Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012, 2013 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: keir (at) google.com (Keir Mierle)
     30 
     31 #ifndef CERES_INTERNAL_PARAMETER_BLOCK_H_
     32 #define CERES_INTERNAL_PARAMETER_BLOCK_H_
     33 
     34 #include <algorithm>
     35 #include <cstdlib>
     36 #include <limits>
     37 #include <string>
     38 #include "ceres/array_utils.h"
     39 #include "ceres/collections_port.h"
     40 #include "ceres/integral_types.h"
     41 #include "ceres/internal/eigen.h"
     42 #include "ceres/internal/port.h"
     43 #include "ceres/internal/scoped_ptr.h"
     44 #include "ceres/local_parameterization.h"
     45 #include "ceres/stringprintf.h"
     46 #include "glog/logging.h"
     47 
     48 namespace ceres {
     49 namespace internal {
     50 
     51 class ProblemImpl;
     52 class ResidualBlock;
     53 
     54 // The parameter block encodes the location of the user's original value, and
     55 // also the "current state" of the parameter. The evaluator uses whatever is in
     56 // the current state of the parameter when evaluating. This is inlined since the
     57 // methods are performance sensitive.
     58 //
     59 // The class is not thread-safe, unless only const methods are called. The
     60 // parameter block may also hold a pointer to a local parameterization; the
     61 // parameter block does not take ownership of this pointer, so the user is
     62 // responsible for the proper disposal of the local parameterization.
     63 class ParameterBlock {
     64  public:
     65   // TODO(keir): Decide what data structure is best here. Should this be a set?
     66   // Probably not, because sets are memory inefficient. However, if it's a
     67   // vector, you can get into pathological linear performance when removing a
     68   // residual block from a problem where all the residual blocks depend on one
     69   // parameter; for example, shared focal length in a bundle adjustment
     70   // problem. It might be worth making a custom structure that is just an array
     71   // when it is small, but transitions to a hash set when it has more elements.
     72   //
     73   // For now, use a hash set.
     74   typedef HashSet<ResidualBlock*> ResidualBlockSet;
     75 
     76   // Create a parameter block with the user state, size, and index specified.
     77   // The size is the size of the parameter block and the index is the position
     78   // of the parameter block inside a Program (if any).
     79   ParameterBlock(double* user_state, int size, int index) {
     80     Init(user_state, size, index, NULL);
     81   }
     82 
     83   ParameterBlock(double* user_state,
     84                  int size,
     85                  int index,
     86                  LocalParameterization* local_parameterization) {
     87     Init(user_state, size, index, local_parameterization);
     88   }
     89 
     90   // The size of the parameter block.
     91   int Size() const { return size_; }
     92 
     93   // Manipulate the parameter state.
     94   bool SetState(const double* x) {
     95     CHECK(x != NULL)
     96         << "Tried to set the state of constant parameter "
     97         << "with user location " << user_state_;
     98     CHECK(!is_constant_)
     99         << "Tried to set the state of constant parameter "
    100         << "with user location " << user_state_;
    101 
    102     state_ = x;
    103     return UpdateLocalParameterizationJacobian();
    104   }
    105 
    106   // Copy the current parameter state out to x. This is "GetState()" rather than
    107   // simply "state()" since it is actively copying the data into the passed
    108   // pointer.
    109   void GetState(double *x) const {
    110     if (x != state_) {
    111       memcpy(x, state_, sizeof(*state_) * size_);
    112     }
    113   }
    114 
    115   // Direct pointers to the current state.
    116   const double* state() const { return state_; }
    117   const double* user_state() const { return user_state_; }
    118   double* mutable_user_state() { return user_state_; }
    119   LocalParameterization* local_parameterization() const {
    120     return local_parameterization_;
    121   }
    122   LocalParameterization* mutable_local_parameterization() {
    123     return local_parameterization_;
    124   }
    125 
    126   // Set this parameter block to vary or not.
    127   void SetConstant() { is_constant_ = true; }
    128   void SetVarying() { is_constant_ = false; }
    129   bool IsConstant() const { return is_constant_; }
    130 
    131   // This parameter block's index in an array.
    132   int index() const { return index_; }
    133   void set_index(int index) { index_ = index; }
    134 
    135   // This parameter offset inside a larger state vector.
    136   int state_offset() const { return state_offset_; }
    137   void set_state_offset(int state_offset) { state_offset_ = state_offset; }
    138 
    139   // This parameter offset inside a larger delta vector.
    140   int delta_offset() const { return delta_offset_; }
    141   void set_delta_offset(int delta_offset) { delta_offset_ = delta_offset; }
    142 
    143   // Methods relating to the parameter block's parameterization.
    144 
    145   // The local to global jacobian. Returns NULL if there is no local
    146   // parameterization for this parameter block. The returned matrix is row-major
    147   // and has Size() rows and  LocalSize() columns.
