Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef GrDrawState_DEFINED
      9 #define GrDrawState_DEFINED
     10 
     11 #include "GrBlend.h"
     12 #include "GrDrawTargetCaps.h"
     13 #include "GrGpuResourceRef.h"
     14 #include "GrRODrawState.h"
     15 #include "effects/GrSimpleTextureEffect.h"
     16 
     17 class GrOptDrawState;
     18 
     19 /**
     20  * Modifiable subclass derived from GrRODrawState. The majority of the data that represents a draw
     21  * state is stored in the parent class. GrDrawState contains methods for setting, adding to, etc.
     22  * various data members of the draw state. This class is used to configure the state used when
     23  * issuing draws via GrDrawTarget.
     24  */
     25 class GrDrawState : public GrRODrawState {
     26 public:
     27     SK_DECLARE_INST_COUNT(GrDrawState)
     28 
     29     GrDrawState() : fCachedOptState(NULL) {
     30         SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
     31         this->reset();
     32     }
     33 
     34     GrDrawState(const SkMatrix& initialViewMatrix) : fCachedOptState(NULL) {
     35         SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
     36         this->reset(initialViewMatrix);
     37     }
     38 
     39     /**
     40      * Copies another draw state.
     41      **/
     42     GrDrawState(const GrDrawState& state) : INHERITED(), fCachedOptState(NULL) {
     43         SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
     44         *this = state;
     45     }
     46 
     47     /**
     48      * Copies another draw state with a preconcat to the view matrix.
     49      **/
     50     GrDrawState(const GrDrawState& state, const SkMatrix& preConcatMatrix);
     51 
     52     virtual ~GrDrawState();
     53 
     54     /**
     55      * Resets to the default state. GrProcessors will be removed from all stages.
     56      */
     57     void reset() { this->onReset(NULL); }
     58 
     59     void reset(const SkMatrix& initialViewMatrix) { this->onReset(&initialViewMatrix); }
     60 
     61     /**
     62      * Initializes the GrDrawState based on a GrPaint, view matrix and render target. Note that
     63      * GrDrawState encompasses more than GrPaint. Aspects of GrDrawState that have no GrPaint
     64      * equivalents are set to default values with the exception of vertex attribute state which
     65      * is unmodified by this function and clipping which will be enabled.
     66      */
     67     void setFromPaint(const GrPaint& , const SkMatrix& viewMatrix, GrRenderTarget*);
     68 
     69     ///////////////////////////////////////////////////////////////////////////
     70     /// @name Vertex Attributes
     71     ////
     72 
     73    /**
     74      * The format of vertices is represented as an array of GrVertexAttribs, with each representing
     75      * the type of the attribute, its offset, and semantic binding (see GrVertexAttrib in
     76      * GrTypesPriv.h).
     77      *
     78      * The mapping of attributes with kEffect bindings to GrProcessor inputs is specified when
     79      * setEffect is called.
     80      */
     81 
     82     /**
     83      *  Sets vertex attributes for next draw. The object driving the templatization
     84      *  should be a global GrVertexAttrib array that is never changed.
     85      *
     86      *  @param count      the number of attributes being set, limited to kMaxVertexAttribCnt.
     87      *  @param stride     the number of bytes between successive vertex data.
     88      */
     89     template <const GrVertexAttrib A[]> void setVertexAttribs(int count, size_t stride) {
     90         this->internalSetVertexAttribs(A, count, stride);
     91     }
     92 
     93     /**
     94      *  Sets default vertex attributes for next draw. The default is a single attribute:
     95      *  {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribType}
     96      */
     97     void setDefaultVertexAttribs();
     98 
     99     /**
    100      * Helper to save/restore vertex attribs
    101      */
    102      class AutoVertexAttribRestore {
    103      public:
    104          AutoVertexAttribRestore(GrDrawState* drawState);
    105 
    106          ~AutoVertexAttribRestore() { fDrawState->internalSetVertexAttribs(fVAPtr, fVACount,
    107                                                                            fVAStride); }
    108 
    109      private:
    110          GrDrawState*          fDrawState;
    111          const GrVertexAttrib* fVAPtr;
    112          int                   fVACount;
    113          size_t                fVAStride;
    114      };
    115 
    116     /// @}
    117 
    118     /**
    119      * Depending on features available in the underlying 3D API and the color blend mode requested
    120      * it may or may not be possible to correctly blend with fractional pixel coverage generated by
    121      * the fragment shader.
