1 //--------------------------------------------------------------------------------- 2 // 3 // Little Color Management System 4 // Copyright (c) 1998-2012 Marti Maria Saguer 5 // 6 // Permission is hereby granted, free of charge, to any person obtaining 7 // a copy of this software and associated documentation files (the "Software"), 8 // to deal in the Software without restriction, including without limitation 9 // the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 // and/or sell copies of the Software, and to permit persons to whom the Software 11 // is furnished to do so, subject to the following conditions: 12 // 13 // The above copyright notice and this permission notice shall be included in 14 // all copies or substantial portions of the Software. 15 // 16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 23 // 24 //--------------------------------------------------------------------------------- 25 // 26 27 #include "lcms2_internal.h" 28 29 30 // Allocates an empty multi profile element 31 cmsStage* CMSEXPORT _cmsStageAllocPlaceholder(cmsContext ContextID, 32 cmsStageSignature Type, 33 cmsUInt32Number InputChannels, 34 cmsUInt32Number OutputChannels, 35 _cmsStageEvalFn EvalPtr, 36 _cmsStageDupElemFn DupElemPtr, 37 _cmsStageFreeElemFn FreePtr, 38 void* Data) 39 { 40 cmsStage* ph = (cmsStage*) _cmsMallocZero(ContextID, sizeof(cmsStage)); 41 42 if (ph == NULL) return NULL; 43 44 45 ph ->ContextID = ContextID; 46 47 ph ->Type = Type; 48 ph ->Implements = Type; // By default, no clue on what is implementing 49 50 ph ->InputChannels = InputChannels; 51 ph ->OutputChannels = OutputChannels; 52 ph ->EvalPtr = EvalPtr; 53 ph ->DupElemPtr = DupElemPtr; 54 ph ->FreePtr = FreePtr; 55 ph ->Data = Data; 56 57 return ph; 58 } 59 60 61 static 62 void EvaluateIdentity(const cmsFloat32Number In[], 63 cmsFloat32Number Out[], 64 const cmsStage *mpe) 65 { 66 memmove(Out, In, mpe ->InputChannels * sizeof(cmsFloat32Number)); 67 } 68 69 70 cmsStage* CMSEXPORT cmsStageAllocIdentity(cmsContext ContextID, cmsUInt32Number nChannels) 71 { 72 return _cmsStageAllocPlaceholder(ContextID, 73 cmsSigIdentityElemType, 74 nChannels, nChannels, 75 EvaluateIdentity, 76 NULL, 77 NULL, 78 NULL); 79 } 80 81 // Conversion functions. From floating point to 16 bits 82 static 83 void FromFloatTo16(const cmsFloat32Number In[], cmsUInt16Number Out[], cmsUInt32Number n) 84 { 85 cmsUInt32Number i; 86 87 for (i=0; i < n; i++) { 88 Out[i] = _cmsQuickSaturateWord(In[i] * 65535.0); 89 } 90 } 91 92 // From 16 bits to floating point 93 static 94 void From16ToFloat(const cmsUInt16Number In[], cmsFloat32Number Out[], cmsUInt32Number n) 95 { 96 cmsUInt32Number i; 97 98 for (i=0; i < n; i++) { 99 Out[i] = (cmsFloat32Number) In[i] / 65535.0F; 100 } 101 } 102 103 104 // This function is quite useful to analyze the structure of a LUT and retrieve the MPE elements 105 // that conform the LUT. It should be called with the LUT, the number of expected elements and 106 // then a list of expected types followed with a list of cmsFloat64Number pointers to MPE elements. If 107 // the function founds a match with current pipeline, it fills the pointers and returns TRUE 108 // if not, returns FALSE without touching anything. Setting pointers to NULL does bypass 109 // the storage process. 110 cmsBool CMSEXPORT cmsPipelineCheckAndRetreiveStages(const cmsPipeline* Lut, cmsUInt32Number n, ...) 111 { 112 va_list args; 113 cmsUInt32Number i; 114 cmsStage* mpe; 115 cmsStageSignature Type; 116 void** ElemPtr; 117 118 // Make sure same number of elements 119 if (cmsPipelineStageCount(Lut) != n) return FALSE; 120 121 va_start(args, n); 122 123 // Iterate across asked types 124 mpe = Lut ->Elements; 125 for (i=0; i < n; i++) { 126 127 // Get asked type 128 Type = (cmsStageSignature)va_arg(args, cmsStageSignature); 129 if (mpe ->Type != Type) { 130 131 va_end(args); // Mismatch. We are done. 132 return FALSE; 133 } 134 mpe = mpe ->Next; 135 } 136 137 // Found a combination, fill pointers if not NULL 138 mpe = Lut ->Elements; 139 for (i=0; i < n; i++) { 140 141 ElemPtr = va_arg(args, void**); 142 if (ElemPtr != NULL) 143 *ElemPtr = mpe; 144 145 mpe = mpe ->Next; 146 } 147 148 va_end(args); 149 return TRUE; 150 } 151 152 // Below there are implementations for several types of elements. Each type may be implemented by a 153 // evaluation function, a duplication function, a function to free resources and a constructor. 154 155 // ************************************************************************************************* 156 // Type cmsSigCurveSetElemType (curves) 157 // ************************************************************************************************* 158 159 cmsToneCurve** _cmsStageGetPtrToCurveSet(const cmsStage* mpe) 160 { 161 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data; 162 163 return Data ->TheCurves; 164 } 165 166 static 167 void EvaluateCurves(const cmsFloat32Number In[], 168 cmsFloat32Number Out[], 169 const cmsStage *mpe) 170 { 171 _cmsStageToneCurvesData* Data; 172 cmsUInt32Number i; 173 174 _cmsAssert(mpe != NULL); 175 176 Data = (_cmsStageToneCurvesData*) mpe ->Data; 177 if (Data == NULL) return; 178 179 if (Data ->TheCurves == NULL) return; 180 181 for (i=0; i < Data ->nCurves; i++) { 182 Out[i] = cmsEvalToneCurveFloat(Data ->TheCurves[i], In[i]); 183 } 184 } 185 186 static 187 void CurveSetElemTypeFree(cmsStage* mpe) 188 { 189 _cmsStageToneCurvesData* Data; 190 cmsUInt32Number i; 191 192 _cmsAssert(mpe != NULL); 193 194 Data = (_cmsStageToneCurvesData*) mpe ->Data; 195 if (Data == NULL) return; 196 197 if (Data ->TheCurves != NULL) { 198 for (i=0; i < Data ->nCurves; i++) { 199 if (Data ->TheCurves[i] != NULL) 200 cmsFreeToneCurve(Data ->TheCurves[i]); 201 } 202 } 203 _cmsFree(mpe ->ContextID, Data ->TheCurves); 204 _cmsFree(mpe ->ContextID, Data); 205 } 206 207 208 static 209 void* CurveSetDup(cmsStage* mpe) 210 { 211 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data; 212 _cmsStageToneCurvesData* NewElem; 213 cmsUInt32Number i; 214 215 NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageToneCurvesData)); 216 