Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the target machine instruction set to the code generator.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
     15 #define LLVM_TARGET_TARGETINSTRINFO_H
     16 
     17 #include "llvm/ADT/SmallSet.h"
     18 #include "llvm/CodeGen/DFAPacketizer.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/MC/MCInstrInfo.h"
     21 
     22 namespace llvm {
     23 
     24 class InstrItineraryData;
     25 class LiveVariables;
     26 class MCAsmInfo;
     27 class MachineMemOperand;
     28 class MachineRegisterInfo;
     29 class MDNode;
     30 class MCInst;
     31 class MCSchedModel;
     32 class MCSymbolRefExpr;
     33 class SDNode;
     34 class ScheduleHazardRecognizer;
     35 class SelectionDAG;
     36 class ScheduleDAG;
     37 class TargetRegisterClass;
     38 class TargetRegisterInfo;
     39 class BranchProbability;
     40 class TargetSubtargetInfo;
     41 
     42 template<class T> class SmallVectorImpl;
     43 
     44 
     45 //---------------------------------------------------------------------------
     46 ///
     47 /// TargetInstrInfo - Interface to description of machine instruction set
     48 ///
     49 class TargetInstrInfo : public MCInstrInfo {
     50   TargetInstrInfo(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
     51   void operator=(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
     52 public:
     53   TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
     54     : CallFrameSetupOpcode(CFSetupOpcode),
     55       CallFrameDestroyOpcode(CFDestroyOpcode) {
     56   }
     57 
     58   virtual ~TargetInstrInfo();
     59 
     60   /// getRegClass - Givem a machine instruction descriptor, returns the register
     61   /// class constraint for OpNum, or NULL.
     62   const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
     63                                          unsigned OpNum,
     64                                          const TargetRegisterInfo *TRI,
     65                                          const MachineFunction &MF) const;
     66 
     67   /// isTriviallyReMaterializable - Return true if the instruction is trivially
     68   /// rematerializable, meaning it has no side effects and requires no operands
     69   /// that aren't always available.
     70   bool isTriviallyReMaterializable(const MachineInstr *MI,
     71                                    AliasAnalysis *AA = nullptr) const {
     72     return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
     73            (MI->getDesc().isRematerializable() &&
     74             (isReallyTriviallyReMaterializable(MI, AA) ||
     75              isReallyTriviallyReMaterializableGeneric(MI, AA)));
     76   }
     77 
     78 protected:
     79   /// isReallyTriviallyReMaterializable - For instructions with opcodes for
     80   /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
     81   /// specify whether the instruction is actually trivially rematerializable,
     82   /// taking into consideration its operands. This predicate must return false
     83   /// if the instruction has any side effects other than producing a value, or
     84   /// if it requres any address registers that are not always available.
     85   virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
     86                                                  AliasAnalysis *AA) const {
     87     return false;
     88   }
     89 
     90 private:
     91   /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
     92   /// for which the M_REMATERIALIZABLE flag is set and the target hook
     93   /// isReallyTriviallyReMaterializable returns false, this function does
     94   /// target-independent tests to determine if the instruction is really
     95   /// trivially rematerializable.
     96   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
     97                                                 AliasAnalysis *AA) const;
     98 
     99 public:
    100   /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
    101   /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
    102   /// targets use pseudo instructions in order to abstract away the difference
    103   /// between operating with a frame pointer and operating without, through the
    104   /// use of these two instructions.
    105   ///
    106   int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
    107   int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
    108 
    109   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
    110   /// extension instruction. That is, it's like a copy where it's legal for the
    111   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
    112   /// true, then it's expected the pre-extension value is available as a subreg
    113   /// of the result register. This also returns the sub-register index in
    114   /// SubIdx.
    115   virtual bool isCoalescableExtInstr(const MachineInstr &MI,
    116                                      unsigned &SrcReg, unsigned &DstReg,
    117                                      unsigned &SubIdx) const {
    118     return false;
    119   }
    120 
    121   /// isLoadFromStackSlot - If the specified machine instruction is a direct
    122   /// load from a stack slot, return the virtual or physical register number of
    123   /// the destination along with the FrameIndex of the loaded stack slot.  If
    124   /// not, return 0.  This predicate must return 0 if the instruction has
    125   /// any side effects other than loading from the stack slot.
    126   virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
    127                                        int &FrameIndex) const {
    128     return 0;
    129   }
    130 
    131   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
    132   /// stack locations as well.  This uses a heuristic so it isn't
    133   /// reliable for correctness.
    134   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
    135                                              int &FrameIndex) const {
    136     return 0;
    137   }
    138 
    139   /// hasLoadFromStackSlot - If the specified machine instruction has
    140   /// a load from a stack slot, return true along with the FrameIndex
    141   /// of the loaded stack slot and the machine mem operand containing
    142   /// the reference.  If not, return false.  Unlike
    143   /// isLoadFromStackSlot, this returns true for any instructions that
    144   /// loads from the stack.  This is just a hint, as some cases may be
    145   /// missed.
    146   virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
    147                                     const MachineMemOperand *&MMO,
    148                                     int &FrameIndex) const;
    149 
    150   /// isStoreToStackSlot - If the specified machine instruction is a direct
    151   /// store to a stack slot, return the virtual or physical register number of
    152   /// the source reg along with the FrameIndex of the loaded stack slot.  If
    153   /// not, return 0.  This predicate must return 0 if the instruction has
    154   /// any side effects other than storing to the stack slot.