    148   const double* LocalParameterizationJacobian() const {
    149     return local_parameterization_jacobian_.get();
    150   }
    151 
    152   int LocalSize() const {
    153     return (local_parameterization_ == NULL)
    154         ? size_
    155         : local_parameterization_->LocalSize();
    156   }
    157 
    158   // Set the parameterization. The parameterization can be set exactly once;
    159   // multiple calls to set the parameterization to different values will crash.
    160   // It is an error to pass NULL for the parameterization. The parameter block
    161   // does not take ownership of the parameterization.
    162   void SetParameterization(LocalParameterization* new_parameterization) {
    163     CHECK(new_parameterization != NULL) << "NULL parameterization invalid.";
    164     CHECK(new_parameterization->GlobalSize() == size_)
    165         << "Invalid parameterization for parameter block. The parameter block "
    166         << "has size " << size_ << " while the parameterization has a global "
    167         << "size of " << new_parameterization->GlobalSize() << ". Did you "
    168         << "accidentally use the wrong parameter block or parameterization?";
    169     if (new_parameterization != local_parameterization_) {
    170       CHECK(local_parameterization_ == NULL)
    171           << "Can't re-set the local parameterization; it leads to "
    172           << "ambiguous ownership.";
    173       local_parameterization_ = new_parameterization;
    174       local_parameterization_jacobian_.reset(
    175           new double[local_parameterization_->GlobalSize() *
    176                      local_parameterization_->LocalSize()]);
    177       CHECK(UpdateLocalParameterizationJacobian())
    178           << "Local parameterization Jacobian computation failed for x: "
    179           << ConstVectorRef(state_, Size()).transpose();
    180     } else {
    181       // Ignore the case that the parameterizations match.
    182     }
    183   }
    184 
    185   void SetUpperBound(int index, double upper_bound) {
    186     CHECK_LT(index, size_);
    187 
    188     if (upper_bounds_.get() == NULL) {
    189       upper_bounds_.reset(new double[size_]);
    190       std::fill(upper_bounds_.get(),
    191                 upper_bounds_.get() + size_,
    192                 std::numeric_limits<double>::max());
    193     }
    194 
    195     upper_bounds_[index] = upper_bound;
    196   };
    197 
    198   void SetLowerBound(int index, double lower_bound) {
    199     CHECK_LT(index, size_);
    200 
    201     if (lower_bounds_.get() == NULL) {
    202       lower_bounds_.reset(new double[size_]);
    203       std::fill(lower_bounds_.get(),
    204                 lower_bounds_.get() + size_,
    205                 -std::numeric_limits<double>::max());
    206     }
    207 
    208     lower_bounds_[index] = lower_bound;
    209   }
    210 
    211   // Generalization of the addition operation. This is the same as
    212   // LocalParameterization::Plus() followed by projection onto the
    213   // hyper cube implied by the bounds constraints.
    214   bool Plus(const double *x, const double* delta, double* x_plus_delta) {
    215     if (local_parameterization_ != NULL) {
    216       if (!local_parameterization_->Plus(x, delta, x_plus_delta)) {
    217         return false;
    218       }
    219     } else {
    220       VectorRef(x_plus_delta, size_) = ConstVectorRef(x, size_) +
    221                                        ConstVectorRef(delta,  size_);
    222     }
    223 
    224     // Project onto the box constraints.
    225     if (lower_bounds_.get() != NULL) {
    226       for (int i = 0; i < size_; ++i) {
    227         x_plus_delta[i] = std::max(x_plus_delta[i], lower_bounds_[i]);
    228       }
    229     }
    230 
    231     if (upper_bounds_.get() != NULL) {
    232       for (int i = 0; i < size_; ++i) {
    233         x_plus_delta[i] = std::min(x_plus_delta[i], upper_bounds_[i]);
    234       }
    235     }
    236 
    237     return true;
    238   }
    239 
    240   string ToString() const {
    241     return StringPrintf("{ user_state=%p, state=%p, size=%d, "
    242                         "constant=%d, index=%d, state_offset=%d, "
    243                         "delta_offset=%d }",
    244                         user_state_,
    245                         state_,
    246                         size_,
    247                         is_constant_,
    248                         index_,
    249                         state_offset_,
    250                         delta_offset_);
    251   }
    252 
    253   void EnableResidualBlockDependencies() {
    254     CHECK(residual_blocks_.get() == NULL)
    255         << "Ceres bug: There is already a residual block collection "
    256         << "for parameter block: " << ToString();
    257     residual_blocks_.reset(new ResidualBlockSet);
    258   }
    259 
    260   void AddResidualBlock(ResidualBlock* residual_block) {
    261     CHECK(residual_blocks_.get() != NULL)
    262         << "Ceres bug: The residual block collection is null for parameter "
    263         << "block: " << ToString();
    264     residual_blocks_->insert(residual_block);
    265   }
    266 
    267   void RemoveResidualBlock(ResidualBlock* residual_block) {
    268     CHECK(residual_blocks_.get() != NULL)
    269         << "Ceres bug: The residual block collection is null for parameter "
    270         << "block: " << ToString();
    271     CHECK(residual_blocks_->find(residual_block) != residual_blocks_->end())
    272         << "Ceres bug: Missing residual for parameter block: " << ToString();
    273     residual_blocks_->erase(residual_block);
    274   }
    275 
    276   // This is only intended for iterating; perhaps this should only expose
    277   // .begin() and .end().