if (NewElem == NULL) return NULL; 217 218 NewElem ->nCurves = Data ->nCurves; 219 NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(mpe ->ContextID, NewElem ->nCurves, sizeof(cmsToneCurve*)); 220 221 if (NewElem ->TheCurves == NULL) goto Error; 222 223 for (i=0; i < NewElem ->nCurves; i++) { 224 225 // Duplicate each curve. It may fail. 226 NewElem ->TheCurves[i] = cmsDupToneCurve(Data ->TheCurves[i]); 227 if (NewElem ->TheCurves[i] == NULL) goto Error; 228 229 230 } 231 return (void*) NewElem; 232 233 Error: 234 235 if (NewElem ->TheCurves != NULL) { 236 for (i=0; i < NewElem ->nCurves; i++) { 237 if (NewElem ->TheCurves[i]) 238 cmsFreeToneCurve(NewElem ->TheCurves[i]); 239 } 240 } 241 _cmsFree(mpe ->ContextID, NewElem ->TheCurves); 242 _cmsFree(mpe ->ContextID, NewElem); 243 return NULL; 244 } 245 246 247 // Curves == NULL forces identity curves 248 cmsStage* CMSEXPORT cmsStageAllocToneCurves(cmsContext ContextID, cmsUInt32Number nChannels, cmsToneCurve* const Curves[]) 249 { 250 cmsUInt32Number i; 251 _cmsStageToneCurvesData* NewElem; 252 cmsStage* NewMPE; 253 254 255 NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCurveSetElemType, nChannels, nChannels, 256 EvaluateCurves, CurveSetDup, CurveSetElemTypeFree, NULL ); 257 if (NewMPE == NULL) return NULL; 258 259 NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(ContextID, sizeof(_cmsStageToneCurvesData)); 260 if (NewElem == NULL) { 261 cmsStageFree(NewMPE); 262 return NULL; 263 } 264 265 NewMPE ->Data = (void*) NewElem; 266 267 NewElem ->nCurves = nChannels; 268 NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(ContextID, nChannels, sizeof(cmsToneCurve*)); 269 if (NewElem ->TheCurves == NULL) { 270 cmsStageFree(NewMPE); 271 return NULL; 272 } 273 274 for (i=0; i < nChannels; i++) { 275 276 if (Curves == NULL) { 277 NewElem ->TheCurves[i] = cmsBuildGamma(ContextID, 1.0); 278 } 279 else { 280 NewElem ->TheCurves[i] = cmsDupToneCurve(Curves[i]); 281 } 282 283 if (NewElem ->TheCurves[i] == NULL) { 284 cmsStageFree(NewMPE); 285 return NULL; 286 } 287 288 } 289 290 return NewMPE; 291 } 292 293 294 // Create a bunch of identity curves 295 cmsStage* _cmsStageAllocIdentityCurves(cmsContext ContextID, int nChannels) 296 { 297 cmsStage* mpe = cmsStageAllocToneCurves(ContextID, nChannels, NULL); 298 299 if (mpe == NULL) return NULL; 300 mpe ->Implements = cmsSigIdentityElemType; 301 return mpe; 302 } 303 304 305 // ************************************************************************************************* 306 // Type cmsSigMatrixElemType (Matrices) 307 // ************************************************************************************************* 308 309 310 // Special care should be taken here because precision loss. A temporary cmsFloat64Number buffer is being used 311 static 312 void EvaluateMatrix(const cmsFloat32Number In[], 313 cmsFloat32Number Out[], 314 const cmsStage *mpe) 315 { 316 cmsUInt32Number i, j; 317 _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; 318 cmsFloat64Number Tmp; 319 320 // Input is already in 0..1.0 notation 321 for (i=0; i < mpe ->OutputChannels; i++) { 322 323 Tmp = 0; 324 for (j=0; j < mpe->InputChannels; j++) { 325 Tmp += In[j] * Data->Double[i*mpe->InputChannels + j]; 326 } 327 328 if (Data ->Offset != NULL) 329 Tmp += Data->Offset[i]; 330 331 Out[i] = (cmsFloat32Number) Tmp; 332 } 333 334 335 // Output in 0..1.0 domain 336 } 337 338 339 // Duplicate a yet-existing matrix element 340 static 341 void* MatrixElemDup(cmsStage* mpe) 342 { 343 _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; 344 _cmsStageMatrixData* NewElem; 345 cmsUInt32Number sz; 346 347 NewElem = (_cmsStageMatrixData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageMatrixData)); 348 if (NewElem == NULL) return NULL; 349 350 sz = mpe ->InputChannels * mpe ->OutputChannels; 351 352 NewElem ->Double = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, Data ->Double, sz * sizeof(cmsFloat64Number)) ; 353 354 if (Data ->Offset) 355 NewElem ->Offset = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, 356 Data ->Offset, mpe -> OutputChannels * sizeof(cmsFloat64Number)) ; 357 358 return (void*) NewElem; 359 } 360 361 362 static 363 void MatrixElemTypeFree(cmsStage* mpe) 364 { 365 _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; 366 if (Data == NULL) 367 return; 368 if (Data ->Double) 369 _cmsFree(mpe ->ContextID, Data ->Double); 370 371 if (Data ->Offset) 372 _cmsFree(mpe ->ContextID, Data ->Offset); 373 374 _cmsFree(mpe ->ContextID, mpe ->Data); 375 } 376 377 378 379 cmsStage* CMSEXPORT cmsStageAllocMatrix(cmsContext ContextID, cmsUInt32Number Rows, cmsUInt32Number Cols, 380 const cmsFloat64Number* Matrix, const cmsFloat64Number* Offset) 381 { 382 cmsUInt32Number i, n; 383 _cmsStageMatrixData* NewElem; 384 cmsStage* NewMPE; 385 386 n = Rows * Cols; 387 388 // Check for overflow 389 if (n == 0) return NULL; 390 if (n >= UINT_MAX / Cols) return NULL; 391 if (n >= UINT_MAX / Rows) return NULL; 392 if (n < Rows || n < Cols) return NULL; 393 394 NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigMatrixElemType, Cols, Rows, 395 EvaluateMatrix, MatrixElemDup, MatrixElemTypeFree, NULL ); 396 if (NewMPE == NULL) return NULL; 397 398 399 NewElem = (_cmsStageMatrixData*) _cmsMallocZero(ContextID, sizeof(_cmsStageMatrixData)); 400 if (NewElem == NULL) return NULL; 401 402 403 NewElem ->Double = (cmsFloat64Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat64Number)); 404 405 if (NewElem->Double == NULL) { 406 MatrixElemTypeFree(NewMPE); 407 return NULL; 408 } 409 410 for (i=0; i < n; i++) { 411 NewElem ->Double[i] = Matrix[i]; 412 } 413 414 415 if (Offset != NULL) { 416 417 NewElem ->Offset = (cmsFloat64Number*) _cmsCalloc(ContextID, Cols, sizeof(cmsFloat64Number)); 418 if (NewElem->Offset == NULL) { 419 MatrixElemTypeFree(NewMPE); 420 return NULL; 421 } 422 423 for (i=0; i < Cols; i++) { 424 NewElem ->Offset[i] = Offset[i]; 425 } 426 427 } 428 429 NewMPE ->Data = (void*) NewElem; 430 return NewMPE; 431 } 432 433 434 // ************************************************************************************************* 