    155   virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
    156                                       int &FrameIndex) const {
    157     return 0;
    158   }
    159 
    160   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
    161   /// stack locations as well.  This uses a heuristic so it isn't
    162   /// reliable for correctness.
    163   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
    164                                             int &FrameIndex) const {
    165     return 0;
    166   }
    167 
    168   /// hasStoreToStackSlot - If the specified machine instruction has a
    169   /// store to a stack slot, return true along with the FrameIndex of
    170   /// the loaded stack slot and the machine mem operand containing the
    171   /// reference.  If not, return false.  Unlike isStoreToStackSlot,
    172   /// this returns true for any instructions that stores to the
    173   /// stack.  This is just a hint, as some cases may be missed.
    174   virtual bool hasStoreToStackSlot(const MachineInstr *MI,
    175                                    const MachineMemOperand *&MMO,
    176                                    int &FrameIndex) const;
    177 
    178   /// isStackSlotCopy - Return true if the specified machine instruction
    179   /// is a copy of one stack slot to another and has no other effect.
    180   /// Provide the identity of the two frame indices.
    181   virtual bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex,
    182                                int &SrcFrameIndex) const {
    183     return false;
    184   }
    185 
    186   /// Compute the size in bytes and offset within a stack slot of a spilled
    187   /// register or subregister.
    188   ///
    189   /// \param [out] Size in bytes of the spilled value.
    190   /// \param [out] Offset in bytes within the stack slot.
    191   /// \returns true if both Size and Offset are successfully computed.
    192   ///
    193   /// Not all subregisters have computable spill slots. For example,
    194   /// subregisters registers may not be byte-sized, and a pair of discontiguous
    195   /// subregisters has no single offset.
    196   ///
    197   /// Targets with nontrivial bigendian implementations may need to override
    198   /// this, particularly to support spilled vector registers.
    199   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
    200                                  unsigned &Size, unsigned &Offset,
    201                                  const TargetMachine *TM) const;
    202 
    203   /// isAsCheapAsAMove - Return true if the instruction is as cheap as a move
    204   /// instruction.
    205   ///
    206   /// Targets for different archs need to override this, and different
    207   /// micro-architectures can also be finely tuned inside.
    208   virtual bool isAsCheapAsAMove(const MachineInstr *MI) const {
    209     return MI->isAsCheapAsAMove();
    210   }
    211 
    212   /// reMaterialize - Re-issue the specified 'original' instruction at the
    213   /// specific location targeting a new destination register.
    214   /// The register in Orig->getOperand(0).getReg() will be substituted by
    215   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
    216   /// SubIdx.
    217   virtual void reMaterialize(MachineBasicBlock &MBB,
    218                              MachineBasicBlock::iterator MI,
    219                              unsigned DestReg, unsigned SubIdx,
    220                              const MachineInstr *Orig,
    221                              const TargetRegisterInfo &TRI) const;
    222 
    223   /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
    224   /// MachineFunction::CloneMachineInstr(), but the target may update operands
    225   /// that are required to be unique.
    226   ///
    227   /// The instruction must be duplicable as indicated by isNotDuplicable().
    228   virtual MachineInstr *duplicate(MachineInstr *Orig,
    229                                   MachineFunction &MF) const;
    230 
    231   /// convertToThreeAddress - This method must be implemented by targets that
    232   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
    233   /// may be able to convert a two-address instruction into one or more true
    234   /// three-address instructions on demand.  This allows the X86 target (for
    235   /// example) to convert ADD and SHL instructions into LEA instructions if they
    236   /// would require register copies due to two-addressness.
    237   ///
    238   /// This method returns a null pointer if the transformation cannot be
    239   /// performed, otherwise it returns the last new instruction.
    240   ///
    241   virtual MachineInstr *
    242   convertToThreeAddress(MachineFunction::iterator &MFI,
    243                    MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
    244     return nullptr;
    245   }
    246 
    247   /// commuteInstruction - If a target has any instructions that are
    248   /// commutable but require converting to different instructions or making
    249   /// non-trivial changes to commute them, this method can overloaded to do
    250   /// that.  The default implementation simply swaps the commutable operands.
    251   /// If NewMI is false, MI is modified in place and returned; otherwise, a
    252   /// new machine instruction is created and returned.  Do not call this
    253   /// method for a non-commutable instruction, but there may be some cases
    254   /// where this method fails and returns null.
    255   virtual MachineInstr *commuteInstruction(MachineInstr *MI,
    256                                            bool NewMI = false) const;
    257 
    258   /// findCommutedOpIndices - If specified MI is commutable, return the two
    259   /// operand indices that would swap value. Return false if the instruction
    260   /// is not in a form which this routine understands.
    261   virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
    262                                      unsigned &SrcOpIdx2) const;
    263 
    264   /// produceSameValue - Return true if two machine instructions would produce
    265   /// identical values. By default, this is only true when the two instructions
    266   /// are deemed identical except for defs. If this function is called when the
    267   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
    268   /// aggressive checks.
