Home | History | Annotate | Download | only in Instrumentation
      1 //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of AddressSanitizer, an address sanity checker.
     11 // Details of the algorithm:
     12 //  http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Instrumentation.h"
     17 #include "llvm/ADT/ArrayRef.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/DenseSet.h"
     20 #include "llvm/ADT/DepthFirstIterator.h"
     21 #include "llvm/ADT/SmallSet.h"
     22 #include "llvm/ADT/SmallString.h"
     23 #include "llvm/ADT/SmallVector.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/ADT/StringExtras.h"
     26 #include "llvm/ADT/Triple.h"
     27 #include "llvm/IR/CallSite.h"
     28 #include "llvm/IR/DIBuilder.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/Function.h"
     31 #include "llvm/IR/IRBuilder.h"
     32 #include "llvm/IR/InlineAsm.h"
     33 #include "llvm/IR/InstVisitor.h"
     34 #include "llvm/IR/IntrinsicInst.h"
     35 #include "llvm/IR/LLVMContext.h"
     36 #include "llvm/IR/MDBuilder.h"
     37 #include "llvm/IR/Module.h"
     38 #include "llvm/IR/Type.h"
     39 #include "llvm/Support/CommandLine.h"
     40 #include "llvm/Support/DataTypes.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/Endian.h"
     43 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
     44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     45 #include "llvm/Transforms/Utils/Cloning.h"
     46 #include "llvm/Transforms/Utils/Local.h"
     47 #include "llvm/Transforms/Utils/ModuleUtils.h"
     48 #include <algorithm>
     49 #include <string>
     50 #include <system_error>
     51 
     52 using namespace llvm;
     53 
     54 #define DEBUG_TYPE "asan"
     55 
     56 static const uint64_t kDefaultShadowScale = 3;
     57 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
     58 static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
     59 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
     60 static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000;  // < 2G.
     61 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
     62 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa8000;
     63 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
     64 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
     65 
     66 static const size_t kMinStackMallocSize = 1 << 6;  // 64B
     67 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
     68 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
     69 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
     70 
     71 static const char *const kAsanModuleCtorName = "asan.module_ctor";
     72 static const char *const kAsanModuleDtorName = "asan.module_dtor";
     73 static const int         kAsanCtorAndDtorPriority = 1;
     74 static const char *const kAsanReportErrorTemplate = "__asan_report_";
     75 static const char *const kAsanReportLoadN = "__asan_report_load_n";
     76 static const char *const kAsanReportStoreN = "__asan_report_store_n";
     77 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
     78 static const char *const kAsanUnregisterGlobalsName =
     79     "__asan_unregister_globals";
     80 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
     81 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
     82 static const char *const kAsanInitName = "__asan_init_v4";
     83 static const char *const kAsanCovModuleInitName = "__sanitizer_cov_module_init";
     84 static const char *const kAsanCovName = "__sanitizer_cov";
     85 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
     86 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
     87 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
     88 static const int         kMaxAsanStackMallocSizeClass = 10;
     89 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
     90 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
     91 static const char *const kAsanGenPrefix = "__asan_gen_";
     92 static const char *const kAsanPoisonStackMemoryName =
     93     "__asan_poison_stack_memory";
     94 static const char *const kAsanUnpoisonStackMemoryName =
     95     "__asan_unpoison_stack_memory";
     96 
     97 static const char *const kAsanOptionDetectUAR =
     98     "__asan_option_detect_stack_use_after_return";
     99 
    100 #ifndef NDEBUG
    101 static const int kAsanStackAfterReturnMagic = 0xf5;
    102 #endif
    103 
    104 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
    105 static const size_t kNumberOfAccessSizes = 5;
    106 
    107 // Command-line flags.
    108 
    109 // This flag may need to be replaced with -f[no-]asan-reads.
    110 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
    111        cl::desc("instrument read instructions"), cl::Hidden, cl::init(true));
    112 static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes",
    113        cl::desc("instrument write instructions"), cl::Hidden, cl::init(true));
    114 static cl::opt<bool> ClInstrumentAtomics("asan-instrument-atomics",
    115        cl::desc("instrument atomic instructions (rmw, cmpxchg)"),
    116        cl::Hidden, cl::init(true));
    117 static cl::opt<bool> ClAlwaysSlowPath("asan-always-slow-path",
    118        cl::desc("use instrumentation with slow path for all accesses"),
    119        cl::Hidden, cl::init(false));
    120 // This flag limits the number of instructions to be instrumented
    121 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
    122 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
    123 // set it to 10000.
    124 static cl::opt<int> ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb",
    125        cl::init(10000),
    126        cl::desc("maximal number of instructions to instrument in any given BB"),
    127        cl::Hidden);
    128 // This flag may need to be replaced with -f[no]asan-stack.
    129 static cl::opt<bool> ClStack("asan-stack",
    130        cl::desc("Handle stack memory"), cl::Hidden, cl::init(true));
    131 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
    132        cl::desc("Check return-after-free"), cl::Hidden, cl::init(true));
    133 // This flag may need to be replaced with -f[no]asan-globals.
    134 static cl::opt<bool> ClGlobals("asan-globals",
    135        cl::desc("Handle global objects"), cl::Hidden, cl::init(true));
    136 static cl::opt<int> ClCoverage("asan-coverage",
    137        cl::desc("ASan coverage. 0: none, 1: entry block, 2: all blocks"),
    138        cl::Hidden, cl::init(false));
    139 static cl::opt<int> ClCoverageBlockThreshold("asan-coverage-block-threshold",
    140        cl::desc("Add coverage instrumentation only to the entry block if there "
    141                 "are more than this number of blocks."),
    142        cl::Hidden, cl::init(1500));
    143 static cl::opt<bool> ClInitializers("asan-initialization-order",
    144        cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(true));
    145 static cl::opt<bool> ClInvalidPointerPairs("asan-detect-invalid-pointer-pair",
    146        cl::desc("Instrument <, <=, >, >=, - with pointer operands"),
    147        cl::Hidden, cl::init(false));
    148 static cl::opt<unsigned> ClRealignStack("asan-realign-stack",
    149        cl::desc("Realign stack to the value of this flag (power of two)"),
    150        cl::Hidden, cl::init(32));
    151 static cl::opt<int> ClInstrumentationWithCallsThreshold(
    152     "asan-instrumentation-with-call-threshold",
    153        cl::desc("If the function being instrumented contains more than "
    154                 "this number of memory accesses, use callbacks instead of "
    155                 "inline checks (-1 means never use callbacks)."),
    156        cl::Hidden, cl::init(7000));
    157 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
    158        "asan-memory-access-callback-prefix",
    159        cl::desc("Prefix for memory access callbacks"), cl::Hidden,
    160        cl::init("__asan_"));
    161 
    162 // This is an experimental feature that will allow to choose between
    163 // instrumented and non-instrumented code at link-time.
    164 // If this option is on, just before instrumenting a function we create its
    165 // clone; if the function is not changed by asan the clone is deleted.
    166 // If we end up with a clone, we put the instrumented function into a section
    167 // called "ASAN" and the uninstrumented function into a section called "NOASAN".
    168 //
    169 // This is still a prototype, we need to figure out a way to keep two copies of
    170 // a function so that the linker can easily choose one of them.
    171 static cl::opt<bool> ClKeepUninstrumented("asan-keep-uninstrumented-functions",
    172        cl::desc("Keep uninstrumented copies of functions"),
    173        cl::Hidden, cl::init(false));
    174 
    175 // These flags allow to change the shadow mapping.
    176 // The shadow mapping looks like
    177 //    Shadow = (Mem >> scale) + (1 << offset_log)
    178 static cl::opt<int> ClMappingScale("asan-mapping-scale",
    179        cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0));
    180 
    181 // Optimization flags. Not user visible, used mostly for testing
    182 // and benchmarking the tool.
    183 static cl::opt<bool> ClOpt("asan-opt",
    184        cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true));
    185 static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp",
    186        cl::desc("Instrument the same temp just once"), cl::Hidden,
    187        cl::init(true));
    188 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
    189        cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true));
    190 
    191 static cl::opt<bool> ClCheckLifetime("asan-check-lifetime",
    192        cl::desc("Use llvm.lifetime intrinsics to insert extra checks"),
    193        cl::Hidden, cl::init(false));
    194 
    195 // Debug flags.
    196 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
    197                             cl::init(0));
    198 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
    199                                  cl::Hidden, cl::init(0));
    200 static cl::opt<std::string> ClDebugFunc("asan-debug-func",
    201                                         cl::Hidden, cl::desc("Debug func"));
    202 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
    203                                cl::Hidden, cl::init(-1));
    204 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
    205                                cl::Hidden, cl::init(-1));
    206 
    207 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
    208 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
    209 STATISTIC(NumOptimizedAccessesToGlobalArray,
    210           "Number of optimized accesses to global arrays");
    211 STATISTIC(NumOptimizedAccessesToGlobalVar,
    212           "Number of optimized accesses to global vars");
    213 
    214 namespace {
    215 /// Frontend-provided metadata for global variables.
