Home | History | Annotate | Download | only in IR
      1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides a simple and efficient mechanism for performing general
     11 // tree-based pattern matches on the LLVM IR.  The power of these routines is
     12 // that it allows you to write concise patterns that are expressive and easy to
     13 // understand.  The other major advantage of this is that it allows you to
     14 // trivially capture/bind elements in the pattern to variables.  For example,
     15 // you can do something like this:
     16 //
     17 //  Value *Exp = ...
     18 //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
     19 //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
     20 //                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
     21 //    ... Pattern is matched and variables are bound ...
     22 //  }
     23 //
     24 // This is primarily useful to things like the instruction combiner, but can
     25 // also be useful for static analysis tools or code generators.
     26 //
     27 //===----------------------------------------------------------------------===//
     28 
     29 #ifndef LLVM_IR_PATTERNMATCH_H
     30 #define LLVM_IR_PATTERNMATCH_H
     31 
     32 #include "llvm/IR/CallSite.h"
     33 #include "llvm/IR/Constants.h"
     34 #include "llvm/IR/Instructions.h"
     35 #include "llvm/IR/IntrinsicInst.h"
     36 #include "llvm/IR/Operator.h"
     37 
     38 namespace llvm {
     39 namespace PatternMatch {
     40 
     41 template<typename Val, typename Pattern>
     42 bool match(Val *V, const Pattern &P) {
     43   return const_cast<Pattern&>(P).match(V);
     44 }
     45 
     46 
     47 template<typename SubPattern_t>
     48 struct OneUse_match {
     49   SubPattern_t SubPattern;
     50 
     51   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
     52 
     53   template<typename OpTy>
     54   bool match(OpTy *V) {
     55     return V->hasOneUse() && SubPattern.match(V);
     56   }
     57 };
     58 
     59 template<typename T>
     60 inline OneUse_match<T> m_OneUse(const T &SubPattern) { return SubPattern; }
     61 
     62 
     63 template<typename Class>
     64 struct class_match {
     65   template<typename ITy>
     66   bool match(ITy *V) { return isa<Class>(V); }
     67 };
     68 
     69 /// m_Value() - Match an arbitrary value and ignore it.
     70 inline class_match<Value> m_Value() { return class_match<Value>(); }
     71 /// m_ConstantInt() - Match an arbitrary ConstantInt and ignore it.
     72 inline class_match<ConstantInt> m_ConstantInt() {
     73   return class_match<ConstantInt>();
     74 }
     75 /// m_Undef() - Match an arbitrary undef constant.
     76 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
     77 
     78 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
     79 
     80 /// Matching combinators
     81 template<typename LTy, typename RTy>
     82 struct match_combine_or {
     83   LTy L;
     84   RTy R;
     85 
     86   match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
     87 
     88   template<typename ITy>
     89   bool match(ITy *V) {
     90     if (L.match(V))
     91       return true;
     92     if (R.match(V))
     93       return true;
     94     return false;
     95   }
     96 };
     97 
     98 template<typename LTy, typename RTy>
     99 struct match_combine_and {
    100   LTy L;
    101   RTy R;
    102 
    103   match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
    104 
    105   template<typename ITy>
    106   bool match(ITy *V) {
    107     if (L.match(V))
    108       if (R.match(V))
    109         return true;
    110     return false;
    111   }
    112 };
    113 
    114 /// Combine two pattern matchers matching L || R
    115 template<typename LTy, typename RTy>
    116 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
    117   return match_combine_or<LTy, RTy>(L, R);
    118 }
    119 
    120 /// Combine two pattern matchers matching L && R
    121 template<typename LTy, typename RTy>
    122 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
    123   return match_combine_and<LTy, RTy>(L, R);
    124 }
    125 
    126 struct match_zero {
    127   template<typename ITy>
    128   bool match(ITy *V) {
    129     if (const Constant *C = dyn_cast<Constant>(V))
    130       return C->isNullValue();
    131     return false;
    132   }
    133 };
    134 
    135 /// m_Zero() - Match an arbitrary zero/null constant.  This includes
    136 /// zero_initializer for vectors and ConstantPointerNull for pointers.