    269   virtual bool produceSameValue(const MachineInstr *MI0,
    270                                 const MachineInstr *MI1,
    271                                 const MachineRegisterInfo *MRI = nullptr) const;
    272 
    273   /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
    274   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
    275   /// implemented for a target).  Upon success, this returns false and returns
    276   /// with the following information in various cases:
    277   ///
    278   /// 1. If this block ends with no branches (it just falls through to its succ)
    279   ///    just return false, leaving TBB/FBB null.
    280   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
    281   ///    the destination block.
    282   /// 3. If this block ends with a conditional branch and it falls through to a
    283   ///    successor block, it sets TBB to be the branch destination block and a
    284   ///    list of operands that evaluate the condition. These operands can be
    285   ///    passed to other TargetInstrInfo methods to create new branches.
    286   /// 4. If this block ends with a conditional branch followed by an
    287   ///    unconditional branch, it returns the 'true' destination in TBB, the
    288   ///    'false' destination in FBB, and a list of operands that evaluate the
    289   ///    condition.  These operands can be passed to other TargetInstrInfo
    290   ///    methods to create new branches.
    291   ///
    292   /// Note that RemoveBranch and InsertBranch must be implemented to support
    293   /// cases where this method returns success.
    294   ///
    295   /// If AllowModify is true, then this routine is allowed to modify the basic
    296   /// block (e.g. delete instructions after the unconditional branch).
    297   ///
    298   virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
    299                              MachineBasicBlock *&FBB,
    300                              SmallVectorImpl<MachineOperand> &Cond,
    301                              bool AllowModify = false) const {
    302     return true;
    303   }
    304 
    305   /// RemoveBranch - Remove the branching code at the end of the specific MBB.
    306   /// This is only invoked in cases where AnalyzeBranch returns success. It
    307   /// returns the number of instructions that were removed.
    308   virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
    309     llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
    310   }
    311 
    312   /// InsertBranch - Insert branch code into the end of the specified
    313   /// MachineBasicBlock.  The operands to this method are the same as those
    314   /// returned by AnalyzeBranch.  This is only invoked in cases where
    315   /// AnalyzeBranch returns success. It returns the number of instructions
    316   /// inserted.
    317   ///
    318   /// It is also invoked by tail merging to add unconditional branches in
    319   /// cases where AnalyzeBranch doesn't apply because there was no original
    320   /// branch to analyze.  At least this much must be implemented, else tail
    321   /// merging needs to be disabled.
    322   virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    323                                 MachineBasicBlock *FBB,
    324                                 const SmallVectorImpl<MachineOperand> &Cond,
    325                                 DebugLoc DL) const {
    326     llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
    327   }
    328 
    329   /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
    330   /// after it, replacing it with an unconditional branch to NewDest. This is
    331   /// used by the tail merging pass.
    332   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
    333                                        MachineBasicBlock *NewDest) const;
    334 
    335   /// getUnconditionalBranch - Get an instruction that performs an unconditional
    336   /// branch to the given symbol.
    337   virtual void
    338   getUnconditionalBranch(MCInst &MI,
    339                          const MCSymbolRefExpr *BranchTarget) const {
    340     llvm_unreachable("Target didn't implement "
    341                      "TargetInstrInfo::getUnconditionalBranch!");
    342   }
    343 
    344   /// getTrap - Get a machine trap instruction
    345   virtual void getTrap(MCInst &MI) const {
    346     llvm_unreachable("Target didn't implement TargetInstrInfo::getTrap!");
    347   }
    348 
    349   /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
    350   /// block at the specified instruction (i.e. instruction would be the start
    351   /// of a new basic block).
    352   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
    353                                    MachineBasicBlock::iterator MBBI) const {
    354     return true;
    355   }
    356 
    357   /// isProfitableToIfCvt - Return true if it's profitable to predicate
    358   /// instructions with accumulated instruction latency of "NumCycles"
    359   /// of the specified basic block, where the probability of the instructions
    360   /// being executed is given by Probability, and Confidence is a measure
    361   /// of our confidence that it will be properly predicted.
    362   virtual
    363   bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
    364                            unsigned ExtraPredCycles,
    365                            const BranchProbability &Probability) const {
    366     return false;
    367   }
    368 
    369   /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
    370   /// checks for the case where two basic blocks from true and false path
    371   /// of a if-then-else (diamond) are predicated on mutally exclusive
    372   /// predicates, where the probability of the true path being taken is given
    373   /// by Probability, and Confidence is a measure of our confidence that it
    374   /// will be properly predicted.
    375   virtual bool
    376   isProfitableToIfCvt(MachineBasicBlock &TMBB,
    377                       unsigned NumTCycles, unsigned ExtraTCycles,
    378                       MachineBasicBlock &FMBB,
    379                       unsigned NumFCycles, unsigned ExtraFCycles,
    380                       const BranchProbability &Probability) const {
    381     return false;
    382   }
    383 
    384   /// isProfitableToDupForIfCvt - Return true if it's profitable for
    385   /// if-converter to duplicate instructions of specified accumulated
    386   /// instruction latencies in the specified MBB to enable if-conversion.
    387   /// The probability of the instructions being executed is given by
    388   /// Probability, and Confidence is a measure of our confidence that it
    389   /// will be properly predicted.
    390   virtual bool
    391   isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
    392                             const BranchProbability &Probability) const {
    393     return false;
    394   }
    395 
    396   /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
    397   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
    398   /// exclusive predicates.