    216 class GlobalsMetadata {
    217  public:
    218   GlobalsMetadata() : inited_(false) {}
    219   void init(Module& M) {
    220     assert(!inited_);
    221     inited_ = true;
    222     NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
    223     if (!Globals)
    224       return;
    225     for (auto MDN : Globals->operands()) {
    226       // Format of the metadata node for the global:
    227       // {
    228       //   global,
    229       //   source_location,
    230       //   i1 is_dynamically_initialized,
    231       //   i1 is_blacklisted
    232       // }
    233       assert(MDN->getNumOperands() == 4);
    234       Value *V = MDN->getOperand(0);
    235       // The optimizer may optimize away a global entirely.
    236       if (!V)
    237         continue;
    238       GlobalVariable *GV = cast<GlobalVariable>(V);
    239       if (Value *Loc = MDN->getOperand(1)) {
    240         GlobalVariable *GVLoc = cast<GlobalVariable>(Loc);
    241         // We may already know the source location for GV, if it was merged
    242         // with another global.
    243         if (SourceLocation.insert(std::make_pair(GV, GVLoc)).second)
    244           addSourceLocationGlobal(GVLoc);
    245       }
    246       ConstantInt *IsDynInit = cast<ConstantInt>(MDN->getOperand(2));
    247       if (IsDynInit->isOne())
    248         DynInitGlobals.insert(GV);
    249       ConstantInt *IsBlacklisted = cast<ConstantInt>(MDN->getOperand(3));
    250       if (IsBlacklisted->isOne())
    251         BlacklistedGlobals.insert(GV);
    252     }
    253   }
    254 
    255   GlobalVariable *getSourceLocation(GlobalVariable *G) const {
    256     auto Pos = SourceLocation.find(G);
    257     return (Pos != SourceLocation.end()) ? Pos->second : nullptr;
    258   }
    259 
    260   /// Check if the global is dynamically initialized.
    261   bool isDynInit(GlobalVariable *G) const {
    262     return DynInitGlobals.count(G);
    263   }
    264 
    265   /// Check if the global was blacklisted.
    266   bool isBlacklisted(GlobalVariable *G) const {
    267     return BlacklistedGlobals.count(G);
    268   }
    269 
    270   /// Check if the global was generated to describe source location of another
    271   /// global (we don't want to instrument them).
    272   bool isSourceLocationGlobal(GlobalVariable *G) const {
    273     return LocationGlobals.count(G);
    274   }
    275 
    276  private:
    277   bool inited_;
    278   DenseMap<GlobalVariable*, GlobalVariable*> SourceLocation;
    279   DenseSet<GlobalVariable*> DynInitGlobals;
    280   DenseSet<GlobalVariable*> BlacklistedGlobals;
    281   DenseSet<GlobalVariable*> LocationGlobals;
    282 
    283   void addSourceLocationGlobal(GlobalVariable *SourceLocGV) {
    284     // Source location global is a struct with layout:
    285     // {
    286     //    filename,
    287     //    i32 line_number,
    288     //    i32 column_number,
    289     // }
    290     LocationGlobals.insert(SourceLocGV);
    291     ConstantStruct *Contents =
    292         cast<ConstantStruct>(SourceLocGV->getInitializer());
    293     GlobalVariable *FilenameGV = cast<GlobalVariable>(Contents->getOperand(0));
    294     LocationGlobals.insert(FilenameGV);
    295   }
    296 };
    297 
    298 /// This struct defines the shadow mapping using the rule:
    299 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
    300 struct ShadowMapping {
    301   int Scale;
    302   uint64_t Offset;
    303   bool OrShadowOffset;
    304 };
    305 
    306 static ShadowMapping getShadowMapping(const Module &M, int LongSize) {
    307   llvm::Triple TargetTriple(M.getTargetTriple());
    308   bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android;
    309   bool IsIOS = TargetTriple.getOS() == llvm::Triple::IOS;
    310   bool IsFreeBSD = TargetTriple.getOS() == llvm::Triple::FreeBSD;
    311   bool IsLinux = TargetTriple.getOS() == llvm::Triple::Linux;
    312   bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
    313                  TargetTriple.getArch() == llvm::Triple::ppc64le;
    314   bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
    315   bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
    316                   TargetTriple.getArch() == llvm::Triple::mipsel;
    317 
    318   ShadowMapping Mapping;
    319 
    320   if (LongSize == 32) {
    321     if (IsAndroid)
    322       Mapping.Offset = 0;
    323     else if (IsMIPS32)
    324       Mapping.Offset = kMIPS32_ShadowOffset32;
    325     else if (IsFreeBSD)
    326       Mapping.Offset = kFreeBSD_ShadowOffset32;
    327     else if (IsIOS)
    328       Mapping.Offset = kIOSShadowOffset32;
    329     else
    330       Mapping.Offset = kDefaultShadowOffset32;
    331   } else {  // LongSize == 64
    332     if (IsPPC64)
    333       Mapping.Offset = kPPC64_ShadowOffset64;
    334     else if (IsFreeBSD)
    335       Mapping.Offset = kFreeBSD_ShadowOffset64;
    336     else if (IsLinux && IsX86_64)
    337       Mapping.Offset = kSmallX86_64ShadowOffset;
    338     else
    339       Mapping.Offset = kDefaultShadowOffset64;
    340   }
    341 
    342   Mapping.Scale = kDefaultShadowScale;
    343   if (ClMappingScale) {
    344     Mapping.Scale = ClMappingScale;
    345   }
    346 
    347   // OR-ing shadow offset if more efficient (at least on x86) if the offset
    348   // is a power of two, but on ppc64 we have to use add since the shadow
    349   // offset is not necessary 1/8-th of the address space.
    350   Mapping.OrShadowOffset = !IsPPC64 && !(Mapping.Offset & (Mapping.Offset - 1));
    351 
    352   return Mapping;
    353 }
    354 
    355 static size_t RedzoneSizeForScale(int MappingScale) {
    356   // Redzone used for stack and globals is at least 32 bytes.
    357   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
    358   return std::max(32U, 1U << MappingScale);
    359 }
    360 
    361 /// AddressSanitizer: instrument the code in module to find memory bugs.
    362 struct AddressSanitizer : public FunctionPass {
    363   AddressSanitizer() : FunctionPass(ID) {}
    364   const char *getPassName() const override {
    365     return "AddressSanitizerFunctionPass";
    366   }
    367   void instrumentMop(Instruction *I, bool UseCalls);
    368   void instrumentPointerComparisonOrSubtraction(Instruction *I);
    369   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
    370                          Value *Addr, uint32_t TypeSize, bool IsWrite,
    371                          Value *SizeArgument, bool UseCalls);
    372   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
    373                            Value *ShadowValue, uint32_t TypeSize);
    374   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
    375                                  bool IsWrite, size_t AccessSizeIndex,
    376                                  Value *SizeArgument);
    377   void instrumentMemIntrinsic(MemIntrinsic *MI);
    378   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
    379   bool runOnFunction(Function &F) override;
    380   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
    381   bool doInitialization(Module &M) override;
    382   static char ID;  // Pass identification, replacement for typeid
    383 
    384  private:
    385   void initializeCallbacks(Module &M);
    386 
    387   bool LooksLikeCodeInBug11395(Instruction *I);
    388   bool GlobalIsLinkerInitialized(GlobalVariable *G);
    389   bool InjectCoverage(Function &F, const ArrayRef<BasicBlock*> AllBlocks);
    390   void InjectCoverageAtBlock(Function &F, BasicBlock &BB);
    391 
    392   LLVMContext *C;
    393   const DataLayout *DL;
    394   int LongSize;
    395   Type *IntptrTy;
    396   ShadowMapping Mapping;
    397   Function *AsanCtorFunction;
    398   Function *AsanInitFunction;
    399   Function *AsanHandleNoReturnFunc;
    400   Function *AsanCovFunction;
    401   Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
    402   // This array is indexed by AccessIsWrite and log2(AccessSize).
    403   Function *AsanErrorCallback[2][kNumberOfAccessSizes];
    404   Function *AsanMemoryAccessCallback[2][kNumberOfAccessSizes];
    405   // This array is indexed by AccessIsWrite.
    406   Function *AsanErrorCallbackSized[2],
    407            *AsanMemoryAccessCallbackSized[2];
    408   Function *AsanMemmove, *AsanMemcpy, *AsanMemset;
    409   InlineAsm *EmptyAsm;
    410   GlobalsMetadata GlobalsMD;
    411 
    412   friend struct FunctionStackPoisoner;
    413 };
    414 
    415 class AddressSanitizerModule : public ModulePass {
    416  public:
    417   AddressSanitizerModule() : ModulePass(ID) {}
    418   bool runOnModule(Module &M) override;
    419   static char ID;  // Pass identification, replacement for typeid
    420   const char *getPassName() const override {
    421     return "AddressSanitizerModule";
    422   }
    423 
    424  private:
    425   void initializeCallbacks(Module &M);
    426 
    427   bool InstrumentGlobals(IRBuilder<> &IRB, Module &M);
    428   bool ShouldInstrumentGlobal(GlobalVariable *G);
    429   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
    430   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
    431   size_t MinRedzoneSizeForGlobal() const {
    432     return RedzoneSizeForScale(Mapping.Scale);
    433   }
    434 
    435   GlobalsMetadata GlobalsMD;
    436   Type *IntptrTy;
    437   LLVMContext *C;
    438   const DataLayout *DL;
    439   ShadowMapping Mapping;
    440   Function *AsanPoisonGlobals;
    441   Function *AsanUnpoisonGlobals;
    442   Function *AsanRegisterGlobals;
    443   Function *AsanUnregisterGlobals;
    444   Function *AsanCovModuleInit;
    445 };
    446 
    447 // Stack poisoning does not play well with exception handling.