435 // Type cmsSigCLutElemType 436 // ************************************************************************************************* 437 438 439 // Evaluate in true floating point 440 static 441 void EvaluateCLUTfloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) 442 { 443 _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; 444 445 Data -> Params ->Interpolation.LerpFloat(In, Out, Data->Params); 446 } 447 448 449 // Convert to 16 bits, evaluate, and back to floating point 450 static 451 void EvaluateCLUTfloatIn16(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) 452 { 453 _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; 454 cmsUInt16Number In16[MAX_STAGE_CHANNELS], Out16[MAX_STAGE_CHANNELS]; 455 456 _cmsAssert(mpe ->InputChannels <= MAX_STAGE_CHANNELS); 457 _cmsAssert(mpe ->OutputChannels <= MAX_STAGE_CHANNELS); 458 459 FromFloatTo16(In, In16, mpe ->InputChannels); 460 Data -> Params ->Interpolation.Lerp16(In16, Out16, Data->Params); 461 From16ToFloat(Out16, Out, mpe ->OutputChannels); 462 } 463 464 465 // Given an hypercube of b dimensions, with Dims[] number of nodes by dimension, calculate the total amount of nodes 466 static 467 cmsUInt32Number CubeSize(const cmsUInt32Number Dims[], cmsUInt32Number b) 468 { 469 cmsUInt32Number rv, dim; 470 471 _cmsAssert(Dims != NULL); 472 473 for (rv = 1; b > 0; b--) { 474 475 dim = Dims[b-1]; 476 if (dim == 0) return 0; // Error 477 478 rv *= dim; 479 480 // Check for overflow 481 if (rv > UINT_MAX / dim) return 0; 482 } 483 484 return rv; 485 } 486 487 static 488 void* CLUTElemDup(cmsStage* mpe) 489 { 490 _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; 491 _cmsStageCLutData* NewElem; 492 493 494 NewElem = (_cmsStageCLutData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageCLutData)); 495 if (NewElem == NULL) return NULL; 496 497 NewElem ->nEntries = Data ->nEntries; 498 NewElem ->HasFloatValues = Data ->HasFloatValues; 499 500 if (Data ->Tab.T) { 501 502 if (Data ->HasFloatValues) { 503 NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.TFloat, Data ->nEntries * sizeof (cmsFloat32Number)); 504 if (NewElem ->Tab.TFloat == NULL) 505 goto Error; 506 } else { 507 NewElem ->Tab.T = (cmsUInt16Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.T, Data ->nEntries * sizeof (cmsUInt16Number)); 508 if (NewElem ->Tab.TFloat == NULL) 509 goto Error; 510 } 511 } 512 513 NewElem ->Params = _cmsComputeInterpParamsEx(mpe ->ContextID, 514 Data ->Params ->nSamples, 515 Data ->Params ->nInputs, 516 Data ->Params ->nOutputs, 517 NewElem ->Tab.T, 518 Data ->Params ->dwFlags); 519 if (NewElem->Params != NULL) 520 return (void*) NewElem; 521 Error: 522 if (NewElem->Tab.T) 523 // This works for both types 524 _cmsFree(mpe ->ContextID, NewElem -> Tab.T); 525 _cmsFree(mpe ->ContextID, NewElem); 526 return NULL; 527 } 528 529 530 static 531 void CLutElemTypeFree(cmsStage* mpe) 532 { 533 534 _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; 535 536 // Already empty 537 if (Data == NULL) return; 538 539 // This works for both types 540 if (Data -> Tab.T) 541 _cmsFree(mpe ->ContextID, Data -> Tab.T); 542 543 _cmsFreeInterpParams(Data ->Params); 544 _cmsFree(mpe ->ContextID, mpe ->Data); 545 } 546 547 548 // Allocates a 16-bit multidimensional CLUT. This is evaluated at 16-bit precision. Table may have different 549 // granularity on each dimension. 550 cmsStage* CMSEXPORT cmsStageAllocCLut16bitGranular(cmsContext ContextID, 551 const cmsUInt32Number clutPoints[], 552 cmsUInt32Number inputChan, 553 cmsUInt32Number outputChan, 554 const cmsUInt16Number* Table) 555 { 556 cmsUInt32Number i, n; 557 _cmsStageCLutData* NewElem; 558 cmsStage* NewMPE; 559 560 _cmsAssert(clutPoints != NULL); 561 562 if (inputChan > MAX_INPUT_DIMENSIONS) { 563 cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS); 564 return NULL; 565 } 566 567 NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan, 568 EvaluateCLUTfloatIn16, CLUTElemDup, CLutElemTypeFree, NULL ); 569 570 if (NewMPE == NULL) return NULL; 571 572 NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData)); 573 if (NewElem == NULL) { 574 cmsStageFree(NewMPE); 575 return NULL; 576 } 577 578 NewMPE ->Data = (void*) NewElem; 579 580 NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan); 581 NewElem -> HasFloatValues = FALSE; 582 583 if (n == 0) { 584 cmsStageFree(NewMPE); 585 return NULL; 586 } 587 588 589 NewElem ->Tab.T = (cmsUInt16Number*) _cmsCalloc(ContextID, n, sizeof(cmsUInt16Number)); 590 if (NewElem ->Tab.T == NULL) { 591 cmsStageFree(NewMPE); 592 return NULL; 593 } 594 595 if (Table != NULL) { 596 for (i=0; i < n; i++) { 597 NewElem ->Tab.T[i] = Table[i]; 598 } 599 } 600 601 NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.T, CMS_LERP_FLAGS_16BITS); 602 if (NewElem ->Params == NULL) { 603 cmsStageFree(NewMPE); 604 return NULL; 605 } 606 607 return NewMPE; 608 } 609 610 cmsStage* CMSEXPORT cmsStageAllocCLut16bit(cmsContext ContextID, 611 cmsUInt32Number nGridPoints, 612 cmsUInt32Number inputChan, 613 cmsUInt32Number outputChan, 614 const cmsUInt16Number* Table) 615 { 616 cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS]; 617 int i; 618 619 // Our resulting LUT would be same gridpoints on all dimensions 620 for (i=0; i < MAX_INPUT_DIMENSIONS; i++) 621 Dimensions[i] = nGridPoints; 622 623 return cmsStageAllocCLut16bitGranular(ContextID, Dimensions, inputChan, outputChan, Table); 624 } 625 626 627 cmsStage* CMSEXPORT cmsStageAllocCLutFloat(cmsContext ContextID, 628 cmsUInt32Number nGridPoints, 629 cmsUInt32Number inputChan, 630 cmsUInt32Number outputChan, 631 const cmsFloat32Number* Table) 632 { 633 cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS]; 634 int i; 635 636 // Our resulting LUT would be same gridpoints on all dimensions 637 for (i=0; i < MAX_INPUT_DIMENSIONS; i++) 638 Dimensions[i] = nGridPoints; 639 640 return cmsStageAllocCLutFloatGranular(ContextID, Dimensions, inputChan, outputChan, Table); 641 } 642 643 644 645 cmsStage* CMSEXPORT cmsStageAllocCLutFloatGranular(cmsContext ContextID, const cmsUInt32Number clutPoints[], cmsUInt32Number inputChan, cmsUInt32Number outputChan, const cmsFloat32Number* Table) 646 { 647 cmsUInt32Number i, n; 648 _cmsStageCLutData* NewElem; 649 cmsStage* NewMPE; 650 651 _cmsAssert(clutPoints != NULL); 652 653 if (inputChan > MAX_INPUT_DIMENSIONS) { 654 cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS); 655 return NULL; 656 } 657 658 NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan, 659 EvaluateCLUTfloat, CLUTElemDup, CLutElemTypeFree, NULL); 660 if (NewMPE == NULL) return NULL; 661 662 663 NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData)); 664 if (NewElem == NULL) { 665 cmsStageFree(NewMPE); 666 return NULL; 667 } 668 669 NewMPE ->Data = (void*) NewElem; 670 671 // There is a potential integer overflow on conputing n and nEntries. 