    399   /// e.g.
    400   ///   subeq  r0, r1, #1
    401   ///   addne  r0, r1, #1
    402   /// =>
    403   ///   sub    r0, r1, #1
    404   ///   addne  r0, r1, #1
    405   ///
    406   /// This may be profitable is conditional instructions are always executed.
    407   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
    408                                          MachineBasicBlock &FMBB) const {
    409     return false;
    410   }
    411 
    412   /// canInsertSelect - Return true if it is possible to insert a select
    413   /// instruction that chooses between TrueReg and FalseReg based on the
    414   /// condition code in Cond.
    415   ///
    416   /// When successful, also return the latency in cycles from TrueReg,
    417   /// FalseReg, and Cond to the destination register. In most cases, a select
    418   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
    419   ///
    420   /// Some x86 implementations have 2-cycle cmov instructions.
    421   ///
    422   /// @param MBB         Block where select instruction would be inserted.
    423   /// @param Cond        Condition returned by AnalyzeBranch.
    424   /// @param TrueReg     Virtual register to select when Cond is true.
    425   /// @param FalseReg    Virtual register to select when Cond is false.
    426   /// @param CondCycles  Latency from Cond+Branch to select output.
    427   /// @param TrueCycles  Latency from TrueReg to select output.
    428   /// @param FalseCycles Latency from FalseReg to select output.
    429   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
    430                                const SmallVectorImpl<MachineOperand> &Cond,
    431                                unsigned TrueReg, unsigned FalseReg,
    432                                int &CondCycles,
    433                                int &TrueCycles, int &FalseCycles) const {
    434     return false;
    435   }
    436 
    437   /// insertSelect - Insert a select instruction into MBB before I that will
    438   /// copy TrueReg to DstReg when Cond is true, and FalseReg to DstReg when
    439   /// Cond is false.
    440   ///
    441   /// This function can only be called after canInsertSelect() returned true.
    442   /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
    443   /// that the same flags or registers required by Cond are available at the
    444   /// insertion point.
    445   ///
    446   /// @param MBB      Block where select instruction should be inserted.
    447   /// @param I        Insertion point.
    448   /// @param DL       Source location for debugging.
    449   /// @param DstReg   Virtual register to be defined by select instruction.
    450   /// @param Cond     Condition as computed by AnalyzeBranch.
    451   /// @param TrueReg  Virtual register to copy when Cond is true.
    452   /// @param FalseReg Virtual register to copy when Cons is false.
    453   virtual void insertSelect(MachineBasicBlock &MBB,
    454                             MachineBasicBlock::iterator I, DebugLoc DL,
    455                             unsigned DstReg,
    456                             const SmallVectorImpl<MachineOperand> &Cond,
    457                             unsigned TrueReg, unsigned FalseReg) const {
    458     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
    459   }
    460 
    461   /// analyzeSelect - Analyze the given select instruction, returning true if
    462   /// it cannot be understood. It is assumed that MI->isSelect() is true.
    463   ///
    464   /// When successful, return the controlling condition and the operands that
    465   /// determine the true and false result values.
    466   ///
    467   ///   Result = SELECT Cond, TrueOp, FalseOp
    468   ///
    469   /// Some targets can optimize select instructions, for example by predicating
    470   /// the instruction defining one of the operands. Such targets should set
    471   /// Optimizable.
    472   ///
    473   /// @param         MI Select instruction to analyze.
    474   /// @param Cond    Condition controlling the select.
    475   /// @param TrueOp  Operand number of the value selected when Cond is true.
    476   /// @param FalseOp Operand number of the value selected when Cond is false.
    477   /// @param Optimizable Returned as true if MI is optimizable.
    478   /// @returns False on success.
    479   virtual bool analyzeSelect(const MachineInstr *MI,
    480                              SmallVectorImpl<MachineOperand> &Cond,
    481                              unsigned &TrueOp, unsigned &FalseOp,
    482                              bool &Optimizable) const {
    483     assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction");
    484     return true;
    485   }
    486 
    487   /// optimizeSelect - Given a select instruction that was understood by
    488   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
    489   /// merging it with one of its operands. Returns NULL on failure.
    490   ///
    491   /// When successful, returns the new select instruction. The client is
    492   /// responsible for deleting MI.
    493   ///
    494   /// If both sides of the select can be optimized, PreferFalse is used to pick
    495   /// a side.
    496   ///
    497   /// @param MI          Optimizable select instruction.
    498   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
    499   /// @returns Optimized instruction or NULL.
    500   virtual MachineInstr *optimizeSelect(MachineInstr *MI,
    501                                        bool PreferFalse = false) const {
    502     // This function must be implemented if Optimizable is ever set.
    503     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
    504   }
    505 
    506   /// copyPhysReg - Emit instructions to copy a pair of physical registers.
    507   ///
    508   /// This function should support copies within any legal register class as
    509   /// well as any cross-class copies created during instruction selection.
    510   ///
    511   /// The source and destination registers may overlap, which may require a
    512   /// careful implementation when multiple copy instructions are required for
    513   /// large registers. See for example the ARM target.
