1 /* 2 * Copyright 2013 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 * 7 * The following code is based on the description in RFC 3174. 8 * http://www.ietf.org/rfc/rfc3174.txt 9 */ 10 11 #include "SkTypes.h" 12 #include "SkSHA1.h" 13 #include <string.h> 14 15 /** SHA1 basic transformation. Transforms state based on block. */ 16 static void transform(uint32_t state[5], const uint8_t block[64]); 17 18 /** Encodes input into output (5 big endian 32 bit values). */ 19 static void encode(uint8_t output[20], const uint32_t input[5]); 20 21 /** Encodes input into output (big endian 64 bit value). */ 22 static void encode(uint8_t output[8], const uint64_t input); 23 24 SkSHA1::SkSHA1() : byteCount(0) { 25 // These are magic numbers from the specification. The first four are the same as MD5. 26 this->state[0] = 0x67452301; 27 this->state[1] = 0xefcdab89; 28 this->state[2] = 0x98badcfe; 29 this->state[3] = 0x10325476; 30 this->state[4] = 0xc3d2e1f0; 31 } 32 33 void SkSHA1::update(const uint8_t* input, size_t inputLength) { 34 unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); 35 unsigned int bufferAvailable = 64 - bufferIndex; 36 37 unsigned int inputIndex; 38 if (inputLength >= bufferAvailable) { 39 if (bufferIndex) { 40 memcpy(&this->buffer[bufferIndex], input, bufferAvailable); 41 transform(this->state, this->buffer); 42 inputIndex = bufferAvailable; 43 } else { 44 inputIndex = 0; 45 } 46 47 for (; inputIndex + 63 < inputLength; inputIndex += 64) { 48 transform(this->state, &input[inputIndex]); 49 } 50 51 bufferIndex = 0; 52 } else { 53 inputIndex = 0; 54 } 55 56 memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex); 57 58 this->byteCount += inputLength; 59 } 60 61 void SkSHA1::finish(Digest& digest) { 62 // Get the number of bits before padding. 63 uint8_t bits[8]; 64 encode(bits, this->byteCount << 3); 65 66 // Pad out to 56 mod 64. 67 unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); 68 unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex); 69 static uint8_t PADDING[64] = { 70 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 71 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 72 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 73 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 74 }; 75 this->update(PADDING, paddingLength); 76 77 // Append length (length before padding, will cause final update). 78 this->update(bits, 8); 79 80 // Write out digest. 81 encode(digest.data, this->state); 82 83 #if defined(SK_SHA1_CLEAR_DATA) 84 // Clear state. 85 memset(this, 0, sizeof(*this)); 86 #endif 87 } 88 89 struct F1 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) { 90 return (B & C) | ((~B) & D); 91 //return D ^ (B & (C ^ D)); 92 //return (B & C) ^ ((~B) & D); 93 //return (B & C) + ((~B) & D); 94 //return _mm_or_ps(_mm_andnot_ps(B, D), _mm_and_ps(B, C)); //SSE2 95 //return vec_sel(D, C, B); //PPC 96 }}; 97 98 struct F2 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) { 99 return B ^ C ^ D; 100 }}; 101 102 struct F3 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) { 103 return (B & C) | (B & D) | (C & D); 104 //return (B & C) | (D & (B | C)); 105 //return (B & C) | (D & (B ^ C)); 106 //return (B & C) + (D & (B ^ C)); 107 //return (B & C) ^ (B & D) ^ (C & D); 108 }}; 109 110 /** Rotates x left n bits. */ 111 static inline uint32_t rotate_left(uint32_t x, uint8_t n) { 112 return (x << n) | (x >> (32 - n)); 113 } 114 115 template <typename T> 116 static inline void operation(T operation, 117 uint32_t A, uint32_t& B, uint32_t C, uint32_t D, uint32_t& E, 118 uint32_t w, uint32_t k) { 119 E += rotate_left(A, 5) + operation(B, C, D) + w + k; 120 B = rotate_left(B, 30); 121 } 122 123 static void transform(uint32_t state[5], const uint8_t block[64]) { 124 uint32_t A = state[0], B = state[1], C = state[2], D = state[3], E = state[4]; 125 126 // Round constants defined in SHA-1. 127 static const uint32_t K[] = { 128 0x5A827999, //sqrt(2) * 2^30 129 0x6ED9EBA1, //sqrt(3) * 2^30 130 0x8F1BBCDC, //sqrt(5) * 2^30 131 0xCA62C1D6, //sqrt(10) * 2^30 132 }; 133 134 uint32_t W[80]; 135 136 // Initialize the array W. 137 size_t i = 0; 138 for (size_t j = 0; i < 16; ++i, j += 4) { 139 W[i] = (((uint32_t)block[j ]) << 24) | 140 (((uint32_t)block[j+1]) << 16) | 141 (((uint32_t)block[j+2]) << 8) | 142 (((uint32_t)block[j+3]) ); 143 } 144 for (; i < 80; ++i) { 145 W[i] = rotate_left(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1); 146 //The following is equivelent and speeds up SSE implementations, but slows non-SSE. 147 //W[i] = rotate_left(W[i-6] ^ W[i-16] ^ W[i-28] ^ W[i-32], 2); 148 } 149 150 // Round 1 151 operation(F1(), A, B, C, D, E, W[ 0], K[0]); 152 operation(F1(), E, A, B, C, D, W[ 1], K[0]); 153 operation(F1(), D, E, A, B, C, W[ 2], K[0]); 154 operation(F1(), C, D, E, A, B, W[ 3], K[0]); 155 operation(F1(), B, C, D, E, A, W[ 4], K[0]); 156 operation(F1(), A, B, C, D, E, W[ 5], K[0]); 157 operation(F1(), E, A, B, C, D, W[ 6], K[0]); 158 operation(F1(), D, E, A, B, C, W[ 7], K[0]); 159 operation(F1(), C, D, E, A, B, W[ 8], K[0]); 160 operation(F1(), B, C, D, E, A, W[ 9], K[0]); 161 operation(F1(), A, B, C, D, E, W[10], K[0]); 162 operation(F1(), E, A, B, C, D, W[11], K[0]); 163 operation(F1(), D, E, A, B, C, W[12], K[0]); 164 operation(F1(), C, D, E, A, B, W[13], K[0]); 165 operation(F1(), B, C, D, E, A, W[14], K[0]); 166 operation(F1(), A, B, C, D, E, W[15], K[0]); 167 operation(F1(), E, A, B, C, D, W[16], K[0]); 168 operation(F1(), D, E, A, B, C, W[17], K[0]); 169 operation(F1(), C, D, E, A, B, W[18], K[0]); 170 operation(F1(), B, C, D, E, A, W[19], K[0]); 171 172 // Round 2 173 operation(F2(), A, B, C, D, E, W[20], K[1]); 174 operation(F2(), E, A, B, C, D, W[21], K[1]); 175 operation(F2(), D, E, A, B, C, W[22], K[1]); 176 operation(F2(), C, D, E, A, B, W[23], K[1]); 177 operation(F2(), B, C, D, E, A, W[24], K[1]); 178 operation(F2(), A, B, C, D, E, W[25], K[1]); 179 operation(F2(), E, A, B, C, D, W[26], K[1]); 180 operation(F2(), D, E, A, B, C, W[27], K[1]); 181 operation(F2(), C, D, E, A, B, W[28], K[1]); 182 operation(F2(), B, C, D, E, A, W[29], K[1]); 183 operation(F2(), A, B, C, D, E, W[30], K[1]); 184 operation(F2(), E, A, B, C, D, W[31], K[1]); 185 operation(F2(), D, E, A, B, C, W[32], K[1]); 186 operation(F2(), C, D, E, A, B, W[33], K[1]); 187 operation(F2(), B, C, D, E, A, W[34], K[1]); 188 operation(F2(), A, B, C, D, E, W[35], K[1]); 189 