    122      *
    123      * This function considers the current draw state and the draw target's capabilities to
    124      * determine whether coverage can be handled correctly. This function assumes that the caller
    125      * intends to specify fractional pixel coverage (via setCoverage(), through a coverage vertex
    126      * attribute, or a coverage effect) but may not have specified it yet.
    127      */
    128     bool couldApplyCoverage(const GrDrawTargetCaps& caps) const;
    129 
    130     /// @}
    131 
    132     ///////////////////////////////////////////////////////////////////////////
    133     /// @name Color
    134     ////
    135 
    136     /**
    137      *  Sets color for next draw to a premultiplied-alpha color.
    138      *
    139      *  @param color    the color to set.
    140      */
    141     void setColor(GrColor color) {
    142         if (color != fColor) {
    143             fColor = color;
    144             this->invalidateOptState();
    145         }
    146     }
    147 
    148     /**
    149      *  Sets the color to be used for the next draw to be
    150      *  (r,g,b,a) = (alpha, alpha, alpha, alpha).
    151      *
    152      *  @param alpha The alpha value to set as the color.
    153      */
    154     void setAlpha(uint8_t a) { this->setColor((a << 24) | (a << 16) | (a << 8) | a); }
    155 
    156     /// @}
    157 
    158     ///////////////////////////////////////////////////////////////////////////
    159     /// @name Coverage
    160     ////
    161 
    162     /**
    163      * Sets a constant fractional coverage to be applied to the draw. The
    164      * initial value (after construction or reset()) is 0xff. The constant
    165      * coverage is ignored when per-vertex coverage is provided.
    166      */
    167     void setCoverage(uint8_t coverage) {
    168         if (coverage != fCoverage) {
    169             fCoverage = coverage;
    170             this->invalidateOptState();
    171         }
    172     }
    173 
    174     /// @}
    175 
    176     /**
    177      * The geometry processor is the sole element of the skia pipeline which can use the vertex,
    178      * geometry, and tesselation shaders.  The GP may also compute a coverage in its fragment shader
    179      * but is never put in the color processing pipeline.
    180      */
    181 
    182     const GrGeometryProcessor* setGeometryProcessor(const GrGeometryProcessor* geometryProcessor) {
    183         SkASSERT(geometryProcessor);
    184         SkASSERT(!this->hasGeometryProcessor());
    185         fGeometryProcessor.reset(new GrGeometryStage(geometryProcessor));
    186         this->invalidateOptState();
    187         return geometryProcessor;
    188     }
    189 
    190     ///////////////////////////////////////////////////////////////////////////
    191     /// @name Effect Stages
    192     /// Each stage hosts a GrProcessor. The effect produces an output color or coverage in the
    193     /// fragment shader. Its inputs are the output from the previous stage as well as some variables
    194     /// available to it in the fragment and vertex shader (e.g. the vertex position, the dst color,
    195     /// the fragment position, local coordinates).
    196     ///
    197     /// The stages are divided into two sets, color-computing and coverage-computing. The final
    198     /// color stage produces the final pixel color. The coverage-computing stages function exactly
    199     /// as the color-computing but the output of the final coverage stage is treated as a fractional
    200     /// pixel coverage rather than as input to the src/dst color blend step.
    201     ///
    202     /// The input color to the first color-stage is either the constant color or interpolated
    203     /// per-vertex colors. The input to the first coverage stage is either a constant coverage
    204     /// (usually full-coverage) or interpolated per-vertex coverage.
    205     ///
    206     /// See the documentation of kCoverageDrawing_StateBit for information about disabling the
    207     /// the color / coverage distinction.
    208     ////
    209 
    210     const GrFragmentProcessor* addColorProcessor(const GrFragmentProcessor* effect) {
    211         SkASSERT(effect);
    212         SkNEW_APPEND_TO_TARRAY(&fColorStages, GrFragmentStage, (effect));
    213         this->invalidateOptState();
    214         return effect;
    215     }
    216 
    217     const GrFragmentProcessor* addCoverageProcessor(const GrFragmentProcessor* effect) {
    218         SkASSERT(effect);
    219         SkNEW_APPEND_TO_TARRAY(&fCoverageStages, GrFragmentStage, (effect));
    220         this->invalidateOptState();
    221         return effect;
    222     }
    223 
    224     /**
    225      * Creates a GrSimpleTextureEffect that uses local coords as texture coordinates.