    514   virtual void copyPhysReg(MachineBasicBlock &MBB,
    515                            MachineBasicBlock::iterator MI, DebugLoc DL,
    516                            unsigned DestReg, unsigned SrcReg,
    517                            bool KillSrc) const {
    518     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
    519   }
    520 
    521   /// storeRegToStackSlot - Store the specified register of the given register
    522   /// class to the specified stack frame index. The store instruction is to be
    523   /// added to the given machine basic block before the specified machine
    524   /// instruction. If isKill is true, the register operand is the last use and
    525   /// must be marked kill.
    526   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
    527                                    MachineBasicBlock::iterator MI,
    528                                    unsigned SrcReg, bool isKill, int FrameIndex,
    529                                    const TargetRegisterClass *RC,
    530                                    const TargetRegisterInfo *TRI) const {
    531     llvm_unreachable("Target didn't implement "
    532                      "TargetInstrInfo::storeRegToStackSlot!");
    533   }
    534 
    535   /// loadRegFromStackSlot - Load the specified register of the given register
    536   /// class from the specified stack frame index. The load instruction is to be
    537   /// added to the given machine basic block before the specified machine
    538   /// instruction.
    539   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
    540                                     MachineBasicBlock::iterator MI,
    541                                     unsigned DestReg, int FrameIndex,
    542                                     const TargetRegisterClass *RC,
    543                                     const TargetRegisterInfo *TRI) const {
    544     llvm_unreachable("Target didn't implement "
    545                      "TargetInstrInfo::loadRegFromStackSlot!");
    546   }
    547 
    548   /// expandPostRAPseudo - This function is called for all pseudo instructions
    549   /// that remain after register allocation. Many pseudo instructions are
    550   /// created to help register allocation. This is the place to convert them
    551   /// into real instructions. The target can edit MI in place, or it can insert
    552   /// new instructions and erase MI. The function should return true if
    553   /// anything was changed.
    554   virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
    555     return false;
    556   }
    557 
    558   /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
    559   /// slot into the specified machine instruction for the specified operand(s).
    560   /// If this is possible, a new instruction is returned with the specified
    561   /// operand folded, otherwise NULL is returned.
    562   /// The new instruction is inserted before MI, and the client is responsible
    563   /// for removing the old instruction.
    564   MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
    565                                   const SmallVectorImpl<unsigned> &Ops,
    566                                   int FrameIndex) const;
    567 
    568   /// foldMemoryOperand - Same as the previous version except it allows folding
    569   /// of any load and store from / to any address, not just from a specific
    570   /// stack slot.
    571   MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
    572                                   const SmallVectorImpl<unsigned> &Ops,
    573                                   MachineInstr* LoadMI) const;
    574 
    575 protected:
    576   /// foldMemoryOperandImpl - Target-dependent implementation for
    577   /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
    578   /// take care of adding a MachineMemOperand to the newly created instruction.
    579   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    580                                           MachineInstr* MI,
    581                                           const SmallVectorImpl<unsigned> &Ops,
    582                                           int FrameIndex) const {
    583     return nullptr;
    584   }
    585 
    586   /// foldMemoryOperandImpl - Target-dependent implementation for
    587   /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
    588   /// take care of adding a MachineMemOperand to the newly created instruction.
    589   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    590                                               MachineInstr* MI,
    591                                           const SmallVectorImpl<unsigned> &Ops,
    592                                               MachineInstr* LoadMI) const {
    593     return nullptr;
    594   }
    595 
    596 public:
    597   /// canFoldMemoryOperand - Returns true for the specified load / store if
    598   /// folding is possible.
    599   virtual
    600   bool canFoldMemoryOperand(const MachineInstr *MI,
    601                             const SmallVectorImpl<unsigned> &Ops) const;
    602 
    603   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
    604   /// a store or a load and a store into two or more instruction. If this is
    605   /// possible, returns true as well as the new instructions by reference.
    606   virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
    607                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
    608                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
    609     return false;
    610   }
    611 
    612   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
    613                                    SmallVectorImpl<SDNode*> &NewNodes) const {
    614     return false;
    615   }
    616 
    617   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
    618   /// instruction after load / store are unfolded from an instruction of the
    619   /// specified opcode. It returns zero if the specified unfolding is not
    620   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
    621   /// index of the operand which will hold the register holding the loaded
    622   /// value.
    623   virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
    624                                       bool UnfoldLoad, bool UnfoldStore,
    625                                       unsigned *LoadRegIndex = nullptr) const {
    626     return 0;
    627   }
    628 
    629   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
    630   /// to determine if two loads are loading from the same base address. It
    631   /// should only return true if the base pointers are the same and the
    632   /// only differences between the two addresses are the offset. It also returns
    633   /// the offsets by reference.
    634   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
    635                                     int64_t &Offset1, int64_t &Offset2) const {
    636     return false;
    637   }
    638 
    639   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
    640   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
    641   /// be scheduled togther. On some targets if two loads are loading from
    642   /// addresses in the same cache line, it's better if they are scheduled
    643   /// together. This function takes two integers that represent the load offsets
    644   /// from the common base address. It returns true if it decides it's desirable
    645   /// to schedule the two loads together. "NumLoads" is the number of loads that
    646   /// have already been scheduled after Load1.
    647   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
    648                                        int64_t Offset1, int64_t Offset2,
    649                                        unsigned NumLoads) const {
    650     return false;
    651   }
    652 
    653   /// \brief Get the base register and byte offset of a load/store instr.
