Home | History | Annotate | Download | only in codeflinger
      1 /*
      2  * Copyright (C) 2013 The Android Open Source Project
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *  * Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  *  * Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in
     12  *    the documentation and/or other materials provided with the
     13  *    distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
     22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 #define LOG_TAG "ArmToArm64Assembler"
     30 
     31 #include <stdio.h>
     32 #include <stdlib.h>
     33 #include <string.h>
     34 
     35 #include <cutils/log.h>
     36 #include <cutils/properties.h>
     37 #include <private/pixelflinger/ggl_context.h>
     38 
     39 #include "codeflinger/Arm64Assembler.h"
     40 #include "codeflinger/CodeCache.h"
     41 #include "codeflinger/Arm64Disassembler.h"
     42 
     43 
     44 /*
     45 ** --------------------------------------------
     46 ** Support for Arm64 in GGLAssembler JIT
     47 ** --------------------------------------------
     48 **
     49 ** Approach
     50 ** - GGLAssembler and associated files are largely un-changed.
     51 ** - A translator class maps ArmAssemblerInterface calls to
     52 **   generate Arm64 instructions.
     53 **
     54 ** ----------------------
     55 ** ArmToArm64Assembler
     56 ** ----------------------
     57 **
     58 ** - Subclassed from ArmAssemblerInterface
     59 **
     60 ** - Translates each ArmAssemblerInterface call to generate
     61 **   one or more Arm64 instructions  as necessary.
     62 **
     63 ** - Does not implement ArmAssemblerInterface portions unused by GGLAssembler
     64 **   It calls NOT_IMPLEMENTED() for such cases, which in turn logs
     65 **    a fatal message.
     66 **
     67 ** - Uses A64_.. series of functions to generate instruction machine code
     68 **   for Arm64 instructions. These functions also log the instruction
     69 **   to LOG, if ARM64_ASM_DEBUG define is set to 1
     70 **
     71 ** - Dumps machine code and eqvt assembly if "debug.pf.disasm" option is set
     72 **   It uses arm64_disassemble to perform disassembly
     73 **
     74 ** - Uses register 13 (SP in ARM), 15 (PC in ARM), 16, 17 for storing
     75 **   intermediate results. GGLAssembler does not use SP and PC as these
     76 **   registers are marked as reserved. The temporary registers are not
     77 **   saved/restored on stack as these are caller-saved registers in Arm64
     78 **
     79 ** - Uses CSEL instruction to support conditional execution. The result is
     80 **   stored in a temporary register and then copied to the target register
     81 **   if the condition is true.
     82 **
     83 ** - In the case of conditional data transfer instructions, conditional
     84 **   branch is used to skip over instruction, if the condition is false
     85 **
     86 ** - Wherever possible, immediate values are transferred to temporary
     87 **   register prior to processing. This simplifies overall implementation
     88 **   as instructions requiring immediate values are converted to
     89 **   move immediate instructions followed by register-register instruction.
     90 **
     91 ** --------------------------------------------
     92 ** ArmToArm64Assembler unit test bench
     93 ** --------------------------------------------
     94 **
     95 ** - Tests ArmToArm64Assembler interface for all the possible
     96 **   ways in which GGLAssembler uses ArmAssemblerInterface interface.
     97 **
     98 ** - Uses test jacket (written in assembly) to set the registers,
     99 **   condition flags prior to calling generated instruction. It also
    100 **   copies registers and flags at the end of execution. Caller then
    101 **   checks if generated code performed correct operation based on
    102 **   output registers and flags.
    103 **
    104 ** - Broadly contains three type of tests, (i) data operation tests
    105 **   (ii) data transfer tests and (iii) LDM/STM tests.
    106 **
    107 ** ----------------------
    108 ** Arm64 disassembler
    109 ** ----------------------
    110 ** - This disassembler disassembles only those machine codes which can be
    111 **   generated by ArmToArm64Assembler. It has a unit testbench which
    112 **   tests all the instructions supported by the disassembler.
    113 **
    114 ** ------------------------------------------------------------------
    115 ** ARMAssembler/ARMAssemblerInterface/ARMAssemblerProxy changes
    116 ** ------------------------------------------------------------------
    117 **
    118 ** - In existing code, addresses were being handled as 32 bit values at
    119 **   certain places.
    120 **
    121 ** - Added a new set of functions for address load/store/manipulation.
    122 **   These are ADDR_LDR, ADDR_STR, ADDR_ADD, ADDR_SUB and they map to
    123 **   default 32 bit implementations in ARMAssemblerInterface.
    124 **
    125 ** - ArmToArm64Assembler maps these functions to appropriate 64 bit
    126 **   functions.
    127 **
    128 ** ----------------------
    129 ** GGLAssembler changes
    130 ** ----------------------
    131 ** - Since ArmToArm64Assembler can generate 4 Arm64 instructions for
    132 **   each call in worst case, the memory required is set to 4 times
    133 **   ARM memory
    134 **
    135 ** - Address load/store/manipulation were changed to use new functions
    136 **   added in the ARMAssemblerInterface.
