Home | History | Annotate | Download | only in Splines
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_SPLINE_H
     11 #define EIGEN_SPLINE_H
     12 
     13 #include "SplineFwd.h"
     14 
     15 namespace Eigen
     16 {
     17     /**
     18      * \ingroup Splines_Module
     19      * \class Spline
     20      * \brief A class representing multi-dimensional spline curves.
     21      *
     22      * The class represents B-splines with non-uniform knot vectors. Each control
     23      * point of the B-spline is associated with a basis function
     24      * \f{align*}
     25      *   C(u) & = \sum_{i=0}^{n}N_{i,p}(u)P_i
     26      * \f}
     27      *
     28      * \tparam _Scalar The underlying data type (typically float or double)
     29      * \tparam _Dim The curve dimension (e.g. 2 or 3)
     30      * \tparam _Degree Per default set to Dynamic; could be set to the actual desired
     31      *                degree for optimization purposes (would result in stack allocation
     32      *                of several temporary variables).
     33      **/
     34   template <typename _Scalar, int _Dim, int _Degree>
     35   class Spline
     36   {
     37   public:
     38     typedef _Scalar Scalar; /*!< The spline curve's scalar type. */
     39     enum { Dimension = _Dim /*!< The spline curve's dimension. */ };
     40     enum { Degree = _Degree /*!< The spline curve's degree. */ };
     41 
     42     /** \brief The point type the spline is representing. */
     43     typedef typename SplineTraits<Spline>::PointType PointType;
     44 
     45     /** \brief The data type used to store knot vectors. */
     46     typedef typename SplineTraits<Spline>::KnotVectorType KnotVectorType;
     47 
     48     /** \brief The data type used to store non-zero basis functions. */
     49     typedef typename SplineTraits<Spline>::BasisVectorType BasisVectorType;
     50 
     51     /** \brief The data type representing the spline's control points. */
     52     typedef typename SplineTraits<Spline>::ControlPointVectorType ControlPointVectorType;
     53 
     54     /**
     55     * \brief Creates a (constant) zero spline.
     56     * For Splines with dynamic degree, the resulting degree will be 0.
     57     **/
     58     Spline()
     59     : m_knots(1, (Degree==Dynamic ? 2 : 2*Degree+2))
     60     , m_ctrls(ControlPointVectorType::Zero(2,(Degree==Dynamic ? 1 : Degree+1)))
     61     {
     62       // in theory this code can go to the initializer list but it will get pretty
     63       // much unreadable ...
     64       enum { MinDegree = (Degree==Dynamic ? 0 : Degree) };
     65       m_knots.template segment<MinDegree+1>(0) = Array<Scalar,1,MinDegree+1>::Zero();
     66       m_knots.template segment<MinDegree+1>(MinDegree+1) = Array<Scalar,1,MinDegree+1>::Ones();
     67     }
     68 
     69     /**
     70     * \brief Creates a spline from a knot vector and control points.
     71     * \param knots The spline's knot vector.
     72     * \param ctrls The spline's control point vector.
     73     **/
     74     template <typename OtherVectorType, typename OtherArrayType>
     75     Spline(const OtherVectorType& knots, const OtherArrayType& ctrls) : m_knots(knots), m_ctrls(ctrls) {}
     76 
     77     /**
     78     * \brief Copy constructor for splines.
     79     * \param spline The input spline.
     80     **/
     81     template <int OtherDegree>
     82     Spline(const Spline<Scalar, Dimension, OtherDegree>& spline) :
     83     m_knots(spline.knots()), m_ctrls(spline.ctrls()) {}
     84 
     85     /**
     86      * \brief Returns the knots of the underlying spline.
     87      **/
     88     const KnotVectorType& knots() const { return m_knots; }
     89 
     90     /**
     91      * \brief Returns the knots of the underlying spline.
     92      **/
     93     const ControlPointVectorType& ctrls() const { return m_ctrls; }
     94 
     95     /**
     96      * \brief Returns the spline value at a given site \f$u\f$.