    654   virtual bool getLdStBaseRegImmOfs(MachineInstr *LdSt,
    655                                     unsigned &BaseReg, unsigned &Offset,
    656                                     const TargetRegisterInfo *TRI) const {
    657     return false;
    658   }
    659 
    660   virtual bool enableClusterLoads() const { return false; }
    661 
    662   virtual bool shouldClusterLoads(MachineInstr *FirstLdSt,
    663                                   MachineInstr *SecondLdSt,
    664                                   unsigned NumLoads) const {
    665     return false;
    666   }
    667 
    668   /// \brief Can this target fuse the given instructions if they are scheduled
    669   /// adjacent.
    670   virtual bool shouldScheduleAdjacent(MachineInstr* First,
    671                                       MachineInstr *Second) const {
    672     return false;
    673   }
    674 
    675   /// ReverseBranchCondition - Reverses the branch condition of the specified
    676   /// condition list, returning false on success and true if it cannot be
    677   /// reversed.
    678   virtual
    679   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    680     return true;
    681   }
    682 
    683   /// insertNoop - Insert a noop into the instruction stream at the specified
    684   /// point.
    685   virtual void insertNoop(MachineBasicBlock &MBB,
    686                           MachineBasicBlock::iterator MI) const;
    687 
    688 
    689   /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
    690   virtual void getNoopForMachoTarget(MCInst &NopInst) const {
    691     // Default to just using 'nop' string.
    692   }
    693 
    694 
    695   /// isPredicated - Returns true if the instruction is already predicated.
    696   ///
    697   virtual bool isPredicated(const MachineInstr *MI) const {
    698     return false;
    699   }
    700 
    701   /// isUnpredicatedTerminator - Returns true if the instruction is a
    702   /// terminator instruction that has not been predicated.
    703   virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
    704 
    705   /// PredicateInstruction - Convert the instruction into a predicated
    706   /// instruction. It returns true if the operation was successful.
    707   virtual
    708   bool PredicateInstruction(MachineInstr *MI,
    709                         const SmallVectorImpl<MachineOperand> &Pred) const;
    710 
    711   /// SubsumesPredicate - Returns true if the first specified predicate
    712   /// subsumes the second, e.g. GE subsumes GT.
    713   virtual
    714   bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
    715                          const SmallVectorImpl<MachineOperand> &Pred2) const {
    716     return false;
    717   }
    718 
    719   /// DefinesPredicate - If the specified instruction defines any predicate
    720   /// or condition code register(s) used for predication, returns true as well
    721   /// as the definition predicate(s) by reference.
    722   virtual bool DefinesPredicate(MachineInstr *MI,
    723                                 std::vector<MachineOperand> &Pred) const {
    724     return false;
    725   }
    726 
    727   /// isPredicable - Return true if the specified instruction can be predicated.
    728   /// By default, this returns true for every instruction with a
    729   /// PredicateOperand.
    730   virtual bool isPredicable(MachineInstr *MI) const {
    731     return MI->getDesc().isPredicable();
    732   }
    733 
    734   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
    735   /// instruction that defines the specified register class.
    736   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
    737     return true;
    738   }
    739 
    740   /// isSchedulingBoundary - Test if the given instruction should be
    741   /// considered a scheduling boundary. This primarily includes labels and
    742   /// terminators.
    743   virtual bool isSchedulingBoundary(const MachineInstr *MI,
    744                                     const MachineBasicBlock *MBB,
    745                                     const MachineFunction &MF) const;
    746 
    747   /// Measure the specified inline asm to determine an approximation of its
    748   /// length.
    749   virtual unsigned getInlineAsmLength(const char *Str,
    750                                       const MCAsmInfo &MAI) const;
    751 
    752   /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
    753   /// use for this target when scheduling the machine instructions before
    754   /// register allocation.
    755   virtual ScheduleHazardRecognizer*
    756   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
    757                                const ScheduleDAG *DAG) const;
    758 
    759   /// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
    760   /// to use for this target when scheduling the machine instructions before
    761   /// register allocation.
    762   virtual ScheduleHazardRecognizer*
    763   CreateTargetMIHazardRecognizer(const InstrItineraryData*,
    764                                  const ScheduleDAG *DAG) const;
    765 
    766   /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
    767   /// recognizer to use for this target when scheduling the machine instructions
    768   /// after register allocation.
    769   virtual ScheduleHazardRecognizer*
    770   CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
    771                                      const ScheduleDAG *DAG) const;
    772 
    773   /// Provide a global flag for disabling the PreRA hazard recognizer that
    774   /// targets may choose to honor.
    775   bool usePreRAHazardRecognizer() const;
    776 
    777   /// analyzeCompare - For a comparison instruction, return the source registers
    778   /// in SrcReg and SrcReg2 if having two register operands, and the value it
    779   /// compares against in CmpValue. Return true if the comparison instruction
    780   /// can be analyzed.
    781   virtual bool analyzeCompare(const MachineInstr *MI,
    782                               unsigned &SrcReg, unsigned &SrcReg2,
    783                               int &Mask, int &Value) const {
    784     return false;
    785   }
    786 
    787   /// optimizeCompareInstr - See if the comparison instruction can be converted
    788   /// into something more efficient. E.g., on ARM most instructions can set the
    789   /// flags register, obviating the need for a separate CMP.