operation(F2(), E, A, B, C, D, W[36], K[1]); 190 operation(F2(), D, E, A, B, C, W[37], K[1]); 191 operation(F2(), C, D, E, A, B, W[38], K[1]); 192 operation(F2(), B, C, D, E, A, W[39], K[1]); 193 194 // Round 3 195 operation(F3(), A, B, C, D, E, W[40], K[2]); 196 operation(F3(), E, A, B, C, D, W[41], K[2]); 197 operation(F3(), D, E, A, B, C, W[42], K[2]); 198 operation(F3(), C, D, E, A, B, W[43], K[2]); 199 operation(F3(), B, C, D, E, A, W[44], K[2]); 200 operation(F3(), A, B, C, D, E, W[45], K[2]); 201 operation(F3(), E, A, B, C, D, W[46], K[2]); 202 operation(F3(), D, E, A, B, C, W[47], K[2]); 203 operation(F3(), C, D, E, A, B, W[48], K[2]); 204 operation(F3(), B, C, D, E, A, W[49], K[2]); 205 operation(F3(), A, B, C, D, E, W[50], K[2]); 206 operation(F3(), E, A, B, C, D, W[51], K[2]); 207 operation(F3(), D, E, A, B, C, W[52], K[2]); 208 operation(F3(), C, D, E, A, B, W[53], K[2]); 209 operation(F3(), B, C, D, E, A, W[54], K[2]); 210 operation(F3(), A, B, C, D, E, W[55], K[2]); 211 operation(F3(), E, A, B, C, D, W[56], K[2]); 212 operation(F3(), D, E, A, B, C, W[57], K[2]); 213 operation(F3(), C, D, E, A, B, W[58], K[2]); 214 operation(F3(), B, C, D, E, A, W[59], K[2]); 215 216 // Round 4 217 operation(F2(), A, B, C, D, E, W[60], K[3]); 218 operation(F2(), E, A, B, C, D, W[61], K[3]); 219 operation(F2(), D, E, A, B, C, W[62], K[3]); 220 operation(F2(), C, D, E, A, B, W[63], K[3]); 221 operation(F2(), B, C, D, E, A, W[64], K[3]); 222 operation(F2(), A, B, C, D, E, W[65], K[3]); 223 operation(F2(), E, A, B, C, D, W[66], K[3]); 224 operation(F2(), D, E, A, B, C, W[67], K[3]); 225 operation(F2(), C, D, E, A, B, W[68], K[3]); 226 operation(F2(), B, C, D, E, A, W[69], K[3]); 227 operation(F2(), A, B, C, D, E, W[70], K[3]); 228 operation(F2(), E, A, B, C, D, W[71], K[3]); 229 operation(F2(), D, E, A, B, C, W[72], K[3]); 230 operation(F2(), C, D, E, A, B, W[73], K[3]); 231 operation(F2(), B, C, D, E, A, W[74], K[3]); 232 operation(F2(), A, B, C, D, E, W[75], K[3]); 233 operation(F2(), E, A, B, C, D, W[76], K[3]); 234 operation(F2(), D, E, A, B, C, W[77], K[3]); 235 operation(F2(), C, D, E, A, B, W[78], K[3]); 236 operation(F2(), B, C, D, E, A, W[79], K[3]); 237 238 state[0] += A; 239 state[1] += B; 240 state[2] += C; 241 state[3] += D; 242 state[4] += E; 243 244 #if defined(SK_SHA1_CLEAR_DATA) 245 // Clear sensitive information. 246 memset(W, 0, sizeof(W)); 247 #endif 248 } 249 250 static void encode(uint8_t output[20], const uint32_t input[5]) { 251 for (size_t i = 0, j = 0; i < 5; i++, j += 4) { 252 output[j ] = (uint8_t)((input[i] >> 24) & 0xff); 253 output[j+1] = (uint8_t)((input[i] >> 16) & 0xff); 254 output[j+2] = (uint8_t)((input[i] >> 8) & 0xff); 255 output[j+3] = (uint8_t)((input[i] ) & 0xff); 256 } 257 } 258 259 static void encode(uint8_t output[8], const uint64_t input) { 260 output[0] = (uint8_t)((input >> 56) & 0xff); 261 output[1] = (uint8_t)((input >> 48) & 0xff); 262 output[2] = (uint8_t)((input >> 40) & 0xff); 263 output[3] = (uint8_t)((input >> 32) & 0xff); 264 output[4] = (uint8_t)((input >> 24) & 0xff); 265 output[5] = (uint8_t)((input >> 16) & 0xff); 266 output[6] = (uint8_t)((input >> 8) & 0xff); 267 output[7] = (uint8_t)((input ) & 0xff); 268 } 269