672 NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan); 673 NewElem -> HasFloatValues = TRUE; 674 675 if (n == 0) { 676 cmsStageFree(NewMPE); 677 return NULL; 678 } 679 680 NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat32Number)); 681 if (NewElem ->Tab.TFloat == NULL) { 682 cmsStageFree(NewMPE); 683 return NULL; 684 } 685 686 if (Table != NULL) { 687 for (i=0; i < n; i++) { 688 NewElem ->Tab.TFloat[i] = Table[i]; 689 } 690 } 691 692 NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.TFloat, CMS_LERP_FLAGS_FLOAT); 693 if (NewElem ->Params == NULL) { 694 cmsStageFree(NewMPE); 695 return NULL; 696 } 697 698 return NewMPE; 699 } 700 701 702 static 703 int IdentitySampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo) 704 { 705 int nChan = *(int*) Cargo; 706 int i; 707 708 for (i=0; i < nChan; i++) 709 Out[i] = In[i]; 710 711 return 1; 712 } 713 714 // Creates an MPE that just copies input to output 715 cmsStage* _cmsStageAllocIdentityCLut(cmsContext ContextID, int nChan) 716 { 717 cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS]; 718 cmsStage* mpe ; 719 int i; 720 721 for (i=0; i < MAX_INPUT_DIMENSIONS; i++) 722 Dimensions[i] = 2; 723 724 mpe = cmsStageAllocCLut16bitGranular(ContextID, Dimensions, nChan, nChan, NULL); 725 if (mpe == NULL) return NULL; 726 727 if (!cmsStageSampleCLut16bit(mpe, IdentitySampler, &nChan, 0)) { 728 cmsStageFree(mpe); 729 return NULL; 730 } 731 732 mpe ->Implements = cmsSigIdentityElemType; 733 return mpe; 734 } 735 736 737 738 // Quantize a value 0 <= i < MaxSamples to 0..0xffff 739 cmsUInt16Number _cmsQuantizeVal(cmsFloat64Number i, int MaxSamples) 740 { 741 cmsFloat64Number x; 742 743 x = ((cmsFloat64Number) i * 65535.) / (cmsFloat64Number) (MaxSamples - 1); 744 return _cmsQuickSaturateWord(x); 745 } 746 747 748 // This routine does a sweep on whole input space, and calls its callback 749 // function on knots. returns TRUE if all ok, FALSE otherwise. 750 cmsBool CMSEXPORT cmsStageSampleCLut16bit(cmsStage* mpe, cmsSAMPLER16 Sampler, void * Cargo, cmsUInt32Number dwFlags) 751 { 752 int i, t, nTotalPoints, index, rest; 753 int nInputs, nOutputs; 754 cmsUInt32Number* nSamples; 755 cmsUInt16Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS]; 756 _cmsStageCLutData* clut; 757 758 if (mpe == NULL) return FALSE; 759 760 clut = (_cmsStageCLutData*) mpe->Data; 761 762 if (clut == NULL) return FALSE; 763 764 nSamples = clut->Params ->nSamples; 765 nInputs = clut->Params ->nInputs; 766 nOutputs = clut->Params ->nOutputs; 767 768 if (nInputs <= 0) return FALSE; 769 if (nOutputs <= 0) return FALSE; 770 if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE; 771 if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE; 772 773 nTotalPoints = CubeSize(nSamples, nInputs); 774 if (nTotalPoints == 0) return FALSE; 775 776 index = 0; 777 for (i = 0; i < nTotalPoints; i++) { 778 779 rest = i; 780 for (t = nInputs-1; t >=0; --t) { 781 782 cmsUInt32Number Colorant = rest % nSamples[t]; 783 784 rest /= nSamples[t]; 785 786 In[t] = _cmsQuantizeVal(Colorant, nSamples[t]); 787 } 788 789 if (clut ->Tab.T != NULL) { 790 for (t=0; t < nOutputs; t++) 791 Out[t] = clut->Tab.T[index + t]; 792 } 793 794 if (!Sampler(In, Out, Cargo)) 795 return FALSE; 796 797 if (!(dwFlags & SAMPLER_INSPECT)) { 798 799 if (clut ->Tab.T != NULL) { 800 for (t=0; t < nOutputs; t++) 801 clut->Tab.T[index + t] = Out[t]; 802 } 803 } 804 805 index += nOutputs; 806 } 807 808 return TRUE; 809 } 810 811 // Same as anterior, but for floting point 812 cmsBool CMSEXPORT cmsStageSampleCLutFloat(cmsStage* mpe, cmsSAMPLERFLOAT Sampler, void * Cargo, cmsUInt32Number dwFlags) 813 { 814 int i, t, nTotalPoints, index, rest; 815 int nInputs, nOutputs; 816 cmsUInt32Number* nSamples; 817 cmsFloat32Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS]; 818 _cmsStageCLutData* clut = (_cmsStageCLutData*) mpe->Data; 819 820 nSamples = clut->Params ->nSamples; 821 nInputs = clut->Params ->nInputs; 822 nOutputs = clut->Params ->nOutputs; 823 824 if (nInputs <= 0) return FALSE; 825 if (nOutputs <= 0) return FALSE; 826 if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE; 827 if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE; 828 829 nTotalPoints = CubeSize(nSamples, nInputs); 830 if (nTotalPoints == 0) return FALSE; 831 832 index = 0; 833 for (i = 0; i < nTotalPoints; i++) { 834 835 rest = i; 836 for (t = nInputs-1; t >=0; --t) { 837 838 cmsUInt32Number Colorant = rest % nSamples[t]; 839 840 rest /= nSamples[t]; 841 842 In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, nSamples[t]) / 65535.0); 843 } 844 845 if (clut ->Tab.TFloat != NULL) { 846 for (t=0; t < nOutputs; t++) 847 Out[t] = clut->Tab.TFloat[index + t]; 848 } 849 850 if (!Sampler(In, Out, Cargo)) 851 return FALSE; 852 853 if (!(dwFlags & SAMPLER_INSPECT)) { 854 855 if (clut ->Tab.TFloat != NULL) { 856 for (t=0; t < nOutputs; t++) 857 clut->Tab.TFloat[index + t] = Out[t]; 858 } 859 } 860 861 index += nOutputs; 862 } 863 864 return TRUE; 865 } 866 867 868 869 // This routine does a sweep on whole input space, and calls its callback 870 // function on knots. returns TRUE if all ok, FALSE otherwise. 