Home | History | Annotate | Download | only in PBQP
      1 //===-- RegAllocSolver.h - Heuristic PBQP Solver for reg alloc --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Heuristic PBQP solver for register allocation problems. This solver uses a
     11 // graph reduction approach. Nodes of degree 0, 1 and 2 are eliminated with
     12 // optimality-preserving rules (see ReductionRules.h). When no low-degree (<3)
     13 // nodes are present, a heuristic derived from Brigg's graph coloring approach
     14 // is used.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #ifndef LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H
     19 #define LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H
     20 
     21 #include "CostAllocator.h"
     22 #include "Graph.h"
     23 #include "ReductionRules.h"
     24 #include "Solution.h"
     25 #include "llvm/Support/ErrorHandling.h"
     26 #include <limits>
     27 #include <vector>
     28 
     29 namespace PBQP {
     30 
     31   namespace RegAlloc {
     32 
     33     /// \brief Metadata to speed allocatability test.
     34     ///
     35     /// Keeps track of the number of infinities in each row and column.
     36     class MatrixMetadata {
     37     private:
     38       MatrixMetadata(const MatrixMetadata&);
     39       void operator=(const MatrixMetadata&);
     40     public:
     41       MatrixMetadata(const PBQP::Matrix& M)
     42         : WorstRow(0), WorstCol(0),
     43           UnsafeRows(new bool[M.getRows() - 1]()),
     44           UnsafeCols(new bool[M.getCols() - 1]()) {
     45 
     46         unsigned* ColCounts = new unsigned[M.getCols() - 1]();
     47 
     48         for (unsigned i = 1; i < M.getRows(); ++i) {
     49           unsigned RowCount = 0;
     50           for (unsigned j = 1; j < M.getCols(); ++j) {
     51             if (M[i][j] == std::numeric_limits<PBQP::PBQPNum>::infinity()) {
     52               ++RowCount;
     53               ++ColCounts[j - 1];
     54               UnsafeRows[i - 1] = true;
     55               UnsafeCols[j - 1] = true;
     56             }
     57           }
     58           WorstRow = std::max(WorstRow, RowCount);
     59         }
     60         unsigned WorstColCountForCurRow =
     61           *std::max_element(ColCounts, ColCounts + M.getCols() - 1);
     62         WorstCol = std::max(WorstCol, WorstColCountForCurRow);
     63         delete[] ColCounts;
     64       }
     65 
     66       ~MatrixMetadata() {
     67         delete[] UnsafeRows;
     68         delete[] UnsafeCols;
     69       }
     70 
     71       unsigned getWorstRow() const { return WorstRow; }
     72       unsigned getWorstCol() const { return WorstCol; }
     73       const bool* getUnsafeRows() const { return UnsafeRows; }
     74       const bool* getUnsafeCols() const { return UnsafeCols; }
     75 
     76     private:
     77       unsigned WorstRow, WorstCol;
     78       bool* UnsafeRows;
     79       bool* UnsafeCols;
     80     };
     81 
     82     class NodeMetadata {
     83     public:
     84       typedef enum { Unprocessed,
     85                      OptimallyReducible,
     86                      ConservativelyAllocatable,
     87                      NotProvablyAllocatable } ReductionState;
     88 
     89       NodeMetadata() : RS(Unprocessed), DeniedOpts(0), OptUnsafeEdges(nullptr){}
     90       ~NodeMetadata() { delete[] OptUnsafeEdges; }
     91 
     92       void setup(const Vector& Costs) {
     93         NumOpts = Costs.getLength() - 1;
     94         OptUnsafeEdges = new unsigned[NumOpts]();
     95       }
     96 
     97       ReductionState getReductionState() const { return RS; }
     98       void setReductionState(ReductionState RS) { this->RS = RS; }
     99 
    100       void handleAddEdge(const MatrixMetadata& MD, bool Transpose) {
    101         DeniedOpts += Transpose ? MD.getWorstCol() : MD.getWorstRow();
    102         const bool* UnsafeOpts =
    103           Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
    104         for (unsigned i = 0; i < NumOpts; ++i)
    105           OptUnsafeEdges[i] += UnsafeOpts[i];
    106       }
    107 
    108       void handleRemoveEdge(const MatrixMetadata& MD, bool Transpose) {
    109         DeniedOpts -= Transpose ? MD.getWorstCol() : MD.getWorstRow();
    110         const bool* UnsafeOpts =
    111           Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
    112         for (unsigned i = 0; i < NumOpts; ++i)
    113           OptUnsafeEdges[i] -= UnsafeOpts[i];
    114       }
    115 
    116       bool isConservativelyAllocatable() const {
    117         return (DeniedOpts < NumOpts) ||
    118                (std::find(OptUnsafeEdges, OptUnsafeEdges + NumOpts, 0) !=
    119                   OptUnsafeEdges + NumOpts);
    120       }
    121 
    122     private:
    123       ReductionState RS;
    124       unsigned NumOpts;
    125       unsigned DeniedOpts;
    126       unsigned* OptUnsafeEdges;
    127     };
    128 
    129     class RegAllocSolverImpl {
    130     private:
    131       typedef PBQP::MDMatrix<MatrixMetadata> RAMatrix;
    132     public:
    133       typedef PBQP::Vector RawVector;
    134       typedef PBQP::Matrix RawMatrix;
    135       typedef PBQP::Vector Vector;
    136       typedef RAMatrix     Matrix;
    137       typedef PBQP::PoolCostAllocator<