    137 **
    138 */
    139 
    140 
    141 #define NOT_IMPLEMENTED()  LOG_FATAL("Arm instruction %s not yet implemented\n", __func__)
    142 
    143 #define ARM64_ASM_DEBUG 0
    144 
    145 #if ARM64_ASM_DEBUG
    146     #define LOG_INSTR(...) ALOGD("\t" __VA_ARGS__)
    147     #define LOG_LABEL(...) ALOGD(__VA_ARGS__)
    148 #else
    149     #define LOG_INSTR(...) ((void)0)
    150     #define LOG_LABEL(...) ((void)0)
    151 #endif
    152 
    153 namespace android {
    154 
    155 static const char* shift_codes[] =
    156 {
    157     "LSL", "LSR", "ASR", "ROR"
    158 };
    159 static const char *cc_codes[] =
    160 {
    161     "EQ", "NE", "CS", "CC", "MI",
    162     "PL", "VS", "VC", "HI", "LS",
    163     "GE", "LT", "GT", "LE", "AL", "NV"
    164 };
    165 
    166 ArmToArm64Assembler::ArmToArm64Assembler(const sp<Assembly>& assembly)
    167     :   ARMAssemblerInterface(),
    168         mAssembly(assembly)
    169 {
    170     mBase = mPC = (uint32_t *)assembly->base();
    171     mDuration = ggl_system_time();
    172     mZeroReg = 13;
    173     mTmpReg1 = 15;
    174     mTmpReg2 = 16;
    175     mTmpReg3 = 17;
    176 }
    177 
    178 ArmToArm64Assembler::ArmToArm64Assembler(void *base)
    179     :   ARMAssemblerInterface(), mAssembly(NULL)
    180 {
    181     mBase = mPC = (uint32_t *)base;
    182     mDuration = ggl_system_time();
    183     // Regs 13, 15, 16, 17 are used as temporary registers
    184     mZeroReg = 13;
    185     mTmpReg1 = 15;
    186     mTmpReg2 = 16;
    187     mTmpReg3 = 17;
    188 }
    189 
    190 ArmToArm64Assembler::~ArmToArm64Assembler()
    191 {
    192 }
    193 
    194 uint32_t* ArmToArm64Assembler::pc() const
    195 {
    196     return mPC;
    197 }
    198 
    199 uint32_t* ArmToArm64Assembler::base() const
    200 {
    201     return mBase;
    202 }
    203 
    204 void ArmToArm64Assembler::reset()
    205 {
    206     if(mAssembly == NULL)
    207         mPC = mBase;
    208     else
    209         mBase = mPC = (uint32_t *)mAssembly->base();
    210     mBranchTargets.clear();
    211     mLabels.clear();
    212     mLabelsInverseMapping.clear();
    213     mComments.clear();
    214 #if ARM64_ASM_DEBUG
    215     ALOGI("RESET\n");
    216 #endif
    217 }
    218 
    219 int ArmToArm64Assembler::getCodegenArch()
    220 {
    221     return CODEGEN_ARCH_ARM64;
    222 }
    223 
    224 // ----------------------------------------------------------------------------
    225 
    226 void ArmToArm64Assembler::disassemble(const char* name)
    227 {
    228     if(name)
    229     {
    230         printf("%s:\n", name);
    231     }
    232     size_t count = pc()-base();
    233     uint32_t* i = base();
    234     while (count--)
    235     {
    236         ssize_t label = mLabelsInverseMapping.indexOfKey(i);
    237         if (label >= 0)
    238         {
    239             printf("%s:\n", mLabelsInverseMapping.valueAt(label));
    240         }
    241         ssize_t comment = mComments.indexOfKey(i);
    242         if (comment >= 0)
    243         {
    244             printf("; %s\n", mComments.valueAt(comment));
    245         }
    246         printf("%p:    %08x    ", i, uint32_t(i[0]));
    247         {
    248             char instr[256];
    249             ::arm64_disassemble(*i, instr);
    250             printf("%s\n", instr);
    251         }
    252         i++;
    253     }
    254 }
    255 
    256 void ArmToArm64Assembler::comment(const char* string)
    257 {
    258     mComments.add(mPC, string);
    259     LOG_INSTR("//%s\n", string);
    260 }
    261 
    262 void ArmToArm64Assembler::label(const char* theLabel)
    263 {
    264     mLabels.add(theLabel, mPC);
    265     mLabelsInverseMapping.add(mPC, theLabel);
    266     LOG_LABEL("%s:\n", theLabel);
    267 }
    268 
    269 void ArmToArm64Assembler::B(int cc, const char* label)
    270 {
    271     mBranchTargets.add(branch_target_t(label, mPC));
    272     LOG_INSTR("B%s %s\n", cc_codes[cc], label );
    273     *mPC++ = (0x54 << 24) | cc;
    274 }
    275 
    276 void ArmToArm64Assembler::BL(int /*cc*/, const char* /*label*/)
    277 {
    278     NOT_IMPLEMENTED(); //Not Required
    279 }
    280 
    281 // ----------------------------------------------------------------------------
    282 //Prolog/Epilog & Generate...
    283 // ----------------------------------------------------------------------------
    284 
    285 void ArmToArm64Assembler::prolog()
    286 {
    287     // write prolog code
    288     mPrologPC = mPC;
    289     *mPC++ = A64_MOVZ_X(mZeroReg,0,0);
    290 }
    291 
    292 void ArmToArm64Assembler::epilog(uint32_t /*touched*/)
    293 {
    294     // write epilog code
    295     static const int XLR = 30;
    296     *mPC++ = A64_RET(XLR);
    297 }
    298 
    299 int ArmToArm64Assembler::generate(const char* name)
    300 {
    301     // fixup all the branches
    302     size_t count = mBranchTargets.size();
    303     while (count--)
    304     {
    305         const branch_target_t& bt = mBranchTargets[count];
    306         uint32_t* target_pc = mLabels.valueFor(bt.label);
    307         LOG_ALWAYS_FATAL_IF(!target_pc,
    308                 "error resolving branch targets, target_pc is null");
    309         int32_t offset = int32_t(target_pc - bt.pc);
    310         *bt.pc |= (offset & 0x7FFFF) << 5;
    311     }
    312 
    313     if(mAssembly != NULL)
    314         mAssembly->resize( int(pc()-base())*4 );
    315 
    316     // the instruction cache is flushed by CodeCache
    317     const int64_t duration = ggl_system_time() - mDuration;
    318     const char * const format = "generated %s (%d ins) at [%p:%p] in %ld ns\n";
    319     ALOGI(format, name, int(pc()-base()), base(), pc(), duration);
    320 
    321 
    322     char value[PROPERTY_VALUE_MAX];
    323     property_get("debug.pf.disasm", value, "0");
    324     if (atoi(value) != 0)
    325     {
    326         printf(format, name, int(pc()-base()), base(), pc(), duration);
    327         disassemble(name);
    328     }
    329     return NO_ERROR;
    330 }
    331 
    332 uint32_t* ArmToArm64Assembler::pcForLabel(const char* label)
    333 {
    334     return mLabels.valueFor(label);
    335 }
    336 
    337 // ----------------------------------------------------------------------------
    338 // Data Processing...