    226      */
    227     void addColorTextureProcessor(GrTexture* texture, const SkMatrix& matrix) {
    228         this->addColorProcessor(GrSimpleTextureEffect::Create(texture, matrix))->unref();
    229     }
    230 
    231     void addCoverageTextureProcessor(GrTexture* texture, const SkMatrix& matrix) {
    232         this->addCoverageProcessor(GrSimpleTextureEffect::Create(texture, matrix))->unref();
    233     }
    234 
    235     void addColorTextureProcessor(GrTexture* texture,
    236                                   const SkMatrix& matrix,
    237                                   const GrTextureParams& params) {
    238         this->addColorProcessor(GrSimpleTextureEffect::Create(texture, matrix, params))->unref();
    239     }
    240 
    241     void addCoverageTextureProcessor(GrTexture* texture,
    242                                      const SkMatrix& matrix,
    243                                      const GrTextureParams& params) {
    244         this->addCoverageProcessor(GrSimpleTextureEffect::Create(texture, matrix, params))->unref();
    245     }
    246 
    247     /**
    248      * When this object is destroyed it will remove any color/coverage effects from the draw state
    249      * that were added after its constructor.
    250      *
    251      * This class has strange behavior around geometry processor. If there is a GP on the draw state
    252      * it will assert that the GP is not modified until after the destructor of the ARE. If the
    253      * draw state has a NULL GP when the ARE is constructed then it will reset it to null in the
    254      * destructor.
    255      *
    256      * TODO: We'd prefer for the ARE to just save and restore the GP. However, this would add
    257      * significant complexity to the multi-ref architecture for deferred drawing. Once GrDrawState
    258      * and GrOptDrawState are fully separated then GrDrawState will never be in the deferred
    259      * execution state and GrOptDrawState always will be (and will be immutable and therefore
    260      * unable to have an ARE). At this point we can restore sanity and have the ARE save and restore
    261      * the GP.
    262      */
    263     class AutoRestoreEffects : public ::SkNoncopyable {
    264     public:
    265         AutoRestoreEffects()
    266             : fDrawState(NULL)
    267             , fOriginalGPID(SK_InvalidUniqueID)
    268             , fColorEffectCnt(0)
    269             , fCoverageEffectCnt(0) {}
    270 
    271         AutoRestoreEffects(GrDrawState* ds)
    272             : fDrawState(NULL)
    273             , fOriginalGPID(SK_InvalidUniqueID)
    274             , fColorEffectCnt(0)
    275             , fCoverageEffectCnt(0) {
    276             this->set(ds);
    277         }
    278 
    279         ~AutoRestoreEffects() { this->set(NULL); }
    280 
    281         void set(GrDrawState* ds);
    282 
    283         bool isSet() const { return SkToBool(fDrawState); }
    284 
    285     private:
    286         GrDrawState*    fDrawState;
    287         uint32_t        fOriginalGPID;
    288         int             fColorEffectCnt;
    289         int             fCoverageEffectCnt;
    290     };
    291 
    292     /// @}
    293 
    294     ///////////////////////////////////////////////////////////////////////////
    295     /// @name Blending
    296     ////
    297 
    298     /**
    299      * Sets the blending function coefficients.
    300      *
    301      * The blend function will be:
    302      *    D' = sat(S*srcCoef + D*dstCoef)
    303      *
    304      *   where D is the existing destination color, S is the incoming source
    305      *   color, and D' is the new destination color that will be written. sat()
    306      *   is the saturation function.
    307      *
    308      * @param srcCoef coefficient applied to the src color.
    309      * @param dstCoef coefficient applied to the dst color.