871 cmsBool CMSEXPORT cmsSliceSpace16(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[], 872 cmsSAMPLER16 Sampler, void * Cargo) 873 { 874 int i, t, nTotalPoints, rest; 875 cmsUInt16Number In[cmsMAXCHANNELS]; 876 877 if (nInputs >= cmsMAXCHANNELS) return FALSE; 878 879 nTotalPoints = CubeSize(clutPoints, nInputs); 880 if (nTotalPoints == 0) return FALSE; 881 882 for (i = 0; i < nTotalPoints; i++) { 883 884 rest = i; 885 for (t = nInputs-1; t >=0; --t) { 886 887 cmsUInt32Number Colorant = rest % clutPoints[t]; 888 889 rest /= clutPoints[t]; 890 In[t] = _cmsQuantizeVal(Colorant, clutPoints[t]); 891 892 } 893 894 if (!Sampler(In, NULL, Cargo)) 895 return FALSE; 896 } 897 898 return TRUE; 899 } 900 901 cmsInt32Number CMSEXPORT cmsSliceSpaceFloat(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[], 902 cmsSAMPLERFLOAT Sampler, void * Cargo) 903 { 904 int i, t, nTotalPoints, rest; 905 cmsFloat32Number In[cmsMAXCHANNELS]; 906 907 if (nInputs >= cmsMAXCHANNELS) return FALSE; 908 909 nTotalPoints = CubeSize(clutPoints, nInputs); 910 if (nTotalPoints == 0) return FALSE; 911 912 for (i = 0; i < nTotalPoints; i++) { 913 914 rest = i; 915 for (t = nInputs-1; t >=0; --t) { 916 917 cmsUInt32Number Colorant = rest % clutPoints[t]; 918 919 rest /= clutPoints[t]; 920 In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, clutPoints[t]) / 65535.0); 921 922 } 923 924 if (!Sampler(In, NULL, Cargo)) 925 return FALSE; 926 } 927 928 return TRUE; 929 } 930 931 // ******************************************************************************** 932 // Type cmsSigLab2XYZElemType 933 // ******************************************************************************** 934 935 936 static 937 void EvaluateLab2XYZ(const cmsFloat32Number In[], 938 cmsFloat32Number Out[], 939 const cmsStage *mpe) 940 { 941 cmsCIELab Lab; 942 cmsCIEXYZ XYZ; 943 const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ; 944 945 // V4 rules 946 Lab.L = In[0] * 100.0; 947 Lab.a = In[1] * 255.0 - 128.0; 948 Lab.b = In[2] * 255.0 - 128.0; 949 950 cmsLab2XYZ(NULL, &XYZ, &Lab); 951 952 // From XYZ, range 0..19997 to 0..1.0, note that 1.99997 comes from 0xffff 953 // encoded as 1.15 fixed point, so 1 + (32767.0 / 32768.0) 954 955 Out[0] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.X / XYZadj); 956 Out[1] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Y / XYZadj); 957 Out[2] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Z / XYZadj); 958 return; 959 960 cmsUNUSED_PARAMETER(mpe); 961 } 962 963 964 // No dup or free routines needed, as the structure has no pointers in it. 965 cmsStage* _cmsStageAllocLab2XYZ(cmsContext ContextID) 966 { 967 return _cmsStageAllocPlaceholder(ContextID, cmsSigLab2XYZElemType, 3, 3, EvaluateLab2XYZ, NULL, NULL, NULL); 968 } 969 970 // ******************************************************************************** 971 972 // v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable 973 // number of gridpoints that would make exact match. However, a prelinearization 974 // of 258 entries, would map 0xFF00 exactly on entry 257, and this is good to avoid scum dot. 975 // Almost all what we need but unfortunately, the rest of entries should be scaled by 976 // (255*257/256) and this is not exact. 977 978 cmsStage* _cmsStageAllocLabV2ToV4curves(cmsContext ContextID) 979 { 980 cmsStage* mpe; 981 cmsToneCurve* LabTable[3]; 982 int i, j; 983 984 LabTable[0] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL); 985 LabTable[1] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL); 986 LabTable[2] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL); 987 988 for (j=0; j < 3; j++) { 989 990 if (LabTable[j] == NULL) { 991 cmsFreeToneCurveTriple(LabTable); 992 return NULL; 993 } 994 995 // We need to map * (0xffff / 0xff00), thats same as (257 / 256) 996 // So we can use 258-entry tables to do the trick (i / 257) * (255 * 257) * (257 / 256); 997 for (i=0; i < 257; i++) { 998 999 LabTable[j]->Table16[i] = (cmsUInt16Number) ((i * 0xffff + 0x80) >> 8); 1000 } 1001 1002 LabTable[j] ->Table16[257] = 0xffff; 1003 } 1004 1005 mpe = cmsStageAllocToneCurves(ContextID, 3, LabTable); 1006 cmsFreeToneCurveTriple(LabTable); 1007 1008 if (mpe == NULL) return NULL; 1009 mpe ->Implements = cmsSigLabV2toV4; 1010 return mpe; 1011 } 1012 1013 // ******************************************************************************** 1014 1015 // Matrix-based conversion, which is more accurate, but slower and cannot properly be saved in devicelink profiles 1016 cmsStage* _cmsStageAllocLabV2ToV4(cmsContext ContextID) 1017 { 1018 static const cmsFloat64Number V2ToV4[] = { 65535.0/65280.0, 0, 0, 1019 0, 65535.0/65280.0, 0, 1020 0, 0, 65535.0/65280.0 1021 }; 1022 1023 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V2ToV4, NULL); 1024 1025 if (mpe == NULL) return mpe; 1026 mpe ->Implements = cmsSigLabV2toV4; 1027 return mpe; 1028 } 1029 1030 1031 // Reverse direction 1032 cmsStage* _cmsStageAllocLabV4ToV2(cmsContext ContextID) 1033 { 1034 static const cmsFloat64Number V4ToV2[] = { 65280.0/65535.0, 0, 0, 1035 0, 65280.0/65535.0, 0, 1036 0, 0, 65280.0/65535.0 1037 }; 1038 1039 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V4ToV2, NULL); 1040 1041 if (mpe == NULL) return mpe; 1042 mpe ->Implements = cmsSigLabV4toV2; 1043 return mpe; 1044 } 1045 1046 1047 // To Lab to float. Note that the MPE gives numbers in normal Lab range 1048 // and we need 0..1.0 range for the formatters 1049 // L* : 0...100 => 0...1.0 (L* / 100) 1050 // ab* : -128..