    339 // ----------------------------------------------------------------------------
    340 void ArmToArm64Assembler::dataProcessingCommon(int opcode,
    341         int s, int Rd, int Rn, uint32_t Op2)
    342 {
    343     if(opcode != opSUB && s == 1)
    344     {
    345         NOT_IMPLEMENTED(); //Not required
    346         return;
    347     }
    348 
    349     if(opcode != opSUB && opcode != opADD && opcode != opAND &&
    350        opcode != opORR && opcode != opMVN)
    351     {
    352         NOT_IMPLEMENTED(); //Not required
    353         return;
    354     }
    355 
    356     if(Op2 == OPERAND_REG_IMM && mAddrMode.reg_imm_shift > 31)
    357         {
    358         NOT_IMPLEMENTED();
    359         return;
    360     }
    361 
    362     //Store immediate in temporary register and convert
    363     //immediate operation into register operation
    364     if(Op2 == OPERAND_IMM)
    365     {
    366         int imm = mAddrMode.immediate;
    367         *mPC++ = A64_MOVZ_W(mTmpReg2, imm & 0x0000FFFF, 0);
    368         *mPC++ = A64_MOVK_W(mTmpReg2, (imm >> 16) & 0x0000FFFF, 16);
    369         Op2 = mTmpReg2;
    370     }
    371 
    372 
    373     {
    374         uint32_t shift;
    375         uint32_t amount;
    376         uint32_t Rm;
    377 
    378         if(Op2 == OPERAND_REG_IMM)
    379         {
    380             shift   = mAddrMode.reg_imm_type;
    381             amount  = mAddrMode.reg_imm_shift;
    382             Rm      = mAddrMode.reg_imm_Rm;
    383         }
    384         else if(Op2 < OPERAND_REG)
    385         {
    386             shift   = 0;
    387             amount  = 0;
    388             Rm      = Op2;
    389         }
    390         else
    391         {
    392             NOT_IMPLEMENTED(); //Not required
    393             return;
    394         }
    395 
    396         switch(opcode)
    397         {
    398             case opADD: *mPC++ = A64_ADD_W(Rd, Rn, Rm, shift, amount); break;
    399             case opAND: *mPC++ = A64_AND_W(Rd, Rn, Rm, shift, amount); break;
    400             case opORR: *mPC++ = A64_ORR_W(Rd, Rn, Rm, shift, amount); break;
    401             case opMVN: *mPC++ = A64_ORN_W(Rd, Rn, Rm, shift, amount); break;
    402             case opSUB: *mPC++ = A64_SUB_W(Rd, Rn, Rm, shift, amount, s);break;
    403         };
    404 
    405     }
    406 }
    407 
    408 void ArmToArm64Assembler::dataProcessing(int opcode, int cc,
    409         int s, int Rd, int Rn, uint32_t Op2)
    410 {
    411     uint32_t Wd;
    412 
    413     if(cc != AL)
    414         Wd = mTmpReg1;
    415     else
    416         Wd = Rd;
    417 
    418     if(opcode == opADD || opcode == opAND || opcode == opORR ||opcode == opSUB)
    419     {
    420         dataProcessingCommon(opcode, s, Wd, Rn, Op2);
    421     }
    422     else if(opcode == opCMP)
    423     {
    424         dataProcessingCommon(opSUB, 1, mTmpReg3, Rn, Op2);
    425     }
    426     else if(opcode == opRSB)
    427     {
    428         dataProcessingCommon(opSUB, s, Wd, Rn, Op2);
    429         dataProcessingCommon(opSUB, s, Wd, mZeroReg, Wd);
    430     }
    431     else if(opcode == opMOV)
    432     {
    433         dataProcessingCommon(opORR, 0, Wd, mZeroReg, Op2);
    434         if(s == 1)
    435         {
    436             dataProcessingCommon(opSUB, 1, mTmpReg3, Wd, mZeroReg);
    437         }
    438     }
    439     else if(opcode == opMVN)
    440     {
    441         dataProcessingCommon(opMVN, s, Wd, mZeroReg, Op2);
    442     }
    443     else if(opcode == opBIC)
    444     {
    445         dataProcessingCommon(opMVN, s, mTmpReg3, mZeroReg, Op2);
    446         dataProcessingCommon(opAND, s, Wd, Rn, mTmpReg3);
    447     }
    448     else
    449     {
    450         NOT_IMPLEMENTED();
    451         return;
    452     }
    453 
    454     if(cc != AL)
    455     {
    456         *mPC++ = A64_CSEL_W(Rd, mTmpReg1, Rd, cc);
    457     }
    458 }
    459 // ----------------------------------------------------------------------------
    460 // Address Processing...
    461 // ----------------------------------------------------------------------------
    462 
    463 void ArmToArm64Assembler::ADDR_ADD(int cc,
    464         int s, int Rd, int Rn, uint32_t Op2)
    465 {
    466     if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
    467     if(s  != 0) { NOT_IMPLEMENTED(); return;} //Not required
    468 
    469 
    470     if(Op2 == OPERAND_REG_IMM && mAddrMode.reg_imm_type == LSL)
    471     {
    472         int Rm = mAddrMode.reg_imm_Rm;
    473         int amount = mAddrMode.reg_imm_shift;
    474         *mPC++ = A64_ADD_X_Wm_SXTW(Rd, Rn, Rm, amount);
    475     }
    476     else if(Op2 < OPERAND_REG)
    477     {
    478         int Rm = Op2;
    479         int amount = 0;
    480         *mPC++ = A64_ADD_X_Wm_SXTW(Rd, Rn, Rm, amount);
    481     }
    482     else if(Op2 == OPERAND_IMM)
    483     {
    484         int imm = mAddrMode.immediate;
    485         *mPC++ = A64_MOVZ_W(mTmpReg1, imm & 0x0000FFFF, 0);
    486         *mPC++ = A64_MOVK_W(mTmpReg1, (imm >> 16) & 0x0000FFFF, 16);
    487 
    488         int Rm = mTmpReg1;
    489         int amount = 0;
    490         *mPC++ = A64_ADD_X_Wm_SXTW(Rd, Rn, Rm, amount);
    491     }
    492     else
    493     {
    494         NOT_IMPLEMENTED(); //Not required
    495     }
    496 }
    497 
    498 void ArmToArm64Assembler::ADDR_SUB(int cc,
    499         int s, int Rd, int Rn, uint32_t Op2)
    500 {
    501     if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
    502     if(s  != 0) { NOT_IMPLEMENTED(); return;} //Not required
    503 
    504     if(Op2 == OPERAND_REG_IMM && mAddrMode.reg_imm_type == LSR)
    505     {
    506         *mPC++ = A64_ADD_W(mTmpReg1, mZeroReg, mAddrMode.reg_imm_Rm,
    507                            LSR, mAddrMode.reg_imm_shift);
    508         *mPC++ = A64_SUB_X_Wm_SXTW(Rd, Rn, mTmpReg1, 0);
    509     }
    510     else
    511     {
    512         NOT_IMPLEMENTED(); //Not required
    513     }
    514 }
    515 
    516 // ----------------------------------------------------------------------------
    517 // multiply...
    518 // ----------------------------------------------------------------------------
    519 void ArmToArm64Assembler::MLA(int cc, int s,int Rd, int Rm, int Rs, int Rn)
    520 {
    521     if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
    522 
    523     *mPC++ = A64_MADD_W(Rd, Rm, Rs, Rn);
    524     if(s == 1)
    525         dataProcessingCommon(opSUB, 1, mTmpReg1, Rd, mZeroReg);
    526 }
    527 void ArmToArm64Assembler::MUL(int cc, int s, int Rd, int Rm, int Rs)
    528 {
    529     if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
    530     if(s  != 0) { NOT_IMPLEMENTED(); return;} //Not required
    531     *mPC++ = A64_MADD_W(Rd, Rm, Rs, mZeroReg);
    532 }
    533 void ArmToArm64Assembler::UMULL(int /*cc*/, int /*s*/,
    534         int /*RdLo*/, int /*RdHi*/, int /*Rm*/, int /*Rs*/)
    535 {
    536     NOT_IMPLEMENTED(); //Not required
    537 }
    538 void ArmToArm64Assembler::UMUAL(int /*cc*/, int /*s*/,
    539         int /*RdLo*/, int /*RdHi*/, int /*Rm*/, int /*Rs*/)
    540 {
    541     NOT_IMPLEMENTED(); //Not required
    542 }
    543 void ArmToArm64Assembler::SMULL(int /*cc*/, int /*s*/,
    544         int /*RdLo*/, int /*RdHi*/, int /*Rm*/, int /*Rs*/)
    545 {
    546     NOT_IMPLEMENTED(); //Not required
    547 }
    548 void ArmToArm64Assembler::SMUAL(int /*cc*/, int /*s*/,
    549         int /*RdLo*/, int /*RdHi*/, int /*Rm*/, int /*Rs*/)
    550 {
    551     NOT_IMPLEMENTED(); //Not required
    552 }
    553 
    554 // ----------------------------------------------------------------------------
    555 // branches relative to PC...