     97      *
     98      * The function returns
     99      * \f{align*}
    100      *   C(u) & = \sum_{i=0}^{n}N_{i,p}P_i
    101      * \f}
    102      *
    103      * \param u Parameter \f$u \in [0;1]\f$ at which the spline is evaluated.
    104      * \return The spline value at the given location \f$u\f$.
    105      **/
    106     PointType operator()(Scalar u) const;
    107 
    108     /**
    109      * \brief Evaluation of spline derivatives of up-to given order.
    110      *
    111      * The function returns
    112      * \f{align*}
    113      *   \frac{d^i}{du^i}C(u) & = \sum_{i=0}^{n} \frac{d^i}{du^i} N_{i,p}(u)P_i
    114      * \f}
    115      * for i ranging between 0 and order.
    116      *
    117      * \param u Parameter \f$u \in [0;1]\f$ at which the spline derivative is evaluated.
    118      * \param order The order up to which the derivatives are computed.
    119      **/
    120     typename SplineTraits<Spline>::DerivativeType
    121       derivatives(Scalar u, DenseIndex order) const;
    122 
    123     /**
    124      * \copydoc Spline::derivatives
    125      * Using the template version of this function is more efficieent since
    126      * temporary objects are allocated on the stack whenever this is possible.
    127      **/
    128     template <int DerivativeOrder>
    129     typename SplineTraits<Spline,DerivativeOrder>::DerivativeType
    130       derivatives(Scalar u, DenseIndex order = DerivativeOrder) const;
    131 
    132     /**
    133      * \brief Computes the non-zero basis functions at the given site.
    134      *
    135      * Splines have local support and a point from their image is defined
    136      * by exactly \f$p+1\f$ control points \f$P_i\f$ where \f$p\f$ is the
    137      * spline degree.
    138      *
    139      * This function computes the \f$p+1\f$ non-zero basis function values
    140      * for a given parameter value \f$u\f$. It returns
    141      * \f{align*}{
    142      *   N_{i,p}(u), \hdots, N_{i+p+1,p}(u)
    143      * \f}
    144      *
    145      * \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis functions
    146      *          are computed.
    147      **/
    148     typename SplineTraits<Spline>::BasisVectorType
    149       basisFunctions(Scalar u) const;
    150 
    151     /**
    152      * \brief Computes the non-zero spline basis function derivatives up to given order.
    153      *
    154      * The function computes
    155      * \f{align*}{
    156      *   \frac{d^i}{du^i} N_{i,p}(u), \hdots, \frac{d^i}{du^i} N_{i+p+1,p}(u)
    157      * \f}
    158      * with i ranging from 0 up to the specified order.
    159      *
    160      * \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis function
    161      *          derivatives are computed.
    162      * \param order The order up to which the basis function derivatives are computes.
    163      **/
    164     typename SplineTraits<Spline>::BasisDerivativeType
    165       basisFunctionDerivatives(Scalar u, DenseIndex order) const;
    166 
    167     /**
    168      * \copydoc Spline::basisFunctionDerivatives
    169      * Using the template version of this function is more efficieent since
    170      * temporary objects are allocated on the stack whenever this is possible.
    171      **/
    172     template <int DerivativeOrder>
    173     typename SplineTraits<Spline,DerivativeOrder>::BasisDerivativeType
    174       basisFunctionDerivatives(Scalar u, DenseIndex order = DerivativeOrder) const;
    175 
    176     /**
    177      * \brief Returns the spline degree.
    178      **/
    179     DenseIndex degree() const;
    180 
    181     /**
    182      * \brief Returns the span within the knot vector in which u is falling.
    183      * \param u The site for which the span is determined.
    184      **/
    185     DenseIndex span(Scalar u) const;
    186 
    187     /**
    188      * \brief Computes the spang within the provided knot vector in which u is falling.