    790   virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
    791                                     unsigned SrcReg, unsigned SrcReg2,
    792                                     int Mask, int Value,
    793                                     const MachineRegisterInfo *MRI) const {
    794     return false;
    795   }
    796 
    797   /// optimizeLoadInstr - Try to remove the load by folding it to a register
    798   /// operand at the use. We fold the load instructions if and only if the
    799   /// def and use are in the same BB. We only look at one load and see
    800   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
    801   /// defined by the load we are trying to fold. DefMI returns the machine
    802   /// instruction that defines FoldAsLoadDefReg, and the function returns
    803   /// the machine instruction generated due to folding.
    804   virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
    805                         const MachineRegisterInfo *MRI,
    806                         unsigned &FoldAsLoadDefReg,
    807                         MachineInstr *&DefMI) const {
    808     return nullptr;
    809   }
    810 
    811   /// FoldImmediate - 'Reg' is known to be defined by a move immediate
    812   /// instruction, try to fold the immediate into the use instruction.
    813   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
    814   /// then the caller may assume that DefMI has been erased from its parent
    815   /// block. The caller may assume that it will not be erased by this
    816   /// function otherwise.
    817   virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
    818                              unsigned Reg, MachineRegisterInfo *MRI) const {
    819     return false;
    820   }
    821 
    822   /// getNumMicroOps - Return the number of u-operations the given machine
    823   /// instruction will be decoded to on the target cpu. The itinerary's
    824   /// IssueWidth is the number of microops that can be dispatched each
    825   /// cycle. An instruction with zero microops takes no dispatch resources.
    826   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
    827                                   const MachineInstr *MI) const;
    828 
    829   /// isZeroCost - Return true for pseudo instructions that don't consume any
    830   /// machine resources in their current form. These are common cases that the
    831   /// scheduler should consider free, rather than conservatively handling them
    832   /// as instructions with no itinerary.
    833   bool isZeroCost(unsigned Opcode) const {
    834     return Opcode <= TargetOpcode::COPY;
    835   }
    836 
    837   virtual int getOperandLatency(const InstrItineraryData *ItinData,
    838                                 SDNode *DefNode, unsigned DefIdx,
    839                                 SDNode *UseNode, unsigned UseIdx) const;
    840 
    841   /// getOperandLatency - Compute and return the use operand latency of a given
    842   /// pair of def and use.
    843   /// In most cases, the static scheduling itinerary was enough to determine the
    844   /// operand latency. But it may not be possible for instructions with variable
    845   /// number of defs / uses.
    846   ///
    847   /// This is a raw interface to the itinerary that may be directly overriden by
    848   /// a target. Use computeOperandLatency to get the best estimate of latency.
    849   virtual int getOperandLatency(const InstrItineraryData *ItinData,
    850                                 const MachineInstr *DefMI, unsigned DefIdx,
    851                                 const MachineInstr *UseMI,
    852                                 unsigned UseIdx) const;
    853 
    854   /// computeOperandLatency - Compute and return the latency of the given data
    855   /// dependent def and use when the operand indices are already known.
    856   unsigned computeOperandLatency(const InstrItineraryData *ItinData,
    857                                  const MachineInstr *DefMI, unsigned DefIdx,
    858                                  const MachineInstr *UseMI, unsigned UseIdx)
    859     const;
    860 
    861   /// getInstrLatency - Compute the instruction latency of a given instruction.
    862   /// If the instruction has higher cost when predicated, it's returned via
    863   /// PredCost.
    864   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
    865                                    const MachineInstr *MI,
    866                                    unsigned *PredCost = nullptr) const;
    867 
    868   virtual unsigned getPredicationCost(const MachineInstr *MI) const;
    869 
    870   virtual int getInstrLatency(const InstrItineraryData *ItinData,
    871                               SDNode *Node) const;
    872 
    873   /// Return the default expected latency for a def based on it's opcode.
    874   unsigned defaultDefLatency(const MCSchedModel *SchedModel,
    875                              const MachineInstr *DefMI) const;
    876 
    877   int computeDefOperandLatency(const InstrItineraryData *ItinData,
    878                                const MachineInstr *DefMI) const;
    879 
    880   /// isHighLatencyDef - Return true if this opcode has high latency to its
    881   /// result.
    882   virtual bool isHighLatencyDef(int opc) const { return false; }
    883 
    884   /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
    885   /// and an use in the current loop, return true if the target considered
    886   /// it 'high'. This is used by optimization passes such as machine LICM to
    887   /// determine whether it makes sense to hoist an instruction out even in
    888   /// high register pressure situation.
    889   virtual
    890   bool hasHighOperandLatency(const InstrItineraryData *ItinData,
    891                              const MachineRegisterInfo *MRI,
    892                              const MachineInstr *DefMI, unsigned DefIdx,
    893                              const MachineInstr *UseMI, unsigned UseIdx) const {
    894     return false;
    895   }
    896 
    897   /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
    898   /// if the target considered it 'low'.
    899   virtual
    900   bool hasLowDefLatency(const InstrItineraryData *ItinData,
    901                         const MachineInstr *DefMI, unsigned DefIdx) const;
    902 
    903   /// verifyInstruction - Perform target specific instruction verification.