    556 // ----------------------------------------------------------------------------
    557 void ArmToArm64Assembler::B(int /*cc*/, uint32_t* /*pc*/){
    558     NOT_IMPLEMENTED(); //Not required
    559 }
    560 
    561 void ArmToArm64Assembler::BL(int /*cc*/, uint32_t* /*pc*/){
    562     NOT_IMPLEMENTED(); //Not required
    563 }
    564 
    565 void ArmToArm64Assembler::BX(int /*cc*/, int /*Rn*/){
    566     NOT_IMPLEMENTED(); //Not required
    567 }
    568 
    569 // ----------------------------------------------------------------------------
    570 // data transfer...
    571 // ----------------------------------------------------------------------------
    572 enum dataTransferOp
    573 {
    574     opLDR,opLDRB,opLDRH,opSTR,opSTRB,opSTRH
    575 };
    576 
    577 void ArmToArm64Assembler::dataTransfer(int op, int cc,
    578                             int Rd, int Rn, uint32_t op_type, uint32_t size)
    579 {
    580     const int XSP = 31;
    581     if(Rn == SP)
    582         Rn = XSP;
    583 
    584     if(op_type == OPERAND_IMM)
    585     {
    586         int addrReg;
    587         int imm = mAddrMode.immediate;
    588         if(imm >= 0 && imm < (1<<12))
    589             *mPC++ = A64_ADD_IMM_X(mTmpReg1, mZeroReg, imm, 0);
    590         else if(imm < 0 && -imm < (1<<12))
    591             *mPC++ = A64_SUB_IMM_X(mTmpReg1, mZeroReg, -imm, 0);
    592         else
    593         {
    594             NOT_IMPLEMENTED();
    595             return;
    596         }
    597 
    598         addrReg = Rn;
    599         if(mAddrMode.preindex == true || mAddrMode.postindex == true)
    600         {
    601             *mPC++ = A64_ADD_X(mTmpReg2, addrReg, mTmpReg1);
    602             if(mAddrMode.preindex == true)
    603                 addrReg = mTmpReg2;
    604         }
    605 
    606         if(cc != AL)
    607             *mPC++ = A64_B_COND(cc^1, 8);
    608 
    609         *mPC++ = A64_LDRSTR_Wm_SXTW_0(op, size, Rd, addrReg, mZeroReg);
    610 
    611         if(mAddrMode.writeback == true)
    612             *mPC++ = A64_CSEL_X(Rn, mTmpReg2, Rn, cc);
    613     }
    614     else if(op_type == OPERAND_REG_OFFSET)
    615     {
    616         if(cc != AL)
    617             *mPC++ = A64_B_COND(cc^1, 8);
    618         *mPC++ = A64_LDRSTR_Wm_SXTW_0(op, size, Rd, Rn, mAddrMode.reg_offset);
    619 
    620     }
    621     else if(op_type > OPERAND_UNSUPPORTED)
    622     {
    623         if(cc != AL)
    624             *mPC++ = A64_B_COND(cc^1, 8);
    625         *mPC++ = A64_LDRSTR_Wm_SXTW_0(op, size, Rd, Rn, mZeroReg);
    626     }
    627     else
    628     {
    629         NOT_IMPLEMENTED(); // Not required
    630     }
    631     return;
    632 
    633 }
    634 void ArmToArm64Assembler::ADDR_LDR(int cc, int Rd, int Rn, uint32_t op_type)
    635 {
    636     return dataTransfer(opLDR, cc, Rd, Rn, op_type, 64);
    637 }
    638 void ArmToArm64Assembler::ADDR_STR(int cc, int Rd, int Rn, uint32_t op_type)
    639 {
    640     return dataTransfer(opSTR, cc, Rd, Rn, op_type, 64);
    641 }
    642 void ArmToArm64Assembler::LDR(int cc, int Rd, int Rn, uint32_t op_type)
    643 {
    644     return dataTransfer(opLDR, cc, Rd, Rn, op_type);
    645 }
    646 void ArmToArm64Assembler::LDRB(int cc, int Rd, int Rn, uint32_t op_type)
    647 {
    648     return dataTransfer(opLDRB, cc, Rd, Rn, op_type);
    649 }
    650 void ArmToArm64Assembler::STR(int cc, int Rd, int Rn, uint32_t op_type)
    651 {
    652     return dataTransfer(opSTR, cc, Rd, Rn, op_type);
    653 }
    654 
    655 void ArmToArm64Assembler::STRB(int cc, int Rd, int Rn, uint32_t op_type)
    656 {
    657     return dataTransfer(opSTRB, cc, Rd, Rn, op_type);
    658 }
    659 
    660 void ArmToArm64Assembler::LDRH(int cc, int Rd, int Rn, uint32_t op_type)
    661 {
    662     return dataTransfer(opLDRH, cc, Rd, Rn, op_type);
    663 }
    664 void ArmToArm64Assembler::LDRSB(int /*cc*/, int /*Rd*/, int /*Rn*/, uint32_t /*offset*/)
    665 {
    666     NOT_IMPLEMENTED(); //Not required
    667 }
    668 void ArmToArm64Assembler::LDRSH(int /*cc*/, int /*Rd*/, int /*Rn*/, uint32_t /*offset*/)
    669 {
    670     NOT_IMPLEMENTED(); //Not required
    671 }
    672 
    673 void ArmToArm64Assembler::STRH(int cc, int Rd, int Rn, uint32_t op_type)
    674 {
    675     return dataTransfer(opSTRH, cc, Rd, Rn, op_type);
    676 }
    677 
    678 // ----------------------------------------------------------------------------
    679 // block data transfer...