    189      **/
    190     static DenseIndex Span(typename SplineTraits<Spline>::Scalar u, DenseIndex degree, const typename SplineTraits<Spline>::KnotVectorType& knots);
    191 
    192     /**
    193      * \brief Returns the spline's non-zero basis functions.
    194      *
    195      * The function computes and returns
    196      * \f{align*}{
    197      *   N_{i,p}(u), \hdots, N_{i+p+1,p}(u)
    198      * \f}
    199      *
    200      * \param u The site at which the basis functions are computed.
    201      * \param degree The degree of the underlying spline.
    202      * \param knots The underlying spline's knot vector.
    203      **/
    204     static BasisVectorType BasisFunctions(Scalar u, DenseIndex degree, const KnotVectorType& knots);
    205 
    206 
    207   private:
    208     KnotVectorType m_knots; /*!< Knot vector. */
    209     ControlPointVectorType  m_ctrls; /*!< Control points. */
    210   };
    211 
    212   template <typename _Scalar, int _Dim, int _Degree>
    213   DenseIndex Spline<_Scalar, _Dim, _Degree>::Span(
    214     typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::Scalar u,
    215     DenseIndex degree,
    216     const typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::KnotVectorType& knots)
    217   {
    218     // Piegl & Tiller, "The NURBS Book", A2.1 (p. 68)
    219     if (u <= knots(0)) return degree;
    220     const Scalar* pos = std::upper_bound(knots.data()+degree-1, knots.data()+knots.size()-degree-1, u);
    221     return static_cast<DenseIndex>( std::distance(knots.data(), pos) - 1 );
    222   }
    223 
    224   template <typename _Scalar, int _Dim, int _Degree>
    225   typename Spline<_Scalar, _Dim, _Degree>::BasisVectorType
    226     Spline<_Scalar, _Dim, _Degree>::BasisFunctions(
    227     typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
    228     DenseIndex degree,
    229     const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots)
    230   {
    231     typedef typename Spline<_Scalar, _Dim, _Degree>::BasisVectorType BasisVectorType;
    232 
    233     const DenseIndex p = degree;
    234     const DenseIndex i = Spline::Span(u, degree, knots);
    235 
    236     const KnotVectorType& U = knots;
    237 
    238     BasisVectorType left(p+1); left(0) = Scalar(0);
    239     BasisVectorType right(p+1); right(0) = Scalar(0);
    240 
    241     VectorBlock<BasisVectorType,Degree>(left,1,p) = u - VectorBlock<const KnotVectorType,Degree>(U,i+1-p,p).reverse();
    242     VectorBlock<BasisVectorType,Degree>(right,1,p) = VectorBlock<const KnotVectorType,Degree>(U,i+1,p) - u;
    243 
    244     BasisVectorType N(1,p+1);
    245     N(0) = Scalar(1);
    246     for (DenseIndex j=1; j<=p; ++j)
    247     {
    248       Scalar saved = Scalar(0);
    249       for (DenseIndex r=0; r<j; r++)
    250       {
    251         const Scalar tmp = N(r)/(right(r+1)+left(j-r));
    252         N[r] = saved + right(r+1)*tmp;
    253         saved = left(j-r)*tmp;
    254       }
    255       N(j) = saved;
    256     }
    257     return N;
    258   }
    259 
    260   template <typename _Scalar, int _Dim, int _Degree>
    261   DenseIndex Spline<_Scalar, _Dim, _Degree>::degree() const
    262   {
    263     if (_Degree == Dynamic)
    264       return m_knots.size() - m_ctrls.cols() - 1;
    265     else
    266       return _Degree;
    267   }
    268 
    269   template <typename _Scalar, int _Dim, int _Degree>
    270   DenseIndex Spline<_Scalar, _Dim, _Degree>::span(Scalar u) const
    271   {
    272     return Spline::Span(u, degree(), knots());
    273   }
    274 
    275   template <typename _Scalar, int _Dim, int _Degree>
    276   typename Spline<_Scalar, _Dim, _Degree>::PointType Spline<_Scalar, _Dim, _Degree>::operator()(Scalar u) const
    277   {
    278     enum { Order = SplineTraits<Spline>::OrderAtCompileTime };
    279 