    904   virtual
    905   bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
    906     return true;
    907   }
    908 
    909   /// getExecutionDomain - Return the current execution domain and bit mask of
    910   /// possible domains for instruction.
    911   ///
    912   /// Some micro-architectures have multiple execution domains, and multiple
    913   /// opcodes that perform the same operation in different domains.  For
    914   /// example, the x86 architecture provides the por, orps, and orpd
    915   /// instructions that all do the same thing.  There is a latency penalty if a
    916   /// register is written in one domain and read in another.
    917   ///
    918   /// This function returns a pair (domain, mask) containing the execution
    919   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
    920   /// function can be used to change the opcode to one of the domains in the
    921   /// bit mask.  Instructions whose execution domain can't be changed should
    922   /// return a 0 mask.
    923   ///
    924   /// The execution domain numbers don't have any special meaning except domain
    925   /// 0 is used for instructions that are not associated with any interesting
    926   /// execution domain.
    927   ///
    928   virtual std::pair<uint16_t, uint16_t>
    929   getExecutionDomain(const MachineInstr *MI) const {
    930     return std::make_pair(0, 0);
    931   }
    932 
    933   /// setExecutionDomain - Change the opcode of MI to execute in Domain.
    934   ///
    935   /// The bit (1 << Domain) must be set in the mask returned from
    936   /// getExecutionDomain(MI).
    937   ///
    938   virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
    939 
    940 
    941   /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
    942   /// before an instruction with an unwanted partial register update.
    943   ///
    944   /// Some instructions only write part of a register, and implicitly need to
    945   /// read the other parts of the register.  This may cause unwanted stalls
    946   /// preventing otherwise unrelated instructions from executing in parallel in
    947   /// an out-of-order CPU.
    948   ///
    949   /// For example, the x86 instruction cvtsi2ss writes its result to bits
    950   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
    951   /// the instruction needs to wait for the old value of the register to become
    952   /// available:
    953   ///
    954   ///   addps %xmm1, %xmm0
    955   ///   movaps %xmm0, (%rax)
    956   ///   cvtsi2ss %rbx, %xmm0
    957   ///
    958   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
    959   /// instruction before it can issue, even though the high bits of %xmm0
    960   /// probably aren't needed.
    961   ///
    962   /// This hook returns the preferred clearance before MI, measured in
    963   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
    964   /// instructions before MI.  It should only return a positive value for
    965   /// unwanted dependencies.  If the old bits of the defined register have
    966   /// useful values, or if MI is determined to otherwise read the dependency,
    967   /// the hook should return 0.
    968   ///
    969   /// The unwanted dependency may be handled by:
    970   ///
    971   /// 1. Allocating the same register for an MI def and use.  That makes the
    972   ///    unwanted dependency identical to a required dependency.
    973   ///
    974   /// 2. Allocating a register for the def that has no defs in the previous N
    975   ///    instructions.
    976   ///
    977   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
    978   ///    allows the target to insert a dependency breaking instruction.
    979   ///
    980   virtual unsigned
    981   getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
    982                                const TargetRegisterInfo *TRI) const {
    983     // The default implementation returns 0 for no partial register dependency.
    984     return 0;
    985   }
    986 
    987   /// \brief Return the minimum clearance before an instruction that reads an
    988   /// unused register.
    989   ///
    990   /// For example, AVX instructions may copy part of an register operand into
    991   /// the unused high bits of the destination register.
    992   ///
    993   /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
    994   ///
    995   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
    996   /// false dependence on any previous write to %xmm0.
    997   ///
    998   /// This hook works similarly to getPartialRegUpdateClearance, except that it
    999   /// does not take an operand index. Instead sets \p OpNum to the index of the
   1000   /// unused register.
   1001   virtual unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
   1002                                         const TargetRegisterInfo *TRI) const {
   1003     // The default implementation returns 0 for no undef register dependency.
   1004     return 0;
   1005   }
   1006 
   1007   /// breakPartialRegDependency - Insert a dependency-breaking instruction
   1008   /// before MI to eliminate an unwanted dependency on OpNum.
   1009   ///
   1010   /// If it wasn't possible to avoid a def in the last N instructions before MI
   1011   /// (see getPartialRegUpdateClearance), this hook will be called to break the
   1012   /// unwanted dependency.
   1013   ///
   1014   /// On x86, an xorps instruction can be used as a dependency breaker:
   1015   ///
   1016   ///   addps %xmm1, %xmm0
   1017   ///   movaps %xmm0, (%rax)
   1018   ///   xorps %xmm0, %xmm0
   1019   ///   cvtsi2ss %rbx, %xmm0
   1020   ///
   1021   /// An <imp-kill> operand should be added to MI if an instruction was
   1022   /// inserted.  This ties the instructions together in the post-ra scheduler.
   1023   ///
   1024   virtual void
   1025   breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
   1026                             const TargetRegisterInfo *TRI) const {}
   1027 
   1028   /// Create machine specific model for scheduling.
   1029   virtual DFAPacketizer*
   1030     CreateTargetScheduleState(const TargetMachine*, const ScheduleDAG*) const {
   1031     return nullptr;
   1032   }
   1033 
   1034 private:
   1035   int CallFrameSetupOpcode, CallFrameDestroyOpcode;
   1036 };
   1037 
   1038 } // End llvm namespace
   1039 
   1040 #endif
   1041