[kRight_Child]->fColor && 930 kRed_Color == n->fColor) { 931 return validateChildRelationsFailed(); 932 } 933 if (n->fChildren[kRight_Child]->fParent != n) { 934 return validateChildRelationsFailed(); 935 } 936 if (!(fComp(n->fItem, n->fChildren[kRight_Child]->fItem) || 937 (!fComp(n->fChildren[kRight_Child]->fItem, n->fItem) && 938 !fComp(n->fItem, n->fChildren[kRight_Child]->fItem)))) { 939 return validateChildRelationsFailed(); 940 } 941 } 942 } 943 } 944 return true; 945 } 946 #endif 947 948 #endif 949