    448 // When an exception is thrown, we essentially bypass the code
    449 // that unpoisones the stack. This is why the run-time library has
    450 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
    451 // stack in the interceptor. This however does not work inside the
    452 // actual function which catches the exception. Most likely because the
    453 // compiler hoists the load of the shadow value somewhere too high.
    454 // This causes asan to report a non-existing bug on 453.povray.
    455 // It sounds like an LLVM bug.
    456 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
    457   Function &F;
    458   AddressSanitizer &ASan;
    459   DIBuilder DIB;
    460   LLVMContext *C;
    461   Type *IntptrTy;
    462   Type *IntptrPtrTy;
    463   ShadowMapping Mapping;
    464 
    465   SmallVector<AllocaInst*, 16> AllocaVec;
    466   SmallVector<Instruction*, 8> RetVec;
    467   unsigned StackAlignment;
    468 
    469   Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
    470            *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
    471   Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
    472 
    473   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
    474   struct AllocaPoisonCall {
    475     IntrinsicInst *InsBefore;
    476     AllocaInst *AI;
    477     uint64_t Size;
    478     bool DoPoison;
    479   };
    480   SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
    481 
    482   // Maps Value to an AllocaInst from which the Value is originated.
    483   typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy;
    484   AllocaForValueMapTy AllocaForValue;
    485 
    486   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
    487       : F(F), ASan(ASan), DIB(*F.getParent()), C(ASan.C),
    488         IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)),
    489         Mapping(ASan.Mapping),
    490         StackAlignment(1 << Mapping.Scale) {}
    491 
    492   bool runOnFunction() {
    493     if (!ClStack) return false;
    494     // Collect alloca, ret, lifetime instructions etc.
    495     for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
    496       visit(*BB);
    497 
    498     if (AllocaVec.empty()) return false;
    499 
    500     initializeCallbacks(*F.getParent());
    501 
    502     poisonStack();
    503 
    504     if (ClDebugStack) {
    505       DEBUG(dbgs() << F);
    506     }
    507     return true;
    508   }
    509 
    510   // Finds all static Alloca instructions and puts
    511   // poisoned red zones around all of them.
    512   // Then unpoison everything back before the function returns.
    513   void poisonStack();
    514 
    515   // ----------------------- Visitors.
    516   /// \brief Collect all Ret instructions.
    517   void visitReturnInst(ReturnInst &RI) {
    518     RetVec.push_back(&RI);
    519   }
    520 
    521   /// \brief Collect Alloca instructions we want (and can) handle.
    522   void visitAllocaInst(AllocaInst &AI) {
    523     if (!isInterestingAlloca(AI)) return;
    524 
    525     StackAlignment = std::max(StackAlignment, AI.getAlignment());
    526     AllocaVec.push_back(&AI);
    527   }
    528 
    529   /// \brief Collect lifetime intrinsic calls to check for use-after-scope
    530   /// errors.
    531   void visitIntrinsicInst(IntrinsicInst &II) {
    532     if (!ClCheckLifetime) return;
    533     Intrinsic::ID ID = II.getIntrinsicID();
    534     if (ID != Intrinsic::lifetime_start &&
    535         ID != Intrinsic::lifetime_end)
    536       return;
    537     // Found lifetime intrinsic, add ASan instrumentation if necessary.
    538     ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
    539     // If size argument is undefined, don't do anything.
    540     if (Size->isMinusOne()) return;
    541     // Check that size doesn't saturate uint64_t and can
    542     // be stored in IntptrTy.
    543     const uint64_t SizeValue = Size->getValue().getLimitedValue();
    544     if (SizeValue == ~0ULL ||
    545         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
    546       return;
    547     // Find alloca instruction that corresponds to llvm.lifetime argument.
    548     AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
    549     if (!AI) return;
    550     bool DoPoison = (ID == Intrinsic::lifetime_end);
    551     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
    552     AllocaPoisonCallVec.push_back(APC);
    553   }
    554 
    555   // ---------------------- Helpers.
    556   void initializeCallbacks(Module &M);
    557 
    558   // Check if we want (and can) handle this alloca.
    559   bool isInterestingAlloca(AllocaInst &AI) const {
    560     return (!AI.isArrayAllocation() && AI.isStaticAlloca() &&
    561             AI.getAllocatedType()->isSized() &&
    562             // alloca() may be called with 0 size, ignore it.
    563             getAllocaSizeInBytes(&AI) > 0);
    564   }
    565 
    566   uint64_t getAllocaSizeInBytes(AllocaInst *AI) const {
    567     Type *Ty = AI->getAllocatedType();
    568     uint64_t SizeInBytes = ASan.DL->getTypeAllocSize(Ty);
    569     return SizeInBytes;
    570   }
    571   /// Finds alloca where the value comes from.
    572   AllocaInst *findAllocaForValue(Value *V);
    573   void poisonRedZones(const ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB,
    574                       Value *ShadowBase, bool DoPoison);
    575   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
    576 
    577   void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase,
    578                                           int Size);
    579 };
    580 
    581 }  // namespace
    582 
    583 char AddressSanitizer::ID = 0;
    584 INITIALIZE_PASS(AddressSanitizer, "asan",
    585     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
    586     false, false)
    587 FunctionPass *llvm::createAddressSanitizerFunctionPass() {
    588   return new AddressSanitizer();
    589 }
    590 
    591 char AddressSanitizerModule::ID = 0;
    592 INITIALIZE_PASS(AddressSanitizerModule, "asan-module",
    593     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
    594     "ModulePass", false, false)
    595 ModulePass *llvm::createAddressSanitizerModulePass() {
    596   return new AddressSanitizerModule();
    597 }
    598 
    599 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
    600   size_t Res = countTrailingZeros(TypeSize / 8);
    601   assert(Res < kNumberOfAccessSizes);
    602   return Res;
    603 }
    604 
    605 // \brief Create a constant for Str so that we can pass it to the run-time lib.
    606 static GlobalVariable *createPrivateGlobalForString(
    607     Module &M, StringRef Str, bool AllowMerging) {
    608   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
    609   // We use private linkage for module-local strings. If they can be merged
    610   // with another one, we set the unnamed_addr attribute.
    611   GlobalVariable *GV =
    612       new GlobalVariable(M, StrConst->getType(), true,
    613                          GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix);
    614   if (AllowMerging)
    615     GV->setUnnamedAddr(true);
    616   GV->setAlignment(1);  // Strings may not be merged w/o setting align 1.
    617   return GV;
    618 }
    619 
    620 static bool GlobalWasGeneratedByAsan(GlobalVariable *G) {
    621   return G->getName().find(kAsanGenPrefix) == 0;
    622 }
    623 
    624 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
    625   // Shadow >> scale
    626   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
    627   if (Mapping.Offset == 0)
    628     return Shadow;
    629   // (Shadow >> scale) | offset
    630   if (Mapping.OrShadowOffset)
    631     return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
    632   else
    633     return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
    634 }
    635 
    636 // Instrument memset/memmove/memcpy
    637 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
    638   IRBuilder<> IRB(MI);
    639   if (isa<MemTransferInst>(MI)) {
    640     IRB.CreateCall3(
    641         isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
    642         IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
    643         IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
    644         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false));
    645   } else if (isa<MemSetInst>(MI)) {
    646     IRB.CreateCall3(
    647         AsanMemset,
    648         IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
    649         IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
    650         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false));
    651   }
    652   MI->eraseFromParent();
    653 }
    654 
    655 // If I is an interesting memory access, return the PointerOperand
    656 // and set IsWrite/Alignment. Otherwise return NULL.
    657 static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
    658                                         unsigned *Alignment) {
    659   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    660     if (!ClInstrumentReads) return nullptr;
    661     *IsWrite = false;
    662     *Alignment = LI->getAlignment();
    663     return LI->getPointerOperand();
    664   }
    665   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    666     if (!ClInstrumentWrites) return nullptr;
    667     *IsWrite = true;
    668     *Alignment = SI->getAlignment();
    669     return SI->getPointerOperand();
    670   }
    671   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
    672     if (!ClInstrumentAtomics) return nullptr;
    673     *IsWrite = true;
    674     *Alignment = 0;
    675     return RMW->getPointerOperand();
    676   }
    677   if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
    678     if (!ClInstrumentAtomics) return nullptr;
    679     *IsWrite = true;
    680     *Alignment = 0;
    681     return XCHG->getPointerOperand();
    682   }
    683   return nullptr;
    684 }
    685 
    686 static bool isPointerOperand(Value *V) {
    687   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
    688 }
    689 
    690 // This is a rough heuristic; it may cause both false positives and
    691 // false negatives. The proper implementation requires cooperation with
    692 // the frontend.
    693 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
    694   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
    695     if (!Cmp->isRelational())
    696       return false;
    697   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
    698     if (BO->getOpcode() != Instruction::Sub)
    699       return false;
    700   } else {
    701     return false;
    702   }
    703   if (!isPointerOperand(I->getOperand(0)) ||
    704       !isPointerOperand(I->getOperand(1)))
    705       return false;
    706   return true;
    707 }
    708 
    709 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
    710   // If a global variable does not have dynamic initialization we don't
    711   // have to instrument it.  However, if a global does not have initializer
    712   // at all, we assume it has dynamic initializer (in other TU).