    310      */
    311     void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) {
    312         if (srcCoeff != fSrcBlend || dstCoeff != fDstBlend) {
    313             fSrcBlend = srcCoeff;
    314             fDstBlend = dstCoeff;
    315             this->invalidateOptState();
    316         }
    317     #ifdef SK_DEBUG
    318         if (GrBlendCoeffRefsDst(dstCoeff)) {
    319             GrPrintf("Unexpected dst blend coeff. Won't work correctly with coverage stages.\n");
    320         }
    321         if (GrBlendCoeffRefsSrc(srcCoeff)) {
    322             GrPrintf("Unexpected src blend coeff. Won't work correctly with coverage stages.\n");
    323         }
    324     #endif
    325     }
    326 
    327     /**
    328      * Sets the blending function constant referenced by the following blending
    329      * coefficients:
    330      *      kConstC_GrBlendCoeff
    331      *      kIConstC_GrBlendCoeff
    332      *      kConstA_GrBlendCoeff
    333      *      kIConstA_GrBlendCoeff
    334      *
    335      * @param constant the constant to set
    336      */
    337     void setBlendConstant(GrColor constant) {
    338         if (constant != fBlendConstant) {
    339             fBlendConstant = constant;
    340             this->invalidateOptState();
    341         }
    342     }
    343 
    344     /// @}
    345 
    346     ///////////////////////////////////////////////////////////////////////////
    347     /// @name View Matrix
    348     ////
    349 
    350     /**
    351      * Sets the view matrix to identity and updates any installed effects to compensate for the
    352      * coord system change.
    353      */
    354     bool setIdentityViewMatrix();
    355 
    356     ////////////////////////////////////////////////////////////////////////////
    357 
    358     /**
    359      * Preconcats the current view matrix and restores the previous view matrix in the destructor.
    360      * Effect matrices are automatically adjusted to compensate and adjusted back in the destructor.
    361      */
    362     class AutoViewMatrixRestore : public ::SkNoncopyable {
    363     public:
    364         AutoViewMatrixRestore() : fDrawState(NULL) {}
    365 
    366         AutoViewMatrixRestore(GrDrawState* ds, const SkMatrix& preconcatMatrix) {
    367             fDrawState = NULL;
    368             this->set(ds, preconcatMatrix);
    369         }
    370 
    371         ~AutoViewMatrixRestore() { this->restore(); }
    372 
    373         /**
    374          * Can be called prior to destructor to restore the original matrix.
    375          */
    376         void restore();
    377 
    378         void set(GrDrawState* drawState, const SkMatrix& preconcatMatrix);
    379 
    380         /** Sets the draw state's matrix to identity. This can fail because the current view matrix
    381             is not invertible. */
    382         bool setIdentity(GrDrawState* drawState);
    383 
    384     private:
    385         void doEffectCoordChanges(const SkMatrix& coordChangeMatrix);
    386 
    387         GrDrawState*                                           fDrawState;
    388         SkMatrix                                               fViewMatrix;
    389         int                                                    fNumColorStages;
    390         bool                                                   fHasGeometryProcessor;
    391         SkAutoSTArray<8, GrProcessorStage::SavedCoordChange>   fSavedCoordChanges;
    392     };
    393 
    394     /// @}
    395 
    396     ///////////////////////////////////////////////////////////////////////////
    397     /// @name Render Target
    398     ////
    399 
    400     /**
    401      * Sets the render-target used at the next drawing call
    402      *
    403      * @param target  The render target to set.
    404      */
    405     void setRenderTarget(GrRenderTarget* target) {
    406         fRenderTarget.set(SkSafeRef(target), GrIORef::kWrite_IOType);
    407         this->invalidateOptState();
    408     }
    409 
    410     /// @}
    411 
    412     ///////////////////////////////////////////////////////////////////////////
    413     /// @name Stencil
    414     ////
    415 
    416     /**
    417      * Sets the stencil settings to use for the next draw.
    418      * Changing the clip has the side-effect of possibly zeroing
    419      * out the client settable stencil bits. So multipass algorithms
    420      * using stencil should not change the clip between passes.
    421      * @param settings  the stencil settings to use.
    422      */
    423     void setStencil(const GrStencilSettings& settings) {
    424         if (settings != fStencilSettings) {
    425             fStencilSettings = settings;
    426             this->invalidateOptState();
    427         }
    428     }
    429 
    430     /**
    431      * Shortcut to disable stencil testing and ops.
    432      */
    433     void disableStencil() {
    434         if (!fStencilSettings.isDisabled()) {
    435             fStencilSettings.setDisabled();
    436             this->invalidateOptState();
    437         }
    438     }
    439 
    440     GrStencilSettings* stencil() { return &fStencilSettings; }
    441 
    442     /// @}
    443 
    444     ///////////////////////////////////////////////////////////////////////////
    445     /// @name State Flags
    446     ////
    447 
    448     void resetStateFlags() {
    449         if (0 != fFlagBits) {
    450             fFlagBits = 0;
    451             this->invalidateOptState();
    452         }
    453     }
    454 
    455     /**
    456      * Enable render state settings.