    138                 Vector, PBQP::VectorComparator,
    139                 Matrix, PBQP::MatrixComparator> CostAllocator;
    140 
    141       typedef PBQP::GraphBase::NodeId NodeId;
    142       typedef PBQP::GraphBase::EdgeId EdgeId;
    143 
    144       typedef RegAlloc::NodeMetadata NodeMetadata;
    145 
    146       struct EdgeMetadata { };
    147 
    148       typedef PBQP::Graph<RegAllocSolverImpl> Graph;
    149 
    150       RegAllocSolverImpl(Graph &G) : G(G) {}
    151 
    152       Solution solve() {
    153         G.setSolver(*this);
    154         Solution S;
    155         setup();
    156         S = backpropagate(G, reduce());
    157         G.unsetSolver();
    158         return S;
    159       }
    160 
    161       void handleAddNode(NodeId NId) {
    162         G.getNodeMetadata(NId).setup(G.getNodeCosts(NId));
    163       }
    164       void handleRemoveNode(NodeId NId) {}
    165       void handleSetNodeCosts(NodeId NId, const Vector& newCosts) {}
    166 
    167       void handleAddEdge(EdgeId EId) {
    168         handleReconnectEdge(EId, G.getEdgeNode1Id(EId));
    169         handleReconnectEdge(EId, G.getEdgeNode2Id(EId));
    170       }
    171 
    172       void handleRemoveEdge(EdgeId EId) {
    173         handleDisconnectEdge(EId, G.getEdgeNode1Id(EId));
    174         handleDisconnectEdge(EId, G.getEdgeNode2Id(EId));
    175       }
    176 
    177       void handleDisconnectEdge(EdgeId EId, NodeId NId) {
    178         NodeMetadata& NMd = G.getNodeMetadata(NId);
    179         const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
    180         NMd.handleRemoveEdge(MMd, NId == G.getEdgeNode2Id(EId));
    181         if (G.getNodeDegree(NId) == 3) {
    182           // This node is becoming optimally reducible.
    183           moveToOptimallyReducibleNodes(NId);
    184         } else if (NMd.getReductionState() ==
    185                      NodeMetadata::NotProvablyAllocatable &&
    186                    NMd.isConservativelyAllocatable()) {
    187           // This node just became conservatively allocatable.
    188           moveToConservativelyAllocatableNodes(NId);
    189         }
    190       }
    191 
    192       void handleReconnectEdge(EdgeId EId, NodeId NId) {
    193         NodeMetadata& NMd = G.getNodeMetadata(NId);
    194         const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
    195         NMd.handleAddEdge(MMd, NId == G.getEdgeNode2Id(EId));
    196       }
    197 
    198       void handleSetEdgeCosts(EdgeId EId, const Matrix& NewCosts) {
    199         handleRemoveEdge(EId);
    200 
    201         NodeId N1Id = G.getEdgeNode1Id(EId);
    202         NodeId N2Id = G.getEdgeNode2Id(EId);
    203         NodeMetadata& N1Md = G.getNodeMetadata(N1Id);
    204         NodeMetadata& N2Md = G.getNodeMetadata(N2Id);
    205         const MatrixMetadata& MMd = NewCosts.getMetadata();
    206         N1Md.handleAddEdge(MMd, N1Id != G.getEdgeNode1Id(EId));
    207         N2Md.handleAddEdge(MMd, N2Id != G.getEdgeNode1Id(EId));
    208       }
    209 
    210     private:
    211 
    212       void removeFromCurrentSet(NodeId NId) {
    213         switch (G.getNodeMetadata(NId).getReductionState()) {
    214           case NodeMetadata::Unprocessed: break;
    215           case NodeMetadata::OptimallyReducible:
    216             assert(OptimallyReducibleNodes.find(NId) !=
    217                      OptimallyReducibleNodes.end() &&
    218                    "Node not in optimally reducible set.");
    219             OptimallyReducibleNodes.erase(NId);
    220             break;
    221           case NodeMetadata::ConservativelyAllocatable:
    222             assert(ConservativelyAllocatableNodes.find(NId) !=
    223                      ConservativelyAllocatableNodes.end() &&
    224                    "Node not in conservatively allocatable set.");
    225             ConservativelyAllocatableNodes.erase(NId);
    226             break;
    227           case NodeMetadata::NotProvablyAllocatable:
    228             assert(NotProvablyAllocatableNodes.find(NId) !=
    229                      NotProvablyAllocatableNodes.end() &&
    230                    "Node not in not-provably-allocatable set.");
    231             NotProvablyAllocatableNodes.erase(NId);
    232             break;
    233         }
    234       }
    235 
    236       void moveToOptimallyReducibleNodes(NodeId NId) {
    237         removeFromCurrentSet(NId);
    238         OptimallyReducibleNodes.insert(NId);
    239         G.getNodeMetadata(NId).setReductionState(
    240           NodeMetadata::OptimallyReducible);
    241       }
    242 
    243       void moveToConservativelyAllocatableNodes(NodeId NId) {
    244         removeFromCurrentSet(NId);
    245         ConservativelyAllocatableNodes.insert(NId);
    246         G.getNodeMetadata(NId).setReductionState(
    247           NodeMetadata::ConservativelyAllocatable);
    248       }
    249 
    250       void moveToNotProvablyAllocatableNodes(NodeId NId) {
    251         removeFromCurrentSet(NId);
    252         NotProvablyAllocatableNodes.insert(NId);
    253         G.getNodeMetadata(NId).setReductionState(
    254           NodeMetadata::NotProvablyAllocatable);
    255       }
    256 
    257       void setup() {
    258         // Set up worklists.