    680 // ----------------------------------------------------------------------------
    681 void ArmToArm64Assembler::LDM(int cc, int dir,
    682         int Rn, int W, uint32_t reg_list)
    683 {
    684     const int XSP = 31;
    685     if(cc != AL || dir != IA || W == 0 || Rn != SP)
    686     {
    687         NOT_IMPLEMENTED();
    688         return;
    689     }
    690 
    691     for(int i = 0; i < 32; ++i)
    692     {
    693         if((reg_list & (1 << i)))
    694         {
    695             int reg = i;
    696             int size = 16;
    697             *mPC++ = A64_LDR_IMM_PostIndex(reg, XSP, size);
    698         }
    699     }
    700 }
    701 
    702 void ArmToArm64Assembler::STM(int cc, int dir,
    703         int Rn, int W, uint32_t reg_list)
    704 {
    705     const int XSP = 31;
    706     if(cc != AL || dir != DB || W == 0 || Rn != SP)
    707     {
    708         NOT_IMPLEMENTED();
    709         return;
    710     }
    711 
    712     for(int i = 31; i >= 0; --i)
    713     {
    714         if((reg_list & (1 << i)))
    715         {
    716             int size = -16;
    717             int reg  = i;
    718             *mPC++ = A64_STR_IMM_PreIndex(reg, XSP, size);
    719         }
    720     }
    721 }
    722 
    723 // ----------------------------------------------------------------------------
    724 // special...
    725 // ----------------------------------------------------------------------------
    726 void ArmToArm64Assembler::SWP(int /*cc*/, int /*Rn*/, int /*Rd*/, int /*Rm*/)
    727 {
    728     NOT_IMPLEMENTED(); //Not required
    729 }
    730 void ArmToArm64Assembler::SWPB(int /*cc*/, int /*Rn*/, int /*Rd*/, int /*Rm*/)
    731 {
    732     NOT_IMPLEMENTED(); //Not required
    733 }
    734 void ArmToArm64Assembler::SWI(int /*cc*/, uint32_t /*comment*/)
    735 {
    736     NOT_IMPLEMENTED(); //Not required
    737 }
    738 
    739 // ----------------------------------------------------------------------------
    740 // DSP instructions...
    741 // ----------------------------------------------------------------------------
    742 void ArmToArm64Assembler::PLD(int /*Rn*/, uint32_t /*offset*/) {
    743     NOT_IMPLEMENTED(); //Not required
    744 }
    745 
    746 void ArmToArm64Assembler::CLZ(int /*cc*/, int /*Rd*/, int /*Rm*/)
    747 {
    748     NOT_IMPLEMENTED(); //Not required
    749 }
    750 
    751 void ArmToArm64Assembler::QADD(int /*cc*/, int /*Rd*/, int /*Rm*/, int /*Rn*/)
    752 {
    753     NOT_IMPLEMENTED(); //Not required
    754 }
    755 
    756 void ArmToArm64Assembler::QDADD(int /*cc*/, int /*Rd*/, int /*Rm*/, int /*Rn*/)
    757 {
    758     NOT_IMPLEMENTED(); //Not required
    759 }
    760 
    761 void ArmToArm64Assembler::QSUB(int /*cc*/, int /*Rd*/, int /*Rm*/, int /*Rn*/)
    762 {
    763     NOT_IMPLEMENTED(); //Not required
    764 }
    765 
    766 void ArmToArm64Assembler::QDSUB(int /*cc*/, int /*Rd*/, int /*Rm*/, int /*Rn*/)
    767 {
    768     NOT_IMPLEMENTED(); //Not required
    769 }
    770 
    771 // ----------------------------------------------------------------------------
    772 // 16 x 16 multiplication
    773 // ----------------------------------------------------------------------------
    774 void ArmToArm64Assembler::SMUL(int cc, int xy,
    775                 int Rd, int Rm, int Rs)
    776 {
    777     if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
    778 
    779     if (xy & xyTB)
    780         *mPC++ = A64_SBFM_W(mTmpReg1, Rm, 16, 31);
    781     else
    782         *mPC++ = A64_SBFM_W(mTmpReg1, Rm, 0, 15);
    783 
    784     if (xy & xyBT)
    785         *mPC++ = A64_SBFM_W(mTmpReg2, Rs, 16, 31);
    786     else
    787         *mPC++ = A64_SBFM_W(mTmpReg2, Rs, 0, 15);
    788 
    789     *mPC++ = A64_MADD_W(Rd,mTmpReg1,mTmpReg2, mZeroReg);
    790 }
    791 // ----------------------------------------------------------------------------
    792 // 32 x 16 multiplication
    793 // ----------------------------------------------------------------------------
    794 void ArmToArm64Assembler::SMULW(int cc, int y, int Rd, int Rm, int Rs)
    795 {
    796     if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
    797 
    798     if (y & yT)
    799         *mPC++ = A64_SBFM_W(mTmpReg1, Rs, 16, 31);
    800     else
    801         *mPC++ = A64_SBFM_W(mTmpReg1, Rs, 0, 15);
    802 
    803     *mPC++ = A64_SBFM_W(mTmpReg2, Rm, 0, 31);
    804     *mPC++ = A64_SMADDL(mTmpReg3,mTmpReg1,mTmpReg2, mZeroReg);
    805     *mPC++ = A64_UBFM_X(Rd,mTmpReg3, 16, 47);
    806 }
    807 // ----------------------------------------------------------------------------
    808 // 16 x 16 multiplication and accumulate
    809 // ----------------------------------------------------------------------------
    810 void ArmToArm64Assembler::SMLA(int cc, int xy, int Rd, int Rm, int Rs, int Rn)
    811 {
    812     if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
    813     if(xy != xyBB) { NOT_IMPLEMENTED(); return;} //Not required
    814 
    815     *mPC++ = A64_SBFM_W(mTmpReg1, Rm, 0, 15);
    816     *mPC++ = A64_SBFM_W(mTmpReg2, Rs, 0, 15);
    817     *mPC++ = A64_MADD_W(Rd, mTmpReg1, mTmpReg2, Rn);
    818 }
    819 
    820 void ArmToArm64Assembler::SMLAL(int /*cc*/, int /*xy*/,
    821                 int /*RdHi*/, int /*RdLo*/, int /*Rs*/, int /*Rm*/)
    822 {
    823     NOT_IMPLEMENTED(); //Not required
    824     return;
    825 }
    826 
    827 void ArmToArm64Assembler::SMLAW(int /*cc*/, int /*y*/,
    828                 int /*Rd*/, int /*Rm*/, int /*Rs*/, int /*Rn*/)
    829 {
    830     NOT_IMPLEMENTED(); //Not required
    831     return;
    832 }
    833 
    834 // ----------------------------------------------------------------------------
    835 // Byte/half word extract and extend
    836 // ----------------------------------------------------------------------------
    837 void ArmToArm64Assembler::UXTB16(int cc, int Rd, int Rm, int rotate)
    838 {
    839     if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
    840 
    841     *mPC++ = A64_EXTR_W(mTmpReg1, Rm, Rm, rotate * 8);
    842 
    843     uint32_t imm = 0x00FF00FF;
    844     *mPC++ = A64_MOVZ_W(mTmpReg2, imm & 0xFFFF, 0);
    845     *mPC++ = A64_MOVK_W(mTmpReg2, (imm >> 16) & 0x0000FFFF, 16);
    846     *mPC++ = A64_AND_W(Rd,mTmpReg1, mTmpReg2);
    847 }
    848 
    849 // ----------------------------------------------------------------------------
    850 // Bit manipulation
    851 // ----------------------------------------------------------------------------
    852 void ArmToArm64Assembler::UBFX(int cc, int Rd, int Rn, int lsb, int width)
    853 {
    854     if(cc != AL){ NOT_IMPLEMENTED(); return;} //Not required
    855     *mPC++ = A64_UBFM_W(Rd, Rn, lsb, lsb + width - 1);
    856 }
    857 // ----------------------------------------------------------------------------
    858 // Shifters...