    457      *
    458      * @param stateBits bitfield of StateBits specifying the states to enable
    459      */
    460     void enableState(uint32_t stateBits) {
    461         if (stateBits & ~fFlagBits) {
    462             fFlagBits |= stateBits;
    463             this->invalidateOptState();
    464         }
    465     }
    466 
    467     /**
    468      * Disable render state settings.
    469      *
    470      * @param stateBits bitfield of StateBits specifying the states to disable
    471      */
    472     void disableState(uint32_t stateBits) {
    473         if (stateBits & fFlagBits) {
    474             fFlagBits &= ~(stateBits);
    475             this->invalidateOptState();
    476         }
    477     }
    478 
    479     /**
    480      * Enable or disable stateBits based on a boolean.
    481      *
    482      * @param stateBits bitfield of StateBits to enable or disable
    483      * @param enable    if true enable stateBits, otherwise disable
    484      */
    485     void setState(uint32_t stateBits, bool enable) {
    486         if (enable) {
    487             this->enableState(stateBits);
    488         } else {
    489             this->disableState(stateBits);
    490         }
    491     }
    492 
    493     /// @}
    494 
    495     ///////////////////////////////////////////////////////////////////////////
    496     /// @name Face Culling
    497     ////
    498 
    499     /**
    500      * Controls whether clockwise, counterclockwise, or both faces are drawn.
    501      * @param face  the face(s) to draw.
    502      */
    503     void setDrawFace(DrawFace face) {
    504         SkASSERT(kInvalid_DrawFace != face);
    505         fDrawFace = face;
    506     }
    507 
    508     /// @}
    509 
    510     ///////////////////////////////////////////////////////////////////////////
    511     /// @name Hints
    512     /// Hints that when provided can enable optimizations.
    513     ////
    514 
    515     void setHint(Hints hint, bool value) { fHints = value ? (fHints | hint) : (fHints & ~hint); }
    516 
    517     /// @}
    518 
    519     ///////////////////////////////////////////////////////////////////////////
    520 
    521     /** Return type for CombineIfPossible. */
    522     enum CombinedState {
    523         /** The GrDrawStates cannot be combined. */
    524         kIncompatible_CombinedState,
    525         /** Either draw state can be used in place of the other. */
    526         kAOrB_CombinedState,
    527         /** Use the first draw state. */
    528         kA_CombinedState,
    529         /** Use the second draw state. */
    530         kB_CombinedState,
    531     };
    532 
    533     /** This function determines whether the GrDrawStates used for two draws can be combined into
    534         a single GrDrawState. This is used to avoid storing redundant GrDrawStates and to determine
    535         if draws can be batched. The return value indicates whether combining is possible and, if
    536         so, which of the two inputs should be used. */
    537     static CombinedState CombineIfPossible(const GrDrawState& a, const GrDrawState& b,
    538                                            const GrDrawTargetCaps& caps);
    539 
    540     GrDrawState& operator= (const GrDrawState& that);
    541 
    542     /**
    543      * Returns a snapshot of the current optimized state. If the current drawState has a valid
    544      * cached optimiezed state it will simply return a pointer to it otherwise it will create a new
    545      * GrOptDrawState. In all cases the GrOptDrawState is reffed and ownership is given to the
    546      * caller.
    547      */
    548     GrOptDrawState* createOptState(const GrDrawTargetCaps&) const;
    549 
    550 private:
    551     void invalidateOptState() const;
    552 
    553     void onReset(const SkMatrix* initialViewMatrix);
    554 
    555     // Some of the auto restore objects assume that no effects are removed during their lifetime.
    556     // This is used to assert that this condition holds.
    557     SkDEBUGCODE(int fBlockEffectRemovalCnt;)
    558 
    559     void internalSetVertexAttribs(const GrVertexAttrib attribs[], int count, size_t stride);
    560 
    561     mutable GrOptDrawState* fCachedOptState;
    562     mutable uint32_t fCachedCapsID;
    563 
    564     typedef GrRODrawState INHERITED;
    565 };
    566 
    567 #endif
    568