    259         for (auto NId : G.nodeIds()) {
    260           if (G.getNodeDegree(NId) < 3)
    261             moveToOptimallyReducibleNodes(NId);
    262           else if (G.getNodeMetadata(NId).isConservativelyAllocatable())
    263             moveToConservativelyAllocatableNodes(NId);
    264           else
    265             moveToNotProvablyAllocatableNodes(NId);
    266         }
    267       }
    268 
    269       // Compute a reduction order for the graph by iteratively applying PBQP
    270       // reduction rules. Locally optimal rules are applied whenever possible (R0,
    271       // R1, R2). If no locally-optimal rules apply then any conservatively
    272       // allocatable node is reduced. Finally, if no conservatively allocatable
    273       // node exists then the node with the lowest spill-cost:degree ratio is
    274       // selected.
    275       std::vector<GraphBase::NodeId> reduce() {
    276         assert(!G.empty() && "Cannot reduce empty graph.");
    277 
    278         typedef GraphBase::NodeId NodeId;
    279         std::vector<NodeId> NodeStack;
    280 
    281         // Consume worklists.
    282         while (true) {
    283           if (!OptimallyReducibleNodes.empty()) {
    284             NodeSet::iterator NItr = OptimallyReducibleNodes.begin();
    285             NodeId NId = *NItr;
    286             OptimallyReducibleNodes.erase(NItr);
    287             NodeStack.push_back(NId);
    288             switch (G.getNodeDegree(NId)) {
    289               case 0:
    290                 break;
    291               case 1:
    292                 applyR1(G, NId);
    293                 break;
    294               case 2:
    295                 applyR2(G, NId);
    296                 break;
    297               default: llvm_unreachable("Not an optimally reducible node.");
    298             }
    299           } else if (!ConservativelyAllocatableNodes.empty()) {
    300             // Conservatively allocatable nodes will never spill. For now just
    301             // take the first node in the set and push it on the stack. When we
    302             // start optimizing more heavily for register preferencing, it may
    303             // would be better to push nodes with lower 'expected' or worst-case
    304             // register costs first (since early nodes are the most
    305             // constrained).
    306             NodeSet::iterator NItr = ConservativelyAllocatableNodes.begin();
    307             NodeId NId = *NItr;
    308             ConservativelyAllocatableNodes.erase(NItr);
    309             NodeStack.push_back(NId);
    310             G.disconnectAllNeighborsFromNode(NId);
    311 
    312           } else if (!NotProvablyAllocatableNodes.empty()) {
    313             NodeSet::iterator NItr =
    314               std::min_element(NotProvablyAllocatableNodes.begin(),
    315                                NotProvablyAllocatableNodes.end(),
    316                                SpillCostComparator(G));
    317             NodeId NId = *NItr;
    318             NotProvablyAllocatableNodes.erase(NItr);
    319             NodeStack.push_back(NId);
    320             G.disconnectAllNeighborsFromNode(NId);
    321           } else
    322             break;
    323         }
    324 
    325         return NodeStack;
    326       }
    327 
    328       class SpillCostComparator {
    329       public:
    330         SpillCostComparator(const Graph& G) : G(G) {}
    331         bool operator()(NodeId N1Id, NodeId N2Id) {
    332           PBQPNum N1SC = G.getNodeCosts(N1Id)[0] / G.getNodeDegree(N1Id);
    333           PBQPNum N2SC = G.getNodeCosts(N2Id)[0] / G.getNodeDegree(N2Id);
    334           return N1SC < N2SC;
    335         }
    336       private:
    337         const Graph& G;
    338       };
    339 
    340       Graph& G;
    341       typedef std::set<NodeId> NodeSet;
    342       NodeSet OptimallyReducibleNodes;
    343       NodeSet ConservativelyAllocatableNodes;
    344       NodeSet NotProvablyAllocatableNodes;
    345     };
    346 
    347     typedef Graph<RegAllocSolverImpl> Graph;
    348 
    349     inline Solution solve(Graph& G) {
    350       if (G.empty())
    351         return Solution();
    352       RegAllocSolverImpl RegAllocSolver(G);
    353       return RegAllocSolver.solve();
    354     }
    355 
    356   }
    357 }
    358 
    359 #endif // LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H
    360