    280     const DenseIndex span = this->span(u);
    281     const DenseIndex p = degree();
    282     const BasisVectorType basis_funcs = basisFunctions(u);
    283 
    284     const Replicate<BasisVectorType,Dimension,1> ctrl_weights(basis_funcs);
    285     const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(ctrls(),0,span-p,Dimension,p+1);
    286     return (ctrl_weights * ctrl_pts).rowwise().sum();
    287   }
    288 
    289   /* --------------------------------------------------------------------------------------------- */
    290 
    291   template <typename SplineType, typename DerivativeType>
    292   void derivativesImpl(const SplineType& spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType& der)
    293   {
    294     enum { Dimension = SplineTraits<SplineType>::Dimension };
    295     enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
    296     enum { DerivativeOrder = DerivativeType::ColsAtCompileTime };
    297 
    298     typedef typename SplineTraits<SplineType>::ControlPointVectorType ControlPointVectorType;
    299     typedef typename SplineTraits<SplineType,DerivativeOrder>::BasisDerivativeType BasisDerivativeType;
    300     typedef typename BasisDerivativeType::ConstRowXpr BasisDerivativeRowXpr;
    301 
    302     const DenseIndex p = spline.degree();
    303     const DenseIndex span = spline.span(u);
    304 
    305     const DenseIndex n = (std::min)(p, order);
    306 
    307     der.resize(Dimension,n+1);
    308 
    309     // Retrieve the basis function derivatives up to the desired order...
    310     const BasisDerivativeType basis_func_ders = spline.template basisFunctionDerivatives<DerivativeOrder>(u, n+1);
    311 
    312     // ... and perform the linear combinations of the control points.
    313     for (DenseIndex der_order=0; der_order<n+1; ++der_order)
    314     {
    315       const Replicate<BasisDerivativeRowXpr,Dimension,1> ctrl_weights( basis_func_ders.row(der_order) );
    316       const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(spline.ctrls(),0,span-p,Dimension,p+1);
    317       der.col(der_order) = (ctrl_weights * ctrl_pts).rowwise().sum();
    318     }
    319   }
    320 
    321   template <typename _Scalar, int _Dim, int _Degree>
    322   typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::DerivativeType
    323     Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const
    324   {
    325     typename SplineTraits< Spline >::DerivativeType res;
    326     derivativesImpl(*this, u, order, res);
    327     return res;
    328   }
    329 
    330   template <typename _Scalar, int _Dim, int _Degree>
    331   template <int DerivativeOrder>
    332   typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::DerivativeType
    333     Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const
    334   {
    335     typename SplineTraits< Spline, DerivativeOrder >::DerivativeType res;
    336     derivativesImpl(*this, u, order, res);
    337     return res;
    338   }
    339 
    340   template <typename _Scalar, int _Dim, int _Degree>
    341   typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisVectorType
    342     Spline<_Scalar, _Dim, _Degree>::basisFunctions(Scalar u) const
    343   {
    344     return Spline::BasisFunctions(u, degree(), knots());
    345   }
    346 
    347   /* --------------------------------------------------------------------------------------------- */
    348 
    349   template <typename SplineType, typename DerivativeType>
    350   void basisFunctionDerivativesImpl(const SplineType& spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType& N_)
    351   {
    352     enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
    353 
    354     typedef typename SplineTraits<SplineType>::Scalar Scalar;
    355     typedef typename SplineTraits<SplineType>::BasisVectorType BasisVectorType;