+127 to 0..1 ((ab* + 128) / 255) 1051 1052 cmsStage* _cmsStageNormalizeFromLabFloat(cmsContext ContextID) 1053 { 1054 static const cmsFloat64Number a1[] = { 1055 1.0/100.0, 0, 0, 1056 0, 1.0/255.0, 0, 1057 0, 0, 1.0/255.0 1058 }; 1059 1060 static const cmsFloat64Number o1[] = { 1061 0, 1062 128.0/255.0, 1063 128.0/255.0 1064 }; 1065 1066 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1); 1067 1068 if (mpe == NULL) return mpe; 1069 mpe ->Implements = cmsSigLab2FloatPCS; 1070 return mpe; 1071 } 1072 1073 // Fom XYZ to floating point PCS 1074 cmsStage* _cmsStageNormalizeFromXyzFloat(cmsContext ContextID) 1075 { 1076 #define n (32768.0/65535.0) 1077 static const cmsFloat64Number a1[] = { 1078 n, 0, 0, 1079 0, n, 0, 1080 0, 0, n 1081 }; 1082 #undef n 1083 1084 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL); 1085 1086 if (mpe == NULL) return mpe; 1087 mpe ->Implements = cmsSigXYZ2FloatPCS; 1088 return mpe; 1089 } 1090 1091 cmsStage* _cmsStageNormalizeToLabFloat(cmsContext ContextID) 1092 { 1093 static const cmsFloat64Number a1[] = { 1094 100.0, 0, 0, 1095 0, 255.0, 0, 1096 0, 0, 255.0 1097 }; 1098 1099 static const cmsFloat64Number o1[] = { 1100 0, 1101 -128.0, 1102 -128.0 1103 }; 1104 1105 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1); 1106 if (mpe == NULL) return mpe; 1107 mpe ->Implements = cmsSigFloatPCS2Lab; 1108 return mpe; 1109 } 1110 1111 cmsStage* _cmsStageNormalizeToXyzFloat(cmsContext ContextID) 1112 { 1113 #define n (65535.0/32768.0) 1114 1115 static const cmsFloat64Number a1[] = { 1116 n, 0, 0, 1117 0, n, 0, 1118 0, 0, n 1119 }; 1120 #undef n 1121 1122 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL); 1123 if (mpe == NULL) return mpe; 1124 mpe ->Implements = cmsSigFloatPCS2XYZ; 1125 return mpe; 1126 } 1127 1128 1129 1130 // ******************************************************************************** 1131 // Type cmsSigXYZ2LabElemType 1132 // ******************************************************************************** 1133 1134 static 1135 void EvaluateXYZ2Lab(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) 1136 { 1137 cmsCIELab Lab; 1138 cmsCIEXYZ XYZ; 1139 const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ; 1140 1141 // From 0..1.0 to XYZ 1142 1143 XYZ.X = In[0] * XYZadj; 1144 XYZ.Y = In[1] * XYZadj; 1145 XYZ.Z = In[2] * XYZadj; 1146 1147 cmsXYZ2Lab(NULL, &Lab, &XYZ); 1148 1149 // From V4 Lab to 0..1.0 1150 1151 Out[0] = (cmsFloat32Number) (Lab.L / 100.0); 1152 Out[1] = (cmsFloat32Number) ((Lab.a + 128.0) / 255.0); 1153 Out[2] = (cmsFloat32Number) ((Lab.b + 128.0) / 255.0); 1154 return; 1155 1156 cmsUNUSED_PARAMETER(mpe); 1157 } 1158 1159 cmsStage* _cmsStageAllocXYZ2Lab(cmsContext ContextID) 1160 { 1161 return _cmsStageAllocPlaceholder(ContextID, cmsSigXYZ2LabElemType, 3, 3, EvaluateXYZ2Lab, NULL, NULL, NULL); 1162 1163 } 1164 1165 // ******************************************************************************** 1166 1167 // For v4, S-Shaped curves are placed in a/b axis to increase resolution near gray 1168 1169 cmsStage* _cmsStageAllocLabPrelin(cmsContext ContextID) 1170 { 1171 cmsToneCurve* LabTable[3]; 1172 cmsFloat64Number Params[1] = {2.4} ; 1173 1174 LabTable[0] = cmsBuildGamma(ContextID, 1.0); 1175 LabTable[1] = cmsBuildParametricToneCurve(ContextID, 108, Params); 1176 LabTable[2] = cmsBuildParametricToneCurve(ContextID, 108, Params); 1177 1178 return cmsStageAllocToneCurves(ContextID, 3, LabTable); 1179 } 1180 1181 1182 // Free a single MPE 1183 void CMSEXPORT cmsStageFree(cmsStage* mpe) 1184 { 1185 if (mpe ->FreePtr) 1186 mpe ->FreePtr(mpe); 1187 1188 _cmsFree(mpe ->ContextID, mpe); 1189 } 1190 1191 1192 cmsUInt32Number CMSEXPORT cmsStageInputChannels(const cmsStage* mpe) 1193 { 1194 return mpe ->InputChannels; 1195 } 1196 1197 cmsUInt32Number CMSEXPORT cmsStageOutputChannels(const cmsStage* mpe) 1198 { 1199 return mpe ->OutputChannels; 1200 } 1201 1202 cmsStageSignature CMSEXPORT cmsStageType(const cmsStage* mpe) 1203 { 1204 return mpe -> Type; 1205 } 1206 1207 void* CMSEXPORT cmsStageData(const cmsStage* mpe) 1208 { 1209 return mpe -> Data; 1210 } 1211 1212 cmsStage* CMSEXPORT cmsStageNext(const cmsStage* mpe) 1213 { 1214 return mpe -> Next; 1215 } 1216 1217 1218 // Duplicates an MPE 1219 cmsStage* CMSEXPORT cmsStageDup(cmsStage* mpe) 1220 { 1221 cmsStage* NewMPE; 1222 1223 if (mpe == NULL) return NULL; 1224 NewMPE = _cmsStageAllocPlaceholder(mpe ->ContextID, 1225 mpe ->Type, 1226 mpe ->InputChannels, 1227 mpe ->OutputChannels, 1228 mpe ->EvalPtr, 1229 mpe ->DupElemPtr, 1230 mpe ->FreePtr, 1231 NULL); 1232 if (NewMPE == NULL) return NULL; 1233 1234 NewMPE ->Implements = mpe ->Implements; 1235 1236 if (mpe ->DupElemPtr) { 1237 1238 NewMPE ->Data = mpe ->DupElemPtr(mpe); 1239 1240 if (NewMPE->Data == NULL) { 1241 1242 cmsStageFree(NewMPE); 1243 return NULL; 1244 } 1245 1246 } else { 1247 1248 NewMPE ->Data = NULL; 1249 } 1250 1251 return NewMPE; 1252 } 1253 1254 1255 // *********************************************************************************************************** 1256 1257 // This function sets up the channel count 1258 1259 static 1260 void BlessLUT(cmsPipeline* lut) 1261 { 1262 // We can set the input/ouput channels only if we have elements. 1263 if (lut ->Elements != NULL) { 1264 1265 cmsStage *First, *Last; 1266 1267 First = cmsPipelineGetPtrToFirstStage(lut); 1268 Last = cmsPipelineGetPtrToLastStage(lut); 1269 1270 if (First != NULL)lut ->InputChannels = First ->InputChannels; 1271 if (Last != NULL) lut ->OutputChannels = Last ->OutputChannels; 1272 } 1273 } 1274 1275 1276 // Default to evaluate the LUT on 16 bit-basis. Precision is retained. 1277 static 1278 void _LUTeval16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register const void* D) 1279 { 1280 cmsPipeline* lut = (cmsPipeline*) D; 1281 cmsStage *mpe; 1282 cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS]; 1283 int Phase = 0, NextPhase; 1284 1285 From16ToFloat(In, &Storage[Phase][0], lut ->InputChannels); 1286 1287 for (mpe = lut ->Elements; 1288 mpe != NULL; 1289 mpe = mpe ->Next) { 1290 1291 NextPhase = Phase ^ 1; 1292 mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe); 1293 Phase = NextPhase; 1294 } 1295 1296 1297 FromFloatTo16(&Storage[Phase][0], Out, lut ->OutputChannels); 1298 } 1299 1300 1301 1302 // Does evaluate the LUT on cmsFloat32Number-basis. 