    713   return G->hasInitializer() && !GlobalsMD.isDynInit(G);
    714 }
    715 
    716 void
    717 AddressSanitizer::instrumentPointerComparisonOrSubtraction(Instruction *I) {
    718   IRBuilder<> IRB(I);
    719   Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
    720   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
    721   for (int i = 0; i < 2; i++) {
    722     if (Param[i]->getType()->isPointerTy())
    723       Param[i] = IRB.CreatePointerCast(Param[i], IntptrTy);
    724   }
    725   IRB.CreateCall2(F, Param[0], Param[1]);
    726 }
    727 
    728 void AddressSanitizer::instrumentMop(Instruction *I, bool UseCalls) {
    729   bool IsWrite = false;
    730   unsigned Alignment = 0;
    731   Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &Alignment);
    732   assert(Addr);
    733   if (ClOpt && ClOptGlobals) {
    734     if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) {
    735       // If initialization order checking is disabled, a simple access to a
    736       // dynamically initialized global is always valid.
    737       if (!ClInitializers || GlobalIsLinkerInitialized(G)) {
    738         NumOptimizedAccessesToGlobalVar++;
    739         return;
    740       }
    741     }
    742     ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr);
    743     if (CE && CE->isGEPWithNoNotionalOverIndexing()) {
    744       if (GlobalVariable *G = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
    745         if (CE->getOperand(1)->isNullValue() && GlobalIsLinkerInitialized(G)) {
    746           NumOptimizedAccessesToGlobalArray++;
    747           return;
    748         }
    749       }
    750     }
    751   }
    752 
    753   Type *OrigPtrTy = Addr->getType();
    754   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
    755 
    756   assert(OrigTy->isSized());
    757   uint32_t TypeSize = DL->getTypeStoreSizeInBits(OrigTy);
    758 
    759   assert((TypeSize % 8) == 0);
    760 
    761   if (IsWrite)
    762     NumInstrumentedWrites++;
    763   else
    764     NumInstrumentedReads++;
    765 
    766   unsigned Granularity = 1 << Mapping.Scale;
    767   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
    768   // if the data is properly aligned.
    769   if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
    770        TypeSize == 128) &&
    771       (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
    772     return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls);
    773   // Instrument unusual size or unusual alignment.
    774   // We can not do it with a single check, so we do 1-byte check for the first
    775   // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
    776   // to report the actual access size.
    777   IRBuilder<> IRB(I);
    778   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
    779   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
    780   if (UseCalls) {
    781     IRB.CreateCall2(AsanMemoryAccessCallbackSized[IsWrite], AddrLong, Size);
    782   } else {
    783     Value *LastByte = IRB.CreateIntToPtr(
    784         IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
    785         OrigPtrTy);
    786     instrumentAddress(I, I, Addr, 8, IsWrite, Size, false);
    787     instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false);
    788   }
    789 }
    790 
    791 // Validate the result of Module::getOrInsertFunction called for an interface
    792 // function of AddressSanitizer. If the instrumented module defines a function
    793 // with the same name, their prototypes must match, otherwise
    794 // getOrInsertFunction returns a bitcast.
    795 static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
    796   if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast);
    797   FuncOrBitcast->dump();
    798   report_fatal_error("trying to redefine an AddressSanitizer "
    799                      "interface function");
    800 }
    801 
    802 Instruction *AddressSanitizer::generateCrashCode(
    803     Instruction *InsertBefore, Value *Addr,
    804     bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument) {
    805   IRBuilder<> IRB(InsertBefore);
    806   CallInst *Call = SizeArgument
    807     ? IRB.CreateCall2(AsanErrorCallbackSized[IsWrite], Addr, SizeArgument)
    808     : IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr);
    809 
    810   // We don't do Call->setDoesNotReturn() because the BB already has
    811   // UnreachableInst at the end.
    812   // This EmptyAsm is required to avoid callback merge.
    813   IRB.CreateCall(EmptyAsm);
    814   return Call;
    815 }
    816 
    817 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
    818                                             Value *ShadowValue,
    819                                             uint32_t TypeSize) {
    820   size_t Granularity = 1 << Mapping.Scale;
    821   // Addr & (Granularity - 1)
    822   Value *LastAccessedByte = IRB.CreateAnd(
    823       AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
    824   // (Addr & (Granularity - 1)) + size - 1
    825   if (TypeSize / 8 > 1)
    826     LastAccessedByte = IRB.CreateAdd(
    827         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
    828   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
    829   LastAccessedByte = IRB.CreateIntCast(
    830       LastAccessedByte, ShadowValue->getType(), false);
    831   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
    832   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
    833 }
    834 
    835 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
    836                                          Instruction *InsertBefore, Value *Addr,
    837                                          uint32_t TypeSize, bool IsWrite,
    838                                          Value *SizeArgument, bool UseCalls) {
    839   IRBuilder<> IRB(InsertBefore);
    840   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
    841   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
    842 
    843   if (UseCalls) {
    844     IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][AccessSizeIndex],
    845                    AddrLong);
    846     return;
    847   }
    848 
    849   Type *ShadowTy  = IntegerType::get(
    850       *C, std::max(8U, TypeSize >> Mapping.Scale));
    851   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
    852   Value *ShadowPtr = memToShadow(AddrLong, IRB);
    853   Value *CmpVal = Constant::getNullValue(ShadowTy);
    854   Value *ShadowValue = IRB.CreateLoad(
    855       IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
    856 
    857   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
    858   size_t Granularity = 1 << Mapping.Scale;
    859   TerminatorInst *CrashTerm = nullptr;
    860 
    861   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
    862     TerminatorInst *CheckTerm =
    863         SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
    864     assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional());
    865     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
    866     IRB.SetInsertPoint(CheckTerm);
    867     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
    868     BasicBlock *CrashBlock =
    869         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
    870     CrashTerm = new UnreachableInst(*C, CrashBlock);
    871     BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
    872     ReplaceInstWithInst(CheckTerm, NewTerm);
    873   } else {
    874     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, true);
    875   }
    876 
    877   Instruction *Crash = generateCrashCode(
    878       CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument);
    879   Crash->setDebugLoc(OrigIns->getDebugLoc());
    880 }
    881 
    882 void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit,
    883                                                   GlobalValue *ModuleName) {
    884   // Set up the arguments to our poison/unpoison functions.
    885   IRBuilder<> IRB(GlobalInit.begin()->getFirstInsertionPt());
    886 
    887   // Add a call to poison all external globals before the given function starts.
    888   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
    889   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
    890 
    891   // Add calls to unpoison all globals before each return instruction.
    892   for (auto &BB : GlobalInit.getBasicBlockList())
    893     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
    894       CallInst::Create(AsanUnpoisonGlobals, "", RI);
    895 }
    896 
    897 void AddressSanitizerModule::createInitializerPoisonCalls(
    898     Module &M, GlobalValue *ModuleName) {
    899   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
    900 
    901   ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
    902   for (Use &OP : CA->operands()) {
    903     if (isa<ConstantAggregateZero>(OP))
    904       continue;
    905     ConstantStruct *CS = cast<ConstantStruct>(OP);
    906 
    907     // Must have a function or null ptr.
    908     // (CS->getOperand(0) is the init priority.)
    909     if (Function* F = dyn_cast<Function>(CS->getOperand(1))) {
    910       if (F->getName() != kAsanModuleCtorName)
    911         poisonOneInitializer(*F, ModuleName);
    912     }
    913   }
    914 }
    915 
    916 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
    917   Type *Ty = cast<PointerType>(G->getType())->getElementType();
    918   DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
    919 
    920   if (GlobalsMD.isBlacklisted(G)) return false;
    921   if (GlobalsMD.isSourceLocationGlobal(G)) return false;
    922   if (!Ty->isSized()) return false;
    923   if (!G->hasInitializer()) return false;
    924   if (GlobalWasGeneratedByAsan(G)) return false;  // Our own global.
    925   // Touch only those globals that will not be defined in other modules.
    926   // Don't handle ODR linkage types and COMDATs since other modules may be built
    927   // without ASan.
    928   if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
    929       G->getLinkage() != GlobalVariable::PrivateLinkage &&
    930       G->getLinkage() != GlobalVariable::InternalLinkage)
    931     return false;
    932   if (G->hasComdat())
    933     return false;
    934   // Two problems with thread-locals:
    935   //   - The address of the main thread's copy can't be computed at link-time.
    936   //   - Need to poison all copies, not just the main thread's one.
    937   if (G->isThreadLocal())
    938     return false;
    939   // For now, just ignore this Global if the alignment is large.
    940   if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
    941 
    942   // Ignore all the globals with the names starting with "\01L_OBJC_".
    943   // Many of those are put into the .cstring section. The linker compresses
    944   // that section by removing the spare \0s after the string terminator, so
    945   // our redzones get broken.
    946   if ((G->getName().find("\01L_OBJC_") == 0) ||
    947       (G->getName().find("\01l_OBJC_") == 0)) {
    948     DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G << "\n");
    949     return false;
    950   }
    951 
    952   if (G->hasSection()) {
    953     StringRef Section(G->getSection());
    954     // Ignore the globals from the __OBJC section. The ObjC runtime assumes
    955     // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
    956     // them.