    356     typedef typename SplineTraits<SplineType>::KnotVectorType KnotVectorType;
    357 
    358     const KnotVectorType& U = spline.knots();
    359 
    360     const DenseIndex p = spline.degree();
    361     const DenseIndex span = spline.span(u);
    362 
    363     const DenseIndex n = (std::min)(p, order);
    364 
    365     N_.resize(n+1, p+1);
    366 
    367     BasisVectorType left = BasisVectorType::Zero(p+1);
    368     BasisVectorType right = BasisVectorType::Zero(p+1);
    369 
    370     Matrix<Scalar,Order,Order> ndu(p+1,p+1);
    371 
    372     double saved, temp;
    373 
    374     ndu(0,0) = 1.0;
    375 
    376     DenseIndex j;
    377     for (j=1; j<=p; ++j)
    378     {
    379       left[j] = u-U[span+1-j];
    380       right[j] = U[span+j]-u;
    381       saved = 0.0;
    382 
    383       for (DenseIndex r=0; r<j; ++r)
    384       {
    385         /* Lower triangle */
    386         ndu(j,r) = right[r+1]+left[j-r];
    387         temp = ndu(r,j-1)/ndu(j,r);
    388         /* Upper triangle */
    389         ndu(r,j) = static_cast<Scalar>(saved+right[r+1] * temp);
    390         saved = left[j-r] * temp;
    391       }
    392 
    393       ndu(j,j) = static_cast<Scalar>(saved);
    394     }
    395 
    396     for (j = p; j>=0; --j)
    397       N_(0,j) = ndu(j,p);
    398 
    399     // Compute the derivatives
    400     DerivativeType a(n+1,p+1);
    401     DenseIndex r=0;
    402     for (; r<=p; ++r)
    403     {
    404       DenseIndex s1,s2;
    405       s1 = 0; s2 = 1; // alternate rows in array a
    406       a(0,0) = 1.0;
    407 
    408       // Compute the k-th derivative
    409       for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
    410       {
    411         double d = 0.0;
    412         DenseIndex rk,pk,j1,j2;
    413         rk = r-k; pk = p-k;
    414 
    415         if (r>=k)
    416         {
    417           a(s2,0) = a(s1,0)/ndu(pk+1,rk);
    418           d = a(s2,0)*ndu(rk,pk);
    419         }
    420 
    421         if (rk>=-1) j1 = 1;
    422         else        j1 = -rk;
    423 
    424         if (r-1 <= pk) j2 = k-1;
    425         else           j2 = p-r;
    426 
    427         for (j=j1; j<=j2; ++j)
    428         {
    429           a(s2,j) = (a(s1,j)-a(s1,j-1))/ndu(pk+1,rk+j);
    430           d += a(s2,j)*ndu(rk+j,pk);
    431         }
    432 
    433         if (r<=pk)
    434         {
    435           a(s2,k) = -a(s1,k-1)/ndu(pk+1,r);
    436           d += a(s2,k)*ndu(r,pk);
    437         }
    438 
    439         N_(k,r) = static_cast<Scalar>(d);
    440         j = s1; s1 = s2; s2 = j; // Switch rows
    441       }
    442     }
    443 
    444     /* Multiply through by the correct factors */
    445     /* (Eq. [2.9])                             */
    446     r = p;
    447     for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
    448     {
    449       for (DenseIndex j=p; j>=0; --j) N_(k,j) *= r;
    450       r *= p-k;
    451     }
    452   }
    453 
    454   template <typename _Scalar, int _Dim, int _Degree>
    455   typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType
    456     Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const
    457   {
    458     typename SplineTraits< Spline >::BasisDerivativeType der;
    459     basisFunctionDerivativesImpl(*this, u, order, der);
    460     return der;
    461   }
    462 
    463   template <typename _Scalar, int _Dim, int _Degree>
    464   template <int DerivativeOrder>
    465   typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType
    466     Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const
    467   {
    468     typename SplineTraits< Spline, DerivativeOrder >::BasisDerivativeType der;
    469     basisFunctionDerivativesImpl(*this, u, order, der);
    470     return der;
    471   }
    472 }
    473 
    474 #endif // EIGEN_SPLINE_H
    475