1303 static 1304 void _LUTevalFloat(register const cmsFloat32Number In[], register cmsFloat32Number Out[], const void* D) 1305 { 1306 cmsPipeline* lut = (cmsPipeline*) D; 1307 cmsStage *mpe; 1308 cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS]; 1309 int Phase = 0, NextPhase; 1310 1311 memmove(&Storage[Phase][0], In, lut ->InputChannels * sizeof(cmsFloat32Number)); 1312 1313 for (mpe = lut ->Elements; 1314 mpe != NULL; 1315 mpe = mpe ->Next) { 1316 1317 NextPhase = Phase ^ 1; 1318 mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe); 1319 Phase = NextPhase; 1320 } 1321 1322 memmove(Out, &Storage[Phase][0], lut ->OutputChannels * sizeof(cmsFloat32Number)); 1323 } 1324 1325 1326 1327 1328 // LUT Creation & Destruction 1329 1330 cmsPipeline* CMSEXPORT cmsPipelineAlloc(cmsContext ContextID, cmsUInt32Number InputChannels, cmsUInt32Number OutputChannels) 1331 { 1332 cmsPipeline* NewLUT; 1333 1334 if (InputChannels >= cmsMAXCHANNELS || 1335 OutputChannels >= cmsMAXCHANNELS) return NULL; 1336 1337 NewLUT = (cmsPipeline*) _cmsMallocZero(ContextID, sizeof(cmsPipeline)); 1338 if (NewLUT == NULL) return NULL; 1339 1340 1341 NewLUT -> InputChannels = InputChannels; 1342 NewLUT -> OutputChannels = OutputChannels; 1343 1344 NewLUT ->Eval16Fn = _LUTeval16; 1345 NewLUT ->EvalFloatFn = _LUTevalFloat; 1346 NewLUT ->DupDataFn = NULL; 1347 NewLUT ->FreeDataFn = NULL; 1348 NewLUT ->Data = NewLUT; 1349 NewLUT ->ContextID = ContextID; 1350 1351 BlessLUT(NewLUT); 1352 1353 return NewLUT; 1354 } 1355 1356 cmsContext CMSEXPORT cmsGetPipelineContextID(const cmsPipeline* lut) 1357 { 1358 _cmsAssert(lut != NULL); 1359 return lut ->ContextID; 1360 } 1361 1362 cmsUInt32Number CMSEXPORT cmsPipelineInputChannels(const cmsPipeline* lut) 1363 { 1364 _cmsAssert(lut != NULL); 1365 return lut ->InputChannels; 1366 } 1367 1368 cmsUInt32Number CMSEXPORT cmsPipelineOutputChannels(const cmsPipeline* lut) 1369 { 1370 _cmsAssert(lut != NULL); 1371 return lut ->OutputChannels; 1372 } 1373 1374 // Free a profile elements LUT 1375 void CMSEXPORT cmsPipelineFree(cmsPipeline* lut) 1376 { 1377 cmsStage *mpe, *Next; 1378 1379 if (lut == NULL) return; 1380 1381 for (mpe = lut ->Elements; 1382 mpe != NULL; 1383 mpe = Next) { 1384 1385 Next = mpe ->Next; 1386 cmsStageFree(mpe); 1387 } 1388 1389 if (lut ->FreeDataFn) lut ->FreeDataFn(lut ->ContextID, lut ->Data); 1390 1391 _cmsFree(lut ->ContextID, lut); 1392 } 1393 1394 1395 // Default to evaluate the LUT on 16 bit-basis. 1396 void CMSEXPORT cmsPipelineEval16(const cmsUInt16Number In[], cmsUInt16Number Out[], const cmsPipeline* lut) 1397 { 1398 _cmsAssert(lut != NULL); 1399 lut ->Eval16Fn(In, Out, lut->Data); 1400 } 1401 1402 1403 // Does evaluate the LUT on cmsFloat32Number-basis. 1404 void CMSEXPORT cmsPipelineEvalFloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsPipeline* lut) 1405 { 1406 _cmsAssert(lut != NULL); 1407 lut ->EvalFloatFn(In, Out, lut); 1408 } 1409 1410 1411 1412 // Duplicates a LUT 1413 cmsPipeline* CMSEXPORT cmsPipelineDup(const cmsPipeline* lut) 1414 { 1415 cmsPipeline* NewLUT; 1416 cmsStage *NewMPE, *Anterior = NULL, *mpe; 1417 cmsBool First = TRUE; 1418 1419 if (lut == NULL) return NULL; 1420 1421 NewLUT = cmsPipelineAlloc(lut ->ContextID, lut ->InputChannels, lut ->OutputChannels); 1422 if (NewLUT == NULL) return NULL; 1423 1424 for (mpe = lut ->Elements; 1425 mpe != NULL; 1426 mpe = mpe ->Next) { 1427 1428 NewMPE = cmsStageDup(mpe); 1429 1430 if (NewMPE == NULL) { 1431 cmsPipelineFree(NewLUT); 1432 return NULL; 1433 } 1434 1435 if (First) { 1436 NewLUT ->Elements = NewMPE; 1437 First = FALSE; 1438 } 1439 else { 1440 Anterior ->Next = NewMPE; 1441 } 1442 1443 Anterior = NewMPE; 1444 } 1445 1446 NewLUT ->Eval16Fn = lut ->Eval16Fn; 1447 NewLUT ->EvalFloatFn = lut ->EvalFloatFn; 1448 NewLUT ->DupDataFn = lut ->DupDataFn; 1449 NewLUT ->FreeDataFn = lut ->FreeDataFn; 1450 1451 if (NewLUT ->DupDataFn != NULL) 1452 NewLUT ->Data = NewLUT ->DupDataFn(lut ->ContextID, lut->Data); 1453 1454 1455 NewLUT ->SaveAs8Bits = lut ->SaveAs8Bits; 1456 1457 BlessLUT(NewLUT); 1458 return NewLUT; 1459 } 1460 1461 1462 int CMSEXPORT cmsPipelineInsertStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage* mpe) 1463 { 1464 cmsStage* Anterior = NULL, *pt; 1465 1466 if (lut == NULL || mpe == NULL) 1467 return FALSE; 1468 1469 switch (loc) { 1470 1471 case cmsAT_BEGIN: 1472 mpe ->Next = lut ->Elements; 1473 lut ->Elements = mpe; 1474 break; 1475 1476 case cmsAT_END: 1477 1478 if (lut ->Elements == NULL) 1479 lut ->Elements = mpe; 1480 else { 1481 1482 for (pt = lut ->Elements; 1483 pt != NULL; 1484 pt = pt -> Next) Anterior = pt; 1485 1486 Anterior ->Next = mpe; 1487 mpe ->Next = NULL; 1488 } 1489 break; 1490 default:; 1491 return FALSE; 1492 } 1493 1494 BlessLUT(lut); 1495 return TRUE; 1496 } 1497 1498 // Unlink an element and return the pointer to it 1499 void CMSEXPORT cmsPipelineUnlinkStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage** mpe) 1500 { 1501 cmsStage *Anterior, *pt, *Last; 1502 cmsStage *Unlinked = NULL; 1503 1504 1505 // If empty LUT, there is nothing to remove 1506 if (lut ->Elements == NULL) { 1507 if (mpe) *mpe = NULL; 1508 return; 1509 } 1510 1511 // On depending on the strategy... 1512 switch (loc) { 1513 1514 case cmsAT_BEGIN: 1515 { 1516 cmsStage* elem = lut ->Elements; 1517 1518 lut ->Elements = elem -> Next; 1519 elem ->Next = NULL; 1520 Unlinked = elem; 1521 1522 } 1523 break; 1524 1525 case cmsAT_END: 1526 Anterior = Last = NULL; 1527 for (pt = lut ->Elements; 1528 pt != NULL; 1529 pt = pt -> Next) { 1530 Anterior = Last; 1531 Last = pt; 1532 } 1533 1534 Unlinked = Last; // Next already points to NULL 1535 1536 // Truncate the chain 1537 if (Anterior) 1538 Anterior ->Next = NULL; 1539 else 1540 lut ->Elements = NULL; 1541 break; 1542 default:; 1543 } 1544 1545 if (mpe) 1546 *mpe = Unlinked; 1547 else 1548 cmsStageFree(Unlinked); 1549 1550 BlessLUT(lut); 1551 } 1552 1553 1554 // Concatenate two LUT into a new single one 1555 cmsBool CMSEXPORT cmsPipelineCat(cmsPipeline* l1, const cmsPipeline* l2) 1556 { 1557 cmsStage* mpe; 1558 1559 // If both LUTS does not have elements, we need to inherit 1560 // the number of channels 1561 if (l1 ->Elements == NULL && l2 ->Elements == NULL) { 1562 l1 ->InputChannels = l2 ->InputChannels; 1563 l1 ->OutputChannels = l2 ->OutputChannels; 1564 } 1565 1566 // Cat second 1567 for (mpe = l2 ->Elements; 1568 mpe != NULL; 1569 mpe = mpe ->Next) { 1570 1571 // We have to dup each element 1572 if (!cmsPipelineInsertStage(l1, cmsAT_END, cmsStageDup(mpe))) 1573 return FALSE; 1574 } 1575 1576 BlessLUT(l1); 1577 return TRUE; 1578 } 1579 1580 1581 cmsBool CMSEXPORT cmsPipelineSetSaveAs8bitsFlag(cmsPipeline* lut, cmsBool On) 