    957     if (Section.startswith("__OBJC,") ||
    958         Section.startswith("__DATA, __objc_")) {
    959       DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
    960       return false;
    961     }
    962     // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
    963     // Constant CFString instances are compiled in the following way:
    964     //  -- the string buffer is emitted into
    965     //     __TEXT,__cstring,cstring_literals
    966     //  -- the constant NSConstantString structure referencing that buffer
    967     //     is placed into __DATA,__cfstring
    968     // Therefore there's no point in placing redzones into __DATA,__cfstring.
    969     // Moreover, it causes the linker to crash on OS X 10.7
    970     if (Section.startswith("__DATA,__cfstring")) {
    971       DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
    972       return false;
    973     }
    974     // The linker merges the contents of cstring_literals and removes the
    975     // trailing zeroes.
    976     if (Section.startswith("__TEXT,__cstring,cstring_literals")) {
    977       DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
    978       return false;
    979     }
    980 
    981     // Callbacks put into the CRT initializer/terminator sections
    982     // should not be instrumented.
    983     // See https://code.google.com/p/address-sanitizer/issues/detail?id=305
    984     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
    985     if (Section.startswith(".CRT")) {
    986       DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n");
    987       return false;
    988     }
    989 
    990     // Globals from llvm.metadata aren't emitted, do not instrument them.
    991     if (Section == "llvm.metadata") return false;
    992   }
    993 
    994   return true;
    995 }
    996 
    997 void AddressSanitizerModule::initializeCallbacks(Module &M) {
    998   IRBuilder<> IRB(*C);
    999   // Declare our poisoning and unpoisoning functions.
   1000   AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
   1001       kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, NULL));
   1002   AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
   1003   AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
   1004       kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL));
   1005   AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
   1006   // Declare functions that register/unregister globals.
   1007   AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
   1008       kAsanRegisterGlobalsName, IRB.getVoidTy(),
   1009       IntptrTy, IntptrTy, NULL));
   1010   AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
   1011   AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
   1012       kAsanUnregisterGlobalsName,
   1013       IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1014   AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
   1015   AsanCovModuleInit = checkInterfaceFunction(M.getOrInsertFunction(
   1016       kAsanCovModuleInitName,
   1017       IRB.getVoidTy(), IntptrTy, NULL));
   1018   AsanCovModuleInit->setLinkage(Function::ExternalLinkage);
   1019 }
   1020 
   1021 // This function replaces all global variables with new variables that have
   1022 // trailing redzones. It also creates a function that poisons
   1023 // redzones and inserts this function into llvm.global_ctors.
   1024 bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
   1025   GlobalsMD.init(M);
   1026 
   1027   SmallVector<GlobalVariable *, 16> GlobalsToChange;
   1028 
   1029   for (auto &G : M.globals()) {
   1030     if (ShouldInstrumentGlobal(&G))
   1031       GlobalsToChange.push_back(&G);
   1032   }
   1033 
   1034   size_t n = GlobalsToChange.size();
   1035   if (n == 0) return false;
   1036 
   1037   // A global is described by a structure
   1038   //   size_t beg;
   1039   //   size_t size;
   1040   //   size_t size_with_redzone;
   1041   //   const char *name;
   1042   //   const char *module_name;
   1043   //   size_t has_dynamic_init;
   1044   //   void *source_location;
   1045   // We initialize an array of such structures and pass it to a run-time call.
   1046   StructType *GlobalStructTy =
   1047       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
   1048                       IntptrTy, IntptrTy, NULL);
   1049   SmallVector<Constant *, 16> Initializers(n);
   1050 
   1051   bool HasDynamicallyInitializedGlobals = false;
   1052 
   1053   // We shouldn't merge same module names, as this string serves as unique
   1054   // module ID in runtime.
   1055   GlobalVariable *ModuleName = createPrivateGlobalForString(
   1056       M, M.getModuleIdentifier(), /*AllowMerging*/false);
   1057 
   1058   for (size_t i = 0; i < n; i++) {
   1059     static const uint64_t kMaxGlobalRedzone = 1 << 18;
   1060     GlobalVariable *G = GlobalsToChange[i];
   1061     PointerType *PtrTy = cast<PointerType>(G->getType());
   1062     Type *Ty = PtrTy->getElementType();
   1063     uint64_t SizeInBytes = DL->getTypeAllocSize(Ty);
   1064     uint64_t MinRZ = MinRedzoneSizeForGlobal();
   1065     // MinRZ <= RZ <= kMaxGlobalRedzone
   1066     // and trying to make RZ to be ~ 1/4 of SizeInBytes.
   1067     uint64_t RZ = std::max(MinRZ,
   1068                          std::min(kMaxGlobalRedzone,
   1069                                   (SizeInBytes / MinRZ / 4) * MinRZ));
   1070     uint64_t RightRedzoneSize = RZ;
   1071     // Round up to MinRZ
   1072     if (SizeInBytes % MinRZ)
   1073       RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
   1074     assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
   1075     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
   1076 
   1077     StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL);
   1078     Constant *NewInitializer = ConstantStruct::get(
   1079         NewTy, G->getInitializer(),
   1080         Constant::getNullValue(RightRedZoneTy), NULL);
   1081 
   1082     GlobalVariable *Name =
   1083         createPrivateGlobalForString(M, G->getName(), /*AllowMerging*/true);
   1084 
   1085     // Create a new global variable with enough space for a redzone.
   1086     GlobalValue::LinkageTypes Linkage = G->getLinkage();
   1087     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
   1088       Linkage = GlobalValue::InternalLinkage;
   1089     GlobalVariable *NewGlobal = new GlobalVariable(
   1090         M, NewTy, G->isConstant(), Linkage,
   1091         NewInitializer, "", G, G->getThreadLocalMode());
   1092     NewGlobal->copyAttributesFrom(G);
   1093     NewGlobal->setAlignment(MinRZ);
   1094 
   1095     Value *Indices2[2];
   1096     Indices2[0] = IRB.getInt32(0);
   1097     Indices2[1] = IRB.getInt32(0);
   1098 
   1099     G->replaceAllUsesWith(
   1100         ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true));
   1101     NewGlobal->takeName(G);
   1102     G->eraseFromParent();
   1103 
   1104     bool GlobalHasDynamicInitializer = GlobalsMD.isDynInit(G);
   1105     GlobalVariable *SourceLoc = GlobalsMD.getSourceLocation(G);
   1106 
   1107     Initializers[i] = ConstantStruct::get(
   1108         GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
   1109         ConstantInt::get(IntptrTy, SizeInBytes),
   1110         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
   1111         ConstantExpr::getPointerCast(Name, IntptrTy),
   1112         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
   1113         ConstantInt::get(IntptrTy, GlobalHasDynamicInitializer),
   1114         SourceLoc ? ConstantExpr::getPointerCast(SourceLoc, IntptrTy)
   1115                   : ConstantInt::get(IntptrTy, 0),
   1116         NULL);
   1117 
   1118     if (ClInitializers && GlobalHasDynamicInitializer)
   1119       HasDynamicallyInitializedGlobals = true;
   1120 
   1121     DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
   1122   }
   1123 
   1124   ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
   1125   GlobalVariable *AllGlobals = new GlobalVariable(
   1126       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
   1127       ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
   1128 
   1129   // Create calls for poisoning before initializers run and unpoisoning after.
   1130   if (HasDynamicallyInitializedGlobals)
   1131     createInitializerPoisonCalls(M, ModuleName);
   1132   IRB.CreateCall2(AsanRegisterGlobals,
   1133                   IRB.CreatePointerCast(AllGlobals, IntptrTy),
   1134                   ConstantInt::get(IntptrTy, n));
   1135 
   1136   // We also need to unregister globals at the end, e.g. when a shared library
   1137   // gets closed.
   1138   Function *AsanDtorFunction = Function::Create(
   1139       FunctionType::get(Type::getVoidTy(*C), false),
   1140       GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
   1141   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
   1142   IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
   1143   IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
   1144                        IRB.CreatePointerCast(AllGlobals, IntptrTy),
   1145                        ConstantInt::get(IntptrTy, n));
   1146   appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
   1147 
   1148   DEBUG(dbgs() << M);
   1149   return true;
   1150 }
   1151 
   1152 bool AddressSanitizerModule::runOnModule(Module &M) {
   1153   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
   1154   if (!DLP)
   1155     return false;
   1156   DL = &DLP->getDataLayout();
   1157   C = &(M.getContext());
   1158   int LongSize = DL->getPointerSizeInBits();
   1159   IntptrTy = Type::getIntNTy(*C, LongSize);
   1160   Mapping = getShadowMapping(M, LongSize);
   1161   initializeCallbacks(M);
   1162 
   1163   bool Changed = false;
   1164 
   1165   Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
   1166   assert(CtorFunc);
   1167   IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
   1168 
   1169   if (ClCoverage > 0) {
   1170     Function *CovFunc = M.getFunction(kAsanCovName);
   1171     int nCov = CovFunc ? CovFunc->getNumUses() : 0;
   1172     IRB.CreateCall(AsanCovModuleInit, ConstantInt::get(IntptrTy, nCov));
   1173     Changed = true;
   1174   }
   1175 
   1176   if (ClGlobals)
   1177     Changed |= InstrumentGlobals(IRB, M);
   1178 
   1179   return Changed;
   1180 }
   1181 
   1182 void AddressSanitizer::initializeCallbacks(Module &M) {
   1183   IRBuilder<> IRB(*C);
   1184   // Create __asan_report* callbacks.