    278   ResidualBlockSet* mutable_residual_blocks() {
    279     return residual_blocks_.get();
    280   }
    281 
    282   double LowerBoundForParameter(int index) const {
    283     if (lower_bounds_.get() == NULL) {
    284       return -std::numeric_limits<double>::max();
    285     } else {
    286       return lower_bounds_[index];
    287     }
    288   }
    289 
    290   double UpperBoundForParameter(int index) const {
    291     if (upper_bounds_.get() == NULL) {
    292       return std::numeric_limits<double>::max();
    293     } else {
    294       return upper_bounds_[index];
    295     }
    296   }
    297 
    298  private:
    299   void Init(double* user_state,
    300             int size,
    301             int index,
    302             LocalParameterization* local_parameterization) {
    303     user_state_ = user_state;
    304     size_ = size;
    305     index_ = index;
    306     is_constant_ = false;
    307     state_ = user_state_;
    308 
    309     local_parameterization_ = NULL;
    310     if (local_parameterization != NULL) {
    311       SetParameterization(local_parameterization);
    312     }
    313 
    314     state_offset_ = -1;
    315     delta_offset_ = -1;
    316   }
    317 
    318   bool UpdateLocalParameterizationJacobian() {
    319     if (local_parameterization_ == NULL) {
    320       return true;
    321     }
    322 
    323     // Update the local to global Jacobian. In some cases this is
    324     // wasted effort; if this is a bottleneck, we will find a solution
    325     // at that time.
    326 
    327     const int jacobian_size = Size() * LocalSize();
    328     InvalidateArray(jacobian_size,
    329                     local_parameterization_jacobian_.get());
    330     if (!local_parameterization_->ComputeJacobian(
    331             state_,
    332             local_parameterization_jacobian_.get())) {
    333       LOG(WARNING) << "Local parameterization Jacobian computation failed"
    334           "for x: " << ConstVectorRef(state_, Size()).transpose();
    335       return false;
    336     }
    337 
    338     if (!IsArrayValid(jacobian_size, local_parameterization_jacobian_.get())) {
    339       LOG(WARNING) << "Local parameterization Jacobian computation returned"
    340                    << "an invalid matrix for x: "
    341                    << ConstVectorRef(state_, Size()).transpose()
    342                    << "\n Jacobian matrix : "
    343                    << ConstMatrixRef(local_parameterization_jacobian_.get(),
    344                                      Size(),
    345                                      LocalSize());
    346       return false;
    347     }
    348     return true;
    349   }
    350 
    351   double* user_state_;
    352   int size_;
    353   bool is_constant_;
    354   LocalParameterization* local_parameterization_;
    355 
    356   // The "state" of the parameter. These fields are only needed while the
    357   // solver is running. While at first glance using mutable is a bad idea, this
    358   // ends up simplifying the internals of Ceres enough to justify the potential
    359   // pitfalls of using "mutable."
    360   mutable const double* state_;
    361   mutable scoped_array<double> local_parameterization_jacobian_;
    362 
    363   // The index of the parameter. This is used by various other parts of Ceres to
    364   // permit switching from a ParameterBlock* to an index in another array.
    365   int32 index_;
    366 
    367   // The offset of this parameter block inside a larger state vector.
    368   int32 state_offset_;
    369 
    370   // The offset of this parameter block inside a larger delta vector.
    371   int32 delta_offset_;
    372 
    373   // If non-null, contains the residual blocks this parameter block is in.
    374   scoped_ptr<ResidualBlockSet> residual_blocks_;
    375 
    376   // Upper and lower bounds for the parameter block.  SetUpperBound
    377   // and SetLowerBound lazily initialize the upper_bounds_ and
    378   // lower_bounds_ arrays. If they are never called, then memory for
    379   // these arrays is never allocated. Thus for problems where there
    380   // are no bounds, or only one sided bounds we do not pay the cost of
    381   // allocating memory for the inactive bounds constraints.
    382   //
    383   // Upon initialization these arrays are initialized to
    384   // std::numeric_limits<double>::max() and
    385   // -std::numeric_limits<double>::max() respectively which correspond
    386   // to the parameter block being unconstrained.
    387   scoped_array<double> upper_bounds_;
    388   scoped_array<double> lower_bounds_;
    389 
    390   // Necessary so ProblemImpl can clean up the parameterizations.
    391   friend class ProblemImpl;
    392 };
    393 
    394 }  // namespace internal
    395 }  // namespace ceres
    396 
    397 #endif  // CERES_INTERNAL_PARAMETER_BLOCK_H_
    398