1582 { 1583 cmsBool Anterior = lut ->SaveAs8Bits; 1584 1585 lut ->SaveAs8Bits = On; 1586 return Anterior; 1587 } 1588 1589 1590 cmsStage* CMSEXPORT cmsPipelineGetPtrToFirstStage(const cmsPipeline* lut) 1591 { 1592 return lut ->Elements; 1593 } 1594 1595 cmsStage* CMSEXPORT cmsPipelineGetPtrToLastStage(const cmsPipeline* lut) 1596 { 1597 cmsStage *mpe, *Anterior = NULL; 1598 1599 for (mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next) 1600 Anterior = mpe; 1601 1602 return Anterior; 1603 } 1604 1605 cmsUInt32Number CMSEXPORT cmsPipelineStageCount(const cmsPipeline* lut) 1606 { 1607 cmsStage *mpe; 1608 cmsUInt32Number n; 1609 1610 for (n=0, mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next) 1611 n++; 1612 1613 return n; 1614 } 1615 1616 // This function may be used to set the optional evaluator and a block of private data. If private data is being used, an optional 1617 // duplicator and free functions should also be specified in order to duplicate the LUT construct. Use NULL to inhibit such functionality. 1618 void CMSEXPORT _cmsPipelineSetOptimizationParameters(cmsPipeline* Lut, 1619 _cmsOPTeval16Fn Eval16, 1620 void* PrivateData, 1621 _cmsFreeUserDataFn FreePrivateDataFn, 1622 _cmsDupUserDataFn DupPrivateDataFn) 1623 { 1624 1625 Lut ->Eval16Fn = Eval16; 1626 Lut ->DupDataFn = DupPrivateDataFn; 1627 Lut ->FreeDataFn = FreePrivateDataFn; 1628 Lut ->Data = PrivateData; 1629 } 1630 1631 1632 // ----------------------------------------------------------- Reverse interpolation 1633 // Here's how it goes. The derivative Df(x) of the function f is the linear 1634 // transformation that best approximates f near the point x. It can be represented 1635 // by a matrix A whose entries are the partial derivatives of the components of f 1636 // with respect to all the coordinates. This is know as the Jacobian 1637 // 1638 // The best linear approximation to f is given by the matrix equation: 1639 // 1640 // y-y0 = A (x-x0) 1641 // 1642 // So, if x0 is a good "guess" for the zero of f, then solving for the zero of this 1643 // linear approximation will give a "better guess" for the zero of f. Thus let y=0, 1644 // and since y0=f(x0) one can solve the above equation for x. This leads to the 1645 // Newton's method formula: 1646 // 1647 // xn+1 = xn - A-1 f(xn) 1648 // 1649 // where xn+1 denotes the (n+1)-st guess, obtained from the n-th guess xn in the 1650 // fashion described above. Iterating this will give better and better approximations 1651 // if you have a "good enough" initial guess. 1652 1653 1654 #define JACOBIAN_EPSILON 0.001f 1655 #define INVERSION_MAX_ITERATIONS 30 1656 1657 // Increment with reflexion on boundary 1658 static 1659 void IncDelta(cmsFloat32Number *Val) 1660 { 1661 if (*Val < (1.0 - JACOBIAN_EPSILON)) 1662 1663 *Val += JACOBIAN_EPSILON; 1664 1665 else 1666 *Val -= JACOBIAN_EPSILON; 1667 1668 } 1669 1670 1671 1672 // Euclidean distance between two vectors of n elements each one 1673 static 1674 cmsFloat32Number EuclideanDistance(cmsFloat32Number a[], cmsFloat32Number b[], int n) 1675 { 1676 cmsFloat32Number sum = 0; 1677 int i; 1678 1679 for (i=0; i < n; i++) { 1680 cmsFloat32Number dif = b[i] - a[i]; 1681 sum += dif * dif; 1682 } 1683 1684 return sqrtf(sum); 1685 } 1686 1687 1688 // Evaluate a LUT in reverse direction. It only searches on 3->3 LUT. Uses Newton method 1689 // 1690 // x1 <- x - [J(x)]^-1 * f(x) 1691 // 1692 // lut: The LUT on where to do the search 1693 // Target: LabK, 3 values of Lab plus destination K which is fixed 1694 // Result: The obtained CMYK 1695 // Hint: Location where begin the search 1696 1697 cmsBool CMSEXPORT cmsPipelineEvalReverseFloat(cmsFloat32Number Target[], 1698 cmsFloat32Number Result[], 1699 cmsFloat32Number Hint[], 1700 const cmsPipeline* lut) 1701 { 1702 cmsUInt32Number i, j; 1703 cmsFloat64Number error, LastError = 1E20; 1704 cmsFloat32Number fx[4], x[4], xd[4], fxd[4]; 1705 cmsVEC3 tmp, tmp2; 1706 cmsMAT3 Jacobian; 1707 1708 // Only 3->3 and 4->3 are supported 1709 if (lut ->InputChannels != 3 && lut ->InputChannels != 4) return FALSE; 1710 if (lut ->OutputChannels != 3) return FALSE; 1711 1712 // Take the hint as starting point if specified 1713 if (Hint == NULL) { 1714 1715 // Begin at any point, we choose 1/3 of CMY axis 1716 x[0] = x[1] = x[2] = 0.3f; 1717 } 1718 else { 1719 1720 // Only copy 3 channels from hint... 1721 for (j=0; j < 3; j++) 1722 x[j] = Hint[j]; 1723 } 1724 1725 // If Lut is 4-dimensions, then grab target[3], which is fixed 1726 if (lut ->InputChannels == 4) { 1727 x[3] = Target[3]; 1728 } 1729 else x[3] = 0; // To keep lint happy 1730 1731 1732 // Iterate 1733 for (i = 0; i < INVERSION_MAX_ITERATIONS; i++) { 1734 1735 // Get beginning fx 1736 cmsPipelineEvalFloat(x, fx, lut); 1737 1738 // Compute error 1739 error = EuclideanDistance(fx, Target, 3); 1740 1741 // If not convergent, return last safe value 1742 if (error >= LastError) 1743 break; 1744 1745 // Keep latest values 1746 LastError = error; 1747 for (j=0; j < lut ->InputChannels; j++) 1748 Result[j] = x[j]; 1749 1750 // Found an exact match? 1751 if (error <= 0) 1752 break; 1753 1754 // Obtain slope (the Jacobian) 1755 for (j = 0; j < 3; j++) { 1756 1757 xd[0] = x[0]; 1758 xd[1] = x[1]; 1759 xd[2] = x[2]; 1760 xd[3] = x[3]; // Keep fixed channel 1761 1762 IncDelta(&xd[j]); 1763 1764 cmsPipelineEvalFloat(xd, fxd, lut); 1765 1766 Jacobian.v[0].n[j] = ((fxd[0] - fx[0]) / JACOBIAN_EPSILON); 1767 Jacobian.v[1].n[j] = ((fxd[1] - fx[1]) / JACOBIAN_EPSILON); 1768 Jacobian.v[2].n[j] = ((fxd[2] - fx[2]) / JACOBIAN_EPSILON); 1769 } 1770 1771 // Solve system 1772 tmp2.n[0] = fx[0] - Target[0]; 1773 tmp2.n[1] = fx[1] - Target[1]; 1774 tmp2.n[2] = fx[2] - Target[2]; 1775 1776 if (!_cmsMAT3solve(&tmp, &Jacobian, &tmp2)) 1777 return FALSE; 1778 1779 // Move our guess 1780 x[0] -= (cmsFloat32Number) tmp.n[0]; 1781 x[1] -= (cmsFloat32Number) tmp.n[1]; 1782 x[2] -= (cmsFloat32Number) tmp.n[2]; 1783 1784 // Some clipping.... 1785 for (j=0; j < 3; j++) { 1786 if (x[j] < 0) x[j] = 0; 1787 else 1788 if (x[j] > 1.0) x[j] = 1.0; 1789 } 1790 } 1791 1792 return TRUE; 1793 } 1794