    859 // ----------------------------------------------------------------------------
    860 int ArmToArm64Assembler::buildImmediate(
    861         uint32_t immediate, uint32_t& rot, uint32_t& imm)
    862 {
    863     rot = 0;
    864     imm = immediate;
    865     return 0; // Always true
    866 }
    867 
    868 
    869 bool ArmToArm64Assembler::isValidImmediate(uint32_t immediate)
    870 {
    871     uint32_t rot, imm;
    872     return buildImmediate(immediate, rot, imm) == 0;
    873 }
    874 
    875 uint32_t ArmToArm64Assembler::imm(uint32_t immediate)
    876 {
    877     mAddrMode.immediate = immediate;
    878     mAddrMode.writeback = false;
    879     mAddrMode.preindex  = false;
    880     mAddrMode.postindex = false;
    881     return OPERAND_IMM;
    882 
    883 }
    884 
    885 uint32_t ArmToArm64Assembler::reg_imm(int Rm, int type, uint32_t shift)
    886 {
    887     mAddrMode.reg_imm_Rm = Rm;
    888     mAddrMode.reg_imm_type = type;
    889     mAddrMode.reg_imm_shift = shift;
    890     return OPERAND_REG_IMM;
    891 }
    892 
    893 uint32_t ArmToArm64Assembler::reg_rrx(int /*Rm*/)
    894 {
    895     NOT_IMPLEMENTED();
    896     return OPERAND_UNSUPPORTED;
    897 }
    898 
    899 uint32_t ArmToArm64Assembler::reg_reg(int /*Rm*/, int /*type*/, int /*Rs*/)
    900 {
    901     NOT_IMPLEMENTED(); //Not required
    902     return OPERAND_UNSUPPORTED;
    903 }
    904 // ----------------------------------------------------------------------------
    905 // Addressing modes...
    906 // ----------------------------------------------------------------------------
    907 uint32_t ArmToArm64Assembler::immed12_pre(int32_t immed12, int W)
    908 {
    909     mAddrMode.immediate = immed12;
    910     mAddrMode.writeback = W;
    911     mAddrMode.preindex  = true;
    912     mAddrMode.postindex = false;
    913     return OPERAND_IMM;
    914 }
    915 
    916 uint32_t ArmToArm64Assembler::immed12_post(int32_t immed12)
    917 {
    918     mAddrMode.immediate = immed12;
    919     mAddrMode.writeback = true;
    920     mAddrMode.preindex  = false;
    921     mAddrMode.postindex = true;
    922     return OPERAND_IMM;
    923 }
    924 
    925 uint32_t ArmToArm64Assembler::reg_scale_pre(int Rm, int type,
    926         uint32_t shift, int W)
    927 {
    928     if(type != 0 || shift != 0 || W != 0)
    929     {
    930         NOT_IMPLEMENTED(); //Not required
    931         return OPERAND_UNSUPPORTED;
    932     }
    933     else
    934     {
    935         mAddrMode.reg_offset = Rm;
    936         return OPERAND_REG_OFFSET;
    937     }
    938 }
    939 
    940 uint32_t ArmToArm64Assembler::reg_scale_post(int /*Rm*/, int /*type*/, uint32_t /*shift*/)
    941 {
    942     NOT_IMPLEMENTED(); //Not required
    943     return OPERAND_UNSUPPORTED;
    944 }
    945 
    946 uint32_t ArmToArm64Assembler::immed8_pre(int32_t immed8, int W)
    947 {
    948     mAddrMode.immediate = immed8;
    949     mAddrMode.writeback = W;
    950     mAddrMode.preindex  = true;
    951     mAddrMode.postindex = false;
    952     return OPERAND_IMM;
    953 }
    954 
    955 uint32_t ArmToArm64Assembler::immed8_post(int32_t immed8)
    956 {
    957     mAddrMode.immediate = immed8;
    958     mAddrMode.writeback = true;
    959     mAddrMode.preindex  = false;
    960     mAddrMode.postindex = true;
    961     return OPERAND_IMM;
    962 }
    963 
    964 uint32_t ArmToArm64Assembler::reg_pre(int Rm, int W)
    965 {
    966     if(W != 0)
    967     {
    968         NOT_IMPLEMENTED(); //Not required
    969         return OPERAND_UNSUPPORTED;
    970     }
    971     else
    972     {
    973         mAddrMode.reg_offset = Rm;
    974         return OPERAND_REG_OFFSET;
    975     }
    976 }
    977 
    978 uint32_t ArmToArm64Assembler::reg_post(int /*Rm*/)
    979 {
    980     NOT_IMPLEMENTED(); //Not required
    981     return OPERAND_UNSUPPORTED;
    982 }
    983 
    984 // ----------------------------------------------------------------------------
    985 // A64 instructions
    986 // ----------------------------------------------------------------------------
    987 
    988 static const char * dataTransferOpName[] =
    989 {
    990     "LDR","LDRB","LDRH","STR","STRB","STRH"
    991 };
    992 
    993 static const uint32_t dataTransferOpCode [] =
    994 {
    995     ((0xB8u << 24) | (0x3 << 21) | (0x6 << 13) | (0x0 << 12) |(0x1 << 11)),
    996     ((0x38u << 24) | (0x3 << 21) | (0x6 << 13) | (0x1 << 12) |(0x1 << 11)),
    997     ((0x78u << 24) | (0x3 << 21) | (0x6 << 13) | (0x0 << 12) |(0x1 << 11)),
    998     ((0xB8u << 24) | (0x1 << 21) | (0x6 << 13) | (0x0 << 12) |(0x1 << 11)),
    999     ((0x38u << 24) | (0x1 << 21) | (0x6 << 13) | (0x1 << 12) |(0x1 << 11)),
   1000     ((0x78u << 24) | (0x1 << 21) | (0x6 << 13) | (0x0 << 12) |(0x1 << 11))
   1001 };
   1002 uint32_t ArmToArm64Assembler::A64_LDRSTR_Wm_SXTW_0(uint32_t op,
   1003                             uint32_t size, uint32_t Rt,
   1004                             uint32_t Rn, uint32_t Rm)
   1005 {
   1006     if(size == 32)
   1007     {
   1008         LOG_INSTR("%s W%d, [X%d, W%d, SXTW #0]\n",
   1009                    dataTransferOpName[op], Rt, Rn, Rm);