   1185   for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
   1186     for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
   1187          AccessSizeIndex++) {
   1188       // IsWrite and TypeSize are encoded in the function name.
   1189       std::string Suffix =
   1190           (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex);
   1191       AsanErrorCallback[AccessIsWrite][AccessSizeIndex] =
   1192           checkInterfaceFunction(
   1193               M.getOrInsertFunction(kAsanReportErrorTemplate + Suffix,
   1194                                     IRB.getVoidTy(), IntptrTy, NULL));
   1195       AsanMemoryAccessCallback[AccessIsWrite][AccessSizeIndex] =
   1196           checkInterfaceFunction(
   1197               M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + Suffix,
   1198                                     IRB.getVoidTy(), IntptrTy, NULL));
   1199     }
   1200   }
   1201   AsanErrorCallbackSized[0] = checkInterfaceFunction(M.getOrInsertFunction(
   1202               kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1203   AsanErrorCallbackSized[1] = checkInterfaceFunction(M.getOrInsertFunction(
   1204               kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1205 
   1206   AsanMemoryAccessCallbackSized[0] = checkInterfaceFunction(
   1207       M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "loadN",
   1208                             IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1209   AsanMemoryAccessCallbackSized[1] = checkInterfaceFunction(
   1210       M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "storeN",
   1211                             IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1212 
   1213   AsanMemmove = checkInterfaceFunction(M.getOrInsertFunction(
   1214       ClMemoryAccessCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
   1215       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, NULL));
   1216   AsanMemcpy = checkInterfaceFunction(M.getOrInsertFunction(
   1217       ClMemoryAccessCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
   1218       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, NULL));
   1219   AsanMemset = checkInterfaceFunction(M.getOrInsertFunction(
   1220       ClMemoryAccessCallbackPrefix + "memset", IRB.getInt8PtrTy(),
   1221       IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, NULL));
   1222 
   1223   AsanHandleNoReturnFunc = checkInterfaceFunction(
   1224       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), NULL));
   1225   AsanCovFunction = checkInterfaceFunction(M.getOrInsertFunction(
   1226       kAsanCovName, IRB.getVoidTy(), NULL));
   1227   AsanPtrCmpFunction = checkInterfaceFunction(M.getOrInsertFunction(
   1228       kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1229   AsanPtrSubFunction = checkInterfaceFunction(M.getOrInsertFunction(
   1230       kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1231   // We insert an empty inline asm after __asan_report* to avoid callback merge.
   1232   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
   1233                             StringRef(""), StringRef(""),
   1234                             /*hasSideEffects=*/true);
   1235 }
   1236 
   1237 // virtual
   1238 bool AddressSanitizer::doInitialization(Module &M) {
   1239   // Initialize the private fields. No one has accessed them before.
   1240   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
   1241   if (!DLP)
   1242     report_fatal_error("data layout missing");
   1243   DL = &DLP->getDataLayout();
   1244 
   1245   GlobalsMD.init(M);
   1246 
   1247   C = &(M.getContext());
   1248   LongSize = DL->getPointerSizeInBits();
   1249   IntptrTy = Type::getIntNTy(*C, LongSize);
   1250 
   1251   AsanCtorFunction = Function::Create(
   1252       FunctionType::get(Type::getVoidTy(*C), false),
   1253       GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
   1254   BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
   1255   // call __asan_init in the module ctor.
   1256   IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB));
   1257   AsanInitFunction = checkInterfaceFunction(
   1258       M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL));
   1259   AsanInitFunction->setLinkage(Function::ExternalLinkage);
   1260   IRB.CreateCall(AsanInitFunction);
   1261 
   1262   Mapping = getShadowMapping(M, LongSize);
   1263 
   1264   appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
   1265   return true;
   1266 }
   1267 
   1268 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
   1269   // For each NSObject descendant having a +load method, this method is invoked
   1270   // by the ObjC runtime before any of the static constructors is called.
   1271   // Therefore we need to instrument such methods with a call to __asan_init
   1272   // at the beginning in order to initialize our runtime before any access to
   1273   // the shadow memory.
   1274   // We cannot just ignore these methods, because they may call other
   1275   // instrumented functions.
   1276   if (F.getName().find(" load]") != std::string::npos) {
   1277     IRBuilder<> IRB(F.begin()->begin());
   1278     IRB.CreateCall(AsanInitFunction);
   1279     return true;
   1280   }
   1281   return false;
   1282 }
   1283 
   1284 void AddressSanitizer::InjectCoverageAtBlock(Function &F, BasicBlock &BB) {
   1285   BasicBlock::iterator IP = BB.getFirstInsertionPt(), BE = BB.end();
   1286   // Skip static allocas at the top of the entry block so they don't become
   1287   // dynamic when we split the block.  If we used our optimized stack layout,
   1288   // then there will only be one alloca and it will come first.
   1289   for (; IP != BE; ++IP) {
   1290     AllocaInst *AI = dyn_cast<AllocaInst>(IP);
   1291     if (!AI || !AI->isStaticAlloca())
   1292       break;
   1293   }
   1294 
   1295   DebugLoc EntryLoc = IP->getDebugLoc().getFnDebugLoc(*C);
   1296   IRBuilder<> IRB(IP);
   1297   IRB.SetCurrentDebugLocation(EntryLoc);
   1298   Type *Int8Ty = IRB.getInt8Ty();
   1299   GlobalVariable *Guard = new GlobalVariable(
   1300       *F.getParent(), Int8Ty, false, GlobalValue::PrivateLinkage,
   1301       Constant::getNullValue(Int8Ty), "__asan_gen_cov_" + F.getName());
   1302   LoadInst *Load = IRB.CreateLoad(Guard);
   1303   Load->setAtomic(Monotonic);
   1304   Load->setAlignment(1);
   1305   Value *Cmp = IRB.CreateICmpEQ(Constant::getNullValue(Int8Ty), Load);
   1306   Instruction *Ins = SplitBlockAndInsertIfThen(
   1307       Cmp, IP, false, MDBuilder(*C).createBranchWeights(1, 100000));
   1308   IRB.SetInsertPoint(Ins);
   1309   IRB.SetCurrentDebugLocation(EntryLoc);
   1310   // We pass &F to __sanitizer_cov. We could avoid this and rely on
   1311   // GET_CALLER_PC, but having the PC of the first instruction is just nice.
   1312   IRB.CreateCall(AsanCovFunction);
   1313   StoreInst *Store = IRB.CreateStore(ConstantInt::get(Int8Ty, 1), Guard);
   1314   Store->setAtomic(Monotonic);
   1315   Store->setAlignment(1);
   1316 }
   1317 
   1318 // Poor man's coverage that works with ASan.
   1319 // We create a Guard boolean variable with the same linkage
   1320 // as the function and inject this code into the entry block (-asan-coverage=1)
   1321 // or all blocks (-asan-coverage=2):
   1322 // if (*Guard) {
   1323 //    __sanitizer_cov(&F);
   1324 //    *Guard = 1;
   1325 // }
   1326 // The accesses to Guard are atomic. The rest of the logic is
   1327 // in __sanitizer_cov (it's fine to call it more than once).
   1328 //
   1329 // This coverage implementation provides very limited data:
   1330 // it only tells if a given function (block) was ever executed.
   1331 // No counters, no per-edge data.
   1332 // But for many use cases this is what we need and the added slowdown
   1333 // is negligible. This simple implementation will probably be obsoleted
   1334 // by the upcoming Clang-based coverage implementation.
   1335 // By having it here and now we hope to
   1336 //  a) get the functionality to users earlier and
   1337 //  b) collect usage statistics to help improve Clang coverage design.
   1338 bool AddressSanitizer::InjectCoverage(Function &F,
   1339                                       const ArrayRef<BasicBlock *> AllBlocks) {
   1340   if (!ClCoverage) return false;
   1341 
   1342   if (ClCoverage == 1 ||
   1343       (unsigned)ClCoverageBlockThreshold < AllBlocks.size()) {
   1344     InjectCoverageAtBlock(F, F.getEntryBlock());
   1345   } else {
   1346     for (auto BB : AllBlocks)
   1347       InjectCoverageAtBlock(F, *BB);
   1348   }
   1349   return true;
   1350 }
   1351 
   1352 bool AddressSanitizer::runOnFunction(Function &F) {
   1353   if (&F == AsanCtorFunction) return false;
   1354   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
   1355   DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
   1356   initializeCallbacks(*F.getParent());
   1357 
   1358   // If needed, insert __asan_init before checking for SanitizeAddress attr.
   1359   maybeInsertAsanInitAtFunctionEntry(F);
   1360 
   1361   if (!F.hasFnAttribute(Attribute::SanitizeAddress))
   1362     return false;
   1363 
   1364   if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
   1365     return false;
   1366 
   1367   // We want to instrument every address only once per basic block (unless there
   1368   // are calls between uses).
   1369   SmallSet<Value*, 16> TempsToInstrument;
   1370   SmallVector<Instruction*, 16> ToInstrument;
   1371   SmallVector<Instruction*, 8> NoReturnCalls;
   1372   SmallVector<BasicBlock*, 16> AllBlocks;
   1373   SmallVector<Instruction*, 16> PointerComparisonsOrSubtracts;
   1374   int NumAllocas = 0;
   1375   bool IsWrite;
   1376   unsigned Alignment;
   1377 
   1378   // Fill the set of memory operations to instrument.