   1010         return(dataTransferOpCode[op] | (Rm << 16) | (Rn << 5) | Rt);
   1011     }
   1012     else
   1013     {
   1014         LOG_INSTR("%s X%d, [X%d, W%d, SXTW #0]\n",
   1015                   dataTransferOpName[op], Rt, Rn, Rm);
   1016         return(dataTransferOpCode[op] | (0x1<<30) | (Rm<<16) | (Rn<<5)|Rt);
   1017     }
   1018 }
   1019 
   1020 uint32_t ArmToArm64Assembler::A64_STR_IMM_PreIndex(uint32_t Rt,
   1021                             uint32_t Rn, int32_t simm)
   1022 {
   1023     if(Rn == 31)
   1024         LOG_INSTR("STR W%d, [SP, #%d]!\n", Rt, simm);
   1025     else
   1026         LOG_INSTR("STR W%d, [X%d, #%d]!\n", Rt, Rn, simm);
   1027 
   1028     uint32_t imm9 = (unsigned)(simm) & 0x01FF;
   1029     return (0xB8 << 24) | (imm9 << 12) | (0x3 << 10) | (Rn << 5) | Rt;
   1030 }
   1031 
   1032 uint32_t ArmToArm64Assembler::A64_LDR_IMM_PostIndex(uint32_t Rt,
   1033                             uint32_t Rn, int32_t simm)
   1034 {
   1035     if(Rn == 31)
   1036         LOG_INSTR("LDR W%d, [SP], #%d\n",Rt,simm);
   1037     else
   1038         LOG_INSTR("LDR W%d, [X%d], #%d\n",Rt, Rn, simm);
   1039 
   1040     uint32_t imm9 = (unsigned)(simm) & 0x01FF;
   1041     return (0xB8 << 24) | (0x1 << 22) |
   1042              (imm9 << 12) | (0x1 << 10) | (Rn << 5) | Rt;
   1043 
   1044 }
   1045 uint32_t ArmToArm64Assembler::A64_ADD_X_Wm_SXTW(uint32_t Rd,
   1046                                uint32_t Rn,
   1047                                uint32_t Rm,
   1048                                uint32_t amount)
   1049 {
   1050     LOG_INSTR("ADD X%d, X%d, W%d, SXTW #%d\n", Rd, Rn, Rm, amount);
   1051     return ((0x8B << 24) | (0x1 << 21) |(Rm << 16) |
   1052               (0x6 << 13) | (amount << 10) | (Rn << 5) | Rd);
   1053 
   1054 }
   1055 
   1056 uint32_t ArmToArm64Assembler::A64_SUB_X_Wm_SXTW(uint32_t Rd,
   1057                                uint32_t Rn,
   1058                                uint32_t Rm,
   1059                                uint32_t amount)
   1060 {
   1061     LOG_INSTR("SUB X%d, X%d, W%d, SXTW #%d\n", Rd, Rn, Rm, amount);
   1062     return ((0xCB << 24) | (0x1 << 21) |(Rm << 16) |
   1063             (0x6 << 13) | (amount << 10) | (Rn << 5) | Rd);
   1064 
   1065 }
   1066 
   1067 uint32_t ArmToArm64Assembler::A64_B_COND(uint32_t cc, uint32_t offset)
   1068 {
   1069     LOG_INSTR("B.%s #.+%d\n", cc_codes[cc], offset);
   1070     return (0x54 << 24) | ((offset/4) << 5) | (cc);
   1071 
   1072 }
   1073 uint32_t ArmToArm64Assembler::A64_ADD_X(uint32_t Rd, uint32_t Rn,
   1074                                           uint32_t Rm, uint32_t shift,
   1075                                           uint32_t amount)
   1076 {
   1077     LOG_INSTR("ADD X%d, X%d, X%d, %s #%d\n",
   1078                Rd, Rn, Rm, shift_codes[shift], amount);
   1079     return ((0x8B << 24) | (shift << 22) | ( Rm << 16) |
   1080             (amount << 10) |(Rn << 5) | Rd);
   1081 }
   1082 uint32_t ArmToArm64Assembler::A64_ADD_IMM_X(uint32_t Rd, uint32_t Rn,
   1083                                           uint32_t imm, uint32_t shift)
   1084 {
   1085     LOG_INSTR("ADD X%d, X%d, #%d, LSL #%d\n", Rd, Rn, imm, shift);
   1086     return (0x91 << 24) | ((shift/12) << 22) | (imm << 10) | (Rn << 5) | Rd;
   1087 }
   1088 
   1089 uint32_t ArmToArm64Assembler::A64_SUB_IMM_X(uint32_t Rd, uint32_t Rn,
   1090                                           uint32_t imm, uint32_t shift)
   1091 {
   1092     LOG_INSTR("SUB X%d, X%d, #%d, LSL #%d\n", Rd, Rn, imm, shift);
   1093     return (0xD1 << 24) | ((shift/12) << 22) | (imm << 10) | (Rn << 5) | Rd;
   1094 }
   1095 
   1096 uint32_t ArmToArm64Assembler::A64_ADD_W(uint32_t Rd, uint32_t Rn,
   1097                                           uint32_t Rm, uint32_t shift,
   1098                                           uint32_t amount)
   1099 {
   1100     LOG_INSTR("ADD W%d, W%d, W%d, %s #%d\n",
   1101                Rd, Rn, Rm, shift_codes[shift], amount);
   1102     return ((0x0B << 24) | (shift << 22) | ( Rm << 16) |
   1103             (amount << 10) |(Rn << 5) | Rd);
   1104 }
   1105 
   1106 uint32_t ArmToArm64Assembler::A64_SUB_W(uint32_t Rd, uint32_t Rn,
   1107                                           uint32_t Rm, uint32_t shift,
   1108                                           uint32_t amount,
   1109                                           uint32_t setflag)
   1110 {
   1111     if(setflag == 0)
   1112     {
   1113         LOG_INSTR("SUB W%d, W%d, W%d, %s #%d\n",
   1114                Rd, Rn, Rm, shift_codes[shift], amount);
   1115         return ((0x4B << 24) | (shift << 22) | ( Rm << 16) |
   1116                 (amount << 10) |(Rn << 5) | Rd);
   1117     }
   1118     else
   1119     {
   1120         LOG_INSTR("SUBS W%d, W%d, W%d, %s #%d\n",
   1121                    Rd, Rn, Rm, shift_codes[shift], amount);
   1122         return ((0x6B << 24) | (shift << 22) | ( Rm << 16) |
   1123                 (amount << 10) |(Rn << 5) | Rd);
   1124     }
   1125 }
   1126 
   1127 uint32_t ArmToArm64Assembler::A64_AND_W(uint32_t Rd, uint32_t Rn,
   1128                                           uint32_t Rm, uint32_t shift,