   1379   for (auto &BB : F) {
   1380     AllBlocks.push_back(&BB);
   1381     TempsToInstrument.clear();
   1382     int NumInsnsPerBB = 0;
   1383     for (auto &Inst : BB) {
   1384       if (LooksLikeCodeInBug11395(&Inst)) return false;
   1385       if (Value *Addr =
   1386               isInterestingMemoryAccess(&Inst, &IsWrite, &Alignment)) {
   1387         if (ClOpt && ClOptSameTemp) {
   1388           if (!TempsToInstrument.insert(Addr))
   1389             continue;  // We've seen this temp in the current BB.
   1390         }
   1391       } else if (ClInvalidPointerPairs &&
   1392                  isInterestingPointerComparisonOrSubtraction(&Inst)) {
   1393         PointerComparisonsOrSubtracts.push_back(&Inst);
   1394         continue;
   1395       } else if (isa<MemIntrinsic>(Inst)) {
   1396         // ok, take it.
   1397       } else {
   1398         if (isa<AllocaInst>(Inst))
   1399           NumAllocas++;
   1400         CallSite CS(&Inst);
   1401         if (CS) {
   1402           // A call inside BB.
   1403           TempsToInstrument.clear();
   1404           if (CS.doesNotReturn())
   1405             NoReturnCalls.push_back(CS.getInstruction());
   1406         }
   1407         continue;
   1408       }
   1409       ToInstrument.push_back(&Inst);
   1410       NumInsnsPerBB++;
   1411       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB)
   1412         break;
   1413     }
   1414   }
   1415 
   1416   Function *UninstrumentedDuplicate = nullptr;
   1417   bool LikelyToInstrument =
   1418       !NoReturnCalls.empty() || !ToInstrument.empty() || (NumAllocas > 0);
   1419   if (ClKeepUninstrumented && LikelyToInstrument) {
   1420     ValueToValueMapTy VMap;
   1421     UninstrumentedDuplicate = CloneFunction(&F, VMap, false);
   1422     UninstrumentedDuplicate->removeFnAttr(Attribute::SanitizeAddress);
   1423     UninstrumentedDuplicate->setName("NOASAN_" + F.getName());
   1424     F.getParent()->getFunctionList().push_back(UninstrumentedDuplicate);
   1425   }
   1426 
   1427   bool UseCalls = false;
   1428   if (ClInstrumentationWithCallsThreshold >= 0 &&
   1429       ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold)
   1430     UseCalls = true;
   1431 
   1432   // Instrument.
   1433   int NumInstrumented = 0;
   1434   for (auto Inst : ToInstrument) {
   1435     if (ClDebugMin < 0 || ClDebugMax < 0 ||
   1436         (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
   1437       if (isInterestingMemoryAccess(Inst, &IsWrite, &Alignment))
   1438         instrumentMop(Inst, UseCalls);
   1439       else
   1440         instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
   1441     }
   1442     NumInstrumented++;
   1443   }
   1444 
   1445   FunctionStackPoisoner FSP(F, *this);
   1446   bool ChangedStack = FSP.runOnFunction();
   1447 
   1448   // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
   1449   // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
   1450   for (auto CI : NoReturnCalls) {
   1451     IRBuilder<> IRB(CI);
   1452     IRB.CreateCall(AsanHandleNoReturnFunc);
   1453   }
   1454 
   1455   for (auto Inst : PointerComparisonsOrSubtracts) {
   1456     instrumentPointerComparisonOrSubtraction(Inst);
   1457     NumInstrumented++;
   1458   }
   1459 
   1460   bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
   1461 
   1462   if (InjectCoverage(F, AllBlocks))
   1463     res = true;
   1464 
   1465   DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n");
   1466 
   1467   if (ClKeepUninstrumented) {
   1468     if (!res) {
   1469       // No instrumentation is done, no need for the duplicate.
   1470       if (UninstrumentedDuplicate)
   1471         UninstrumentedDuplicate->eraseFromParent();
   1472     } else {
   1473       // The function was instrumented. We must have the duplicate.
   1474       assert(UninstrumentedDuplicate);
   1475       UninstrumentedDuplicate->setSection("NOASAN");
   1476       assert(!F.hasSection());
   1477       F.setSection("ASAN");
   1478     }
   1479   }
   1480 
   1481   return res;
   1482 }
   1483 
   1484 // Workaround for bug 11395: we don't want to instrument stack in functions
   1485 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
   1486 // FIXME: remove once the bug 11395 is fixed.
   1487 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
   1488   if (LongSize != 32) return false;
   1489   CallInst *CI = dyn_cast<CallInst>(I);
   1490   if (!CI || !CI->isInlineAsm()) return false;
   1491   if (CI->getNumArgOperands() <= 5) return false;
   1492   // We have inline assembly with quite a few arguments.
   1493   return true;
   1494 }
   1495 
   1496 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
   1497   IRBuilder<> IRB(*C);
   1498   for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
   1499     std::string Suffix = itostr(i);
   1500     AsanStackMallocFunc[i] = checkInterfaceFunction(
   1501         M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
   1502                               IntptrTy, IntptrTy, NULL));
   1503     AsanStackFreeFunc[i] = checkInterfaceFunction(M.getOrInsertFunction(
   1504         kAsanStackFreeNameTemplate + Suffix, IRB.getVoidTy(), IntptrTy,
   1505         IntptrTy, IntptrTy, NULL));
   1506   }
   1507   AsanPoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
   1508       kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1509   AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
   1510       kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1511 }
   1512 
   1513 void
   1514 FunctionStackPoisoner::poisonRedZones(const ArrayRef<uint8_t> ShadowBytes,
   1515                                       IRBuilder<> &IRB, Value *ShadowBase,
   1516                                       bool DoPoison) {
   1517   size_t n = ShadowBytes.size();
   1518   size_t i = 0;
   1519   // We need to (un)poison n bytes of stack shadow. Poison as many as we can
   1520   // using 64-bit stores (if we are on 64-bit arch), then poison the rest
   1521   // with 32-bit stores, then with 16-byte stores, then with 8-byte stores.
   1522   for (size_t LargeStoreSizeInBytes = ASan.LongSize / 8;
   1523        LargeStoreSizeInBytes != 0; LargeStoreSizeInBytes /= 2) {
   1524     for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) {
   1525       uint64_t Val = 0;
   1526       for (size_t j = 0; j < LargeStoreSizeInBytes; j++) {
   1527         if (ASan.DL->isLittleEndian())
   1528           Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
   1529         else
   1530           Val = (Val << 8) | ShadowBytes[i + j];
   1531       }
   1532       if (!Val) continue;
   1533       Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
   1534       Type *StoreTy = Type::getIntNTy(*C, LargeStoreSizeInBytes * 8);
   1535       Value *Poison = ConstantInt::get(StoreTy, DoPoison ? Val : 0);
   1536       IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, StoreTy->getPointerTo()));
   1537     }
   1538   }
   1539 }
   1540 
   1541 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
   1542 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
   1543 static int StackMallocSizeClass(uint64_t LocalStackSize) {
   1544   assert(LocalStackSize <= kMaxStackMallocSize);
   1545   uint64_t MaxSize = kMinStackMallocSize;
   1546   for (int i = 0; ; i++, MaxSize *= 2)
   1547     if (LocalStackSize <= MaxSize)
   1548       return i;
   1549   llvm_unreachable("impossible LocalStackSize");
   1550 }
   1551 
   1552 // Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic.
   1553 // We can not use MemSet intrinsic because it may end up calling the actual
   1554 // memset. Size is a multiple of 8.
   1555 // Currently this generates 8-byte stores on x86_64; it may be better to
   1556 // generate wider stores.