   1129                                           uint32_t amount)
   1130 {
   1131     LOG_INSTR("AND W%d, W%d, W%d, %s #%d\n",
   1132                Rd, Rn, Rm, shift_codes[shift], amount);
   1133     return ((0x0A << 24) | (shift << 22) | ( Rm << 16) |
   1134             (amount << 10) |(Rn << 5) | Rd);
   1135 }
   1136 
   1137 uint32_t ArmToArm64Assembler::A64_ORR_W(uint32_t Rd, uint32_t Rn,
   1138                                           uint32_t Rm, uint32_t shift,
   1139                                           uint32_t amount)
   1140 {
   1141     LOG_INSTR("ORR W%d, W%d, W%d, %s #%d\n",
   1142                Rd, Rn, Rm, shift_codes[shift], amount);
   1143     return ((0x2A << 24) | (shift << 22) | ( Rm << 16) |
   1144             (amount << 10) |(Rn << 5) | Rd);
   1145 }
   1146 
   1147 uint32_t ArmToArm64Assembler::A64_ORN_W(uint32_t Rd, uint32_t Rn,
   1148                                           uint32_t Rm, uint32_t shift,
   1149                                           uint32_t amount)
   1150 {
   1151     LOG_INSTR("ORN W%d, W%d, W%d, %s #%d\n",
   1152                Rd, Rn, Rm, shift_codes[shift], amount);
   1153     return ((0x2A << 24) | (shift << 22) | (0x1 << 21) | ( Rm << 16) |
   1154             (amount << 10) |(Rn << 5) | Rd);
   1155 }
   1156 
   1157 uint32_t ArmToArm64Assembler::A64_CSEL_X(uint32_t Rd, uint32_t Rn,
   1158                                            uint32_t Rm, uint32_t cond)
   1159 {
   1160     LOG_INSTR("CSEL X%d, X%d, X%d, %s\n", Rd, Rn, Rm, cc_codes[cond]);
   1161     return ((0x9A << 24)|(0x1 << 23)|(Rm << 16) |(cond << 12)| (Rn << 5) | Rd);
   1162 }
   1163 
   1164 uint32_t ArmToArm64Assembler::A64_CSEL_W(uint32_t Rd, uint32_t Rn,
   1165                                            uint32_t Rm, uint32_t cond)
   1166 {
   1167     LOG_INSTR("CSEL W%d, W%d, W%d, %s\n", Rd, Rn, Rm, cc_codes[cond]);
   1168     return ((0x1A << 24)|(0x1 << 23)|(Rm << 16) |(cond << 12)| (Rn << 5) | Rd);
   1169 }
   1170 
   1171 uint32_t ArmToArm64Assembler::A64_RET(uint32_t Rn)
   1172 {
   1173     LOG_INSTR("RET X%d\n", Rn);
   1174     return ((0xD6 << 24) | (0x1 << 22) | (0x1F << 16) | (Rn << 5));
   1175 }
   1176 
   1177 uint32_t ArmToArm64Assembler::A64_MOVZ_X(uint32_t Rd, uint32_t imm,
   1178                                          uint32_t shift)
   1179 {
   1180     LOG_INSTR("MOVZ X%d, #0x%x, LSL #%d\n", Rd, imm, shift);
   1181     return(0xD2 << 24) | (0x1 << 23) | ((shift/16) << 21) |  (imm << 5) | Rd;
   1182 }
   1183 
   1184 uint32_t ArmToArm64Assembler::A64_MOVK_W(uint32_t Rd, uint32_t imm,
   1185                                          uint32_t shift)
   1186 {
   1187     LOG_INSTR("MOVK W%d, #0x%x, LSL #%d\n", Rd, imm, shift);
   1188     return (0x72 << 24) | (0x1 << 23) | ((shift/16) << 21) | (imm << 5) | Rd;
   1189 }
   1190 
   1191 uint32_t ArmToArm64Assembler::A64_MOVZ_W(uint32_t Rd, uint32_t imm,
   1192                                          uint32_t shift)
   1193 {
   1194     LOG_INSTR("MOVZ W%d, #0x%x, LSL #%d\n", Rd, imm, shift);
   1195     return(0x52 << 24) | (0x1 << 23) | ((shift/16) << 21) |  (imm << 5) | Rd;
   1196 }
   1197 
   1198 uint32_t ArmToArm64Assembler::A64_SMADDL(uint32_t Rd, uint32_t Rn,
   1199                                            uint32_t Rm, uint32_t Ra)
   1200 {
   1201     LOG_INSTR("SMADDL X%d, W%d, W%d, X%d\n",Rd, Rn, Rm, Ra);
   1202     return ((0x9B << 24) | (0x1 << 21) | (Rm << 16)|(Ra << 10)|(Rn << 5) | Rd);
   1203 }
   1204 
   1205 uint32_t ArmToArm64Assembler::A64_MADD_W(uint32_t Rd, uint32_t Rn,
   1206                                            uint32_t Rm, uint32_t Ra)
   1207 {
   1208     LOG_INSTR("MADD W%d, W%d, W%d, W%d\n",Rd, Rn, Rm, Ra);
   1209     return ((0x1B << 24) | (Rm << 16) | (Ra << 10) |(Rn << 5) | Rd);
   1210 }
   1211 
   1212 uint32_t ArmToArm64Assembler::A64_SBFM_W(uint32_t Rd, uint32_t Rn,
   1213                                            uint32_t immr, uint32_t imms)
   1214 {
   1215     LOG_INSTR("SBFM W%d, W%d, #%d, #%d\n", Rd, Rn, immr, imms);
   1216     return ((0x13 << 24) | (immr << 16) | (imms << 10) | (Rn << 5) | Rd);
   1217 
   1218 }
   1219 uint32_t ArmToArm64Assembler::A64_UBFM_W(uint32_t Rd, uint32_t Rn,
   1220                                            uint32_t immr, uint32_t imms)
   1221 {
   1222     LOG_INSTR("UBFM W%d, W%d, #%d, #%d\n", Rd, Rn, immr, imms);
   1223     return ((0x53 << 24) | (immr << 16) | (imms << 10) | (Rn << 5) | Rd);
   1224 
   1225 }
   1226 uint32_t ArmToArm64Assembler::A64_UBFM_X(uint32_t Rd, uint32_t Rn,
   1227                                            uint32_t immr, uint32_t imms)
   1228 {
   1229     LOG_INSTR("UBFM X%d, X%d, #%d, #%d\n", Rd, Rn, immr, imms);
   1230     return ((0xD3 << 24) | (0x1 << 22) |
   1231             (immr << 16) | (imms << 10) | (Rn << 5) | Rd);
   1232 
   1233 }
   1234 uint32_t ArmToArm64Assembler::A64_EXTR_W(uint32_t Rd, uint32_t Rn,
   1235                                            uint32_t Rm, uint32_t lsb)
   1236 {
   1237     LOG_INSTR("EXTR W%d, W%d, W%d, #%d\n", Rd, Rn, Rm, lsb);
   1238     return (0x13 << 24)|(0x1 << 23) | (Rm << 16) | (lsb << 10)|(Rn << 5) | Rd;
   1239 }
   1240 
   1241 }; // namespace android
   1242 
   1243