   1557 void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined(
   1558     IRBuilder<> &IRB, Value *ShadowBase, int Size) {
   1559   assert(!(Size % 8));
   1560   assert(kAsanStackAfterReturnMagic == 0xf5);
   1561   for (int i = 0; i < Size; i += 8) {
   1562     Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
   1563     IRB.CreateStore(ConstantInt::get(IRB.getInt64Ty(), 0xf5f5f5f5f5f5f5f5ULL),
   1564                     IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo()));
   1565   }
   1566 }
   1567 
   1568 static DebugLoc getFunctionEntryDebugLocation(Function &F) {
   1569   for (const auto &Inst : F.getEntryBlock())
   1570     if (!isa<AllocaInst>(Inst))
   1571       return Inst.getDebugLoc();
   1572   return DebugLoc();
   1573 }
   1574 
   1575 void FunctionStackPoisoner::poisonStack() {
   1576   int StackMallocIdx = -1;
   1577   DebugLoc EntryDebugLocation = getFunctionEntryDebugLocation(F);
   1578 
   1579   assert(AllocaVec.size() > 0);
   1580   Instruction *InsBefore = AllocaVec[0];
   1581   IRBuilder<> IRB(InsBefore);
   1582   IRB.SetCurrentDebugLocation(EntryDebugLocation);
   1583 
   1584   SmallVector<ASanStackVariableDescription, 16> SVD;
   1585   SVD.reserve(AllocaVec.size());
   1586   for (AllocaInst *AI : AllocaVec) {
   1587     ASanStackVariableDescription D = { AI->getName().data(),
   1588                                    getAllocaSizeInBytes(AI),
   1589                                    AI->getAlignment(), AI, 0};
   1590     SVD.push_back(D);
   1591   }
   1592   // Minimal header size (left redzone) is 4 pointers,
   1593   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
   1594   size_t MinHeaderSize = ASan.LongSize / 2;
   1595   ASanStackFrameLayout L;
   1596   ComputeASanStackFrameLayout(SVD, 1UL << Mapping.Scale, MinHeaderSize, &L);
   1597   DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n");
   1598   uint64_t LocalStackSize = L.FrameSize;
   1599   bool DoStackMalloc =
   1600       ClUseAfterReturn && LocalStackSize <= kMaxStackMallocSize;
   1601 
   1602   Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize);
   1603   AllocaInst *MyAlloca =
   1604       new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore);
   1605   MyAlloca->setDebugLoc(EntryDebugLocation);
   1606   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
   1607   size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
   1608   MyAlloca->setAlignment(FrameAlignment);
   1609   assert(MyAlloca->isStaticAlloca());
   1610   Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy);
   1611   Value *LocalStackBase = OrigStackBase;
   1612 
   1613   if (DoStackMalloc) {
   1614     // LocalStackBase = OrigStackBase
   1615     // if (__asan_option_detect_stack_use_after_return)
   1616     //   LocalStackBase = __asan_stack_malloc_N(LocalStackBase, OrigStackBase);
   1617     StackMallocIdx = StackMallocSizeClass(LocalStackSize);
   1618     assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
   1619     Constant *OptionDetectUAR = F.getParent()->getOrInsertGlobal(
   1620         kAsanOptionDetectUAR, IRB.getInt32Ty());
   1621     Value *Cmp = IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR),
   1622                                   Constant::getNullValue(IRB.getInt32Ty()));
   1623     Instruction *Term = SplitBlockAndInsertIfThen(Cmp, InsBefore, false);
   1624     BasicBlock *CmpBlock = cast<Instruction>(Cmp)->getParent();
   1625     IRBuilder<> IRBIf(Term);
   1626     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
   1627     LocalStackBase = IRBIf.CreateCall2(
   1628         AsanStackMallocFunc[StackMallocIdx],
   1629         ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase);
   1630     BasicBlock *SetBlock = cast<Instruction>(LocalStackBase)->getParent();
   1631     IRB.SetInsertPoint(InsBefore);
   1632     IRB.SetCurrentDebugLocation(EntryDebugLocation);
   1633     PHINode *Phi = IRB.CreatePHI(IntptrTy, 2);
   1634     Phi->addIncoming(OrigStackBase, CmpBlock);
   1635     Phi->addIncoming(LocalStackBase, SetBlock);
   1636     LocalStackBase = Phi;
   1637   }
   1638 
   1639   // Insert poison calls for lifetime intrinsics for alloca.
   1640   bool HavePoisonedAllocas = false;
   1641   for (const auto &APC : AllocaPoisonCallVec) {
   1642     assert(APC.InsBefore);
   1643     assert(APC.AI);
   1644     IRBuilder<> IRB(APC.InsBefore);
   1645     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
   1646     HavePoisonedAllocas |= APC.DoPoison;
   1647   }
   1648 
   1649   // Replace Alloca instructions with base+offset.
   1650   for (const auto &Desc : SVD) {
   1651     AllocaInst *AI = Desc.AI;
   1652     Value *NewAllocaPtr = IRB.CreateIntToPtr(
   1653         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
   1654         AI->getType());
   1655     replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB);
   1656     AI->replaceAllUsesWith(NewAllocaPtr);
   1657   }
   1658 
   1659   // The left-most redzone has enough space for at least 4 pointers.
   1660   // Write the Magic value to redzone[0].
   1661   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
   1662   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
   1663                   BasePlus0);
   1664   // Write the frame description constant to redzone[1].
   1665   Value *BasePlus1 = IRB.CreateIntToPtr(
   1666     IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, ASan.LongSize/8)),
   1667     IntptrPtrTy);
   1668   GlobalVariable *StackDescriptionGlobal =
   1669       createPrivateGlobalForString(*F.getParent(), L.DescriptionString,
   1670                                    /*AllowMerging*/true);
   1671   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal,
   1672                                              IntptrTy);
   1673   IRB.CreateStore(Description, BasePlus1);
   1674   // Write the PC to redzone[2].
   1675   Value *BasePlus2 = IRB.CreateIntToPtr(
   1676     IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy,
   1677                                                    2 * ASan.LongSize/8)),
   1678     IntptrPtrTy);
   1679   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
   1680 
   1681   // Poison the stack redzones at the entry.
   1682   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
   1683   poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true);
   1684 
   1685   // (Un)poison the stack before all ret instructions.
   1686   for (auto Ret : RetVec) {
   1687     IRBuilder<> IRBRet(Ret);
   1688     // Mark the current frame as retired.
   1689     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
   1690                        BasePlus0);
   1691     if (DoStackMalloc) {
   1692       assert(StackMallocIdx >= 0);
   1693       // if LocalStackBase != OrigStackBase:
   1694       //     // In use-after-return mode, poison the whole stack frame.
   1695       //     if StackMallocIdx <= 4
   1696       //         // For small sizes inline the whole thing:
   1697       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
   1698       //         **SavedFlagPtr(LocalStackBase) = 0
   1699       //     else
   1700       //         __asan_stack_free_N(LocalStackBase, OrigStackBase)
   1701       // else
   1702       //     <This is not a fake stack; unpoison the redzones>
   1703       Value *Cmp = IRBRet.CreateICmpNE(LocalStackBase, OrigStackBase);
   1704       TerminatorInst *ThenTerm, *ElseTerm;
   1705       SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
   1706 
   1707       IRBuilder<> IRBPoison(ThenTerm);
   1708       if (StackMallocIdx <= 4) {
   1709         int ClassSize = kMinStackMallocSize << StackMallocIdx;
   1710         SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase,
   1711                                            ClassSize >> Mapping.Scale);
   1712         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
   1713             LocalStackBase,
   1714             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
   1715         Value *SavedFlagPtr = IRBPoison.CreateLoad(
   1716             IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
   1717         IRBPoison.CreateStore(
   1718             Constant::getNullValue(IRBPoison.getInt8Ty()),
   1719             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
   1720       } else {
   1721         // For larger frames call __asan_stack_free_*.
   1722         IRBPoison.CreateCall3(AsanStackFreeFunc[StackMallocIdx], LocalStackBase,
   1723                               ConstantInt::get(IntptrTy, LocalStackSize),
   1724                               OrigStackBase);
   1725       }
   1726 
   1727       IRBuilder<> IRBElse(ElseTerm);
   1728       poisonRedZones(L.ShadowBytes, IRBElse, ShadowBase, false);
   1729     } else if (HavePoisonedAllocas) {
   1730       // If we poisoned some allocas in llvm.lifetime analysis,
   1731       // unpoison whole stack frame now.
   1732       assert(LocalStackBase == OrigStackBase);
   1733       poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false);
   1734     } else {
   1735       poisonRedZones(L.ShadowBytes, IRBRet, ShadowBase, false);
   1736     }
   1737   }
   1738 
   1739   // We are done. Remove the old unused alloca instructions.
   1740   for (auto AI : AllocaVec)
   1741     AI->eraseFromParent();
   1742 }
   1743 
   1744 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
   1745                                          IRBuilder<> &IRB, bool DoPoison) {
   1746   // For now just insert the call to ASan runtime.
   1747   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
   1748   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
   1749   IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc
   1750                            : AsanUnpoisonStackMemoryFunc,
   1751                   AddrArg, SizeArg);
   1752 }
   1753 
   1754 // Handling llvm.lifetime intrinsics for a given %alloca:
   1755 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
   1756 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
   1757 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
   1758 //     could be poisoned by previous llvm.lifetime.end instruction, as the
   1759 //     variable may go in and out of scope several times, e.g. in loops).
   1760 // (3) if we poisoned at least one %alloca in a function,
   1761 //     unpoison the whole stack frame at function exit.
   1762 
   1763 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
   1764   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
   1765     // We're intested only in allocas we can handle.
   1766     return isInterestingAlloca(*AI) ? AI : nullptr;
   1767   // See if we've already calculated (or started to calculate) alloca for a
   1768   // given value.
   1769   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
   1770   if (I != AllocaForValue.end())
   1771     return I->second;
   1772   // Store 0 while we're calculating alloca for value V to avoid
   1773   // infinite recursion if the value references itself.
   1774   AllocaForValue[V] = nullptr;
   1775   AllocaInst *Res = nullptr;
   1776   if (CastInst *CI = dyn_cast<CastInst>(V))
   1777     Res = findAllocaForValue(CI->getOperand(0));
   1778   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
   1779     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1780       Value *IncValue = PN->getIncomingValue(i);
   1781       // Allow self-referencing phi-nodes.
   1782       if (IncValue == PN) continue;
   1783       AllocaInst *IncValueAI = findAllocaForValue(IncValue);
   1784       // AI for incoming values should exist and should all be equal.
   1785       if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
   1786         return nullptr;
   1787       Res = IncValueAI;
   1788     }
   1789   }
   1790   if (Res)
   1791     AllocaForValue[V] = Res;
   1792   return Res;
   1793 }
   1794