    137 inline match_zero m_Zero() { return match_zero(); }
    138 
    139 struct match_neg_zero {
    140   template<typename ITy>
    141   bool match(ITy *V) {
    142     if (const Constant *C = dyn_cast<Constant>(V))
    143       return C->isNegativeZeroValue();
    144     return false;
    145   }
    146 };
    147 
    148 /// m_NegZero() - Match an arbitrary zero/null constant.  This includes
    149 /// zero_initializer for vectors and ConstantPointerNull for pointers. For
    150 /// floating point constants, this will match negative zero but not positive
    151 /// zero
    152 inline match_neg_zero m_NegZero() { return match_neg_zero(); }
    153 
    154 /// m_AnyZero() - Match an arbitrary zero/null constant.  This includes
    155 /// zero_initializer for vectors and ConstantPointerNull for pointers. For
    156 /// floating point constants, this will match negative zero and positive zero
    157 inline match_combine_or<match_zero, match_neg_zero> m_AnyZero() {
    158   return m_CombineOr(m_Zero(), m_NegZero());
    159 }
    160 
    161 struct apint_match {
    162   const APInt *&Res;
    163   apint_match(const APInt *&R) : Res(R) {}
    164   template<typename ITy>
    165   bool match(ITy *V) {
    166     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    167       Res = &CI->getValue();
    168       return true;
    169     }
    170     if (V->getType()->isVectorTy())
    171       if (const Constant *C = dyn_cast<Constant>(V))
    172         if (ConstantInt *CI =
    173             dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
    174           Res = &CI->getValue();
    175           return true;
    176         }
    177     return false;
    178   }
    179 };
    180 
    181 /// m_APInt - Match a ConstantInt or splatted ConstantVector, binding the
    182 /// specified pointer to the contained APInt.
    183 inline apint_match m_APInt(const APInt *&Res) { return Res; }
    184 
    185 
    186 template<int64_t Val>
    187 struct constantint_match {
    188   template<typename ITy>
    189   bool match(ITy *V) {
    190     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    191       const APInt &CIV = CI->getValue();
    192       if (Val >= 0)
    193         return CIV == static_cast<uint64_t>(Val);
    194       // If Val is negative, and CI is shorter than it, truncate to the right
    195       // number of bits.  If it is larger, then we have to sign extend.  Just
    196       // compare their negated values.
    197       return -CIV == -Val;
    198     }
    199     return false;
    200   }
    201 };
    202 
    203 /// m_ConstantInt<int64_t> - Match a ConstantInt with a specific value.
    204 template<int64_t Val>
    205 inline constantint_match<Val> m_ConstantInt() {
    206   return constantint_match<Val>();
    207 }
    208 
    209 /// cst_pred_ty - This helper class is used to match scalar and vector constants
    210 /// that satisfy a specified predicate.
    211 template<typename Predicate>
    212 struct cst_pred_ty : public Predicate {
    213   template<typename ITy>
    214   bool match(ITy *V) {
    215     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
    216       return this->isValue(CI->getValue());
    217     if (V->getType()->isVectorTy())
    218       if (const Constant *C = dyn_cast<Constant>(V))
    219         if (const ConstantInt *CI =
    220             dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
    221           return this->isValue(CI->getValue());
    222     return false;
    223   }
    224 };
    225 
    226 /// api_pred_ty - This helper class is used to match scalar and vector constants
    227 /// that satisfy a specified predicate, and bind them to an APInt.
    228 template<typename Predicate>
    229 struct api_pred_ty : public Predicate {
    230   const APInt *&Res;
    231   api_pred_ty(const APInt *&R) : Res(R) {}
    232   template<typename ITy>
    233   bool match(ITy *V) {
    234     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
    235       if (this->isValue(CI->getValue())) {
    236         Res = &CI->getValue();
    237         return true;
    238       }
    239     if (V->getType()->isVectorTy())
    240       if (const Constant *C = dyn_cast<Constant>(V))
    241         if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
    242           if (this->isValue(CI->getValue())) {
    243             Res = &CI->getValue();
    244             return true;
    245           }
    246 
    247     return false;
    248   }
    249 };
    250 
    251 
    252 struct is_one {
    253   bool isValue(const APInt &C) { return C == 1; }
    254 };
    255 
    256 /// m_One() - Match an integer 1 or a vector with all elements equal to 1.
    257 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
    258 inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; }
    259 
    260 struct is_all_ones {
    261   bool isValue(const APInt &C) { return C.isAllOnesValue(); }
    262 };
    263 
    264 /// m_AllOnes() - Match an integer or vector with all bits set to true.
    265 inline cst_pred_ty<is_all_ones> m_AllOnes() {return cst_pred_ty<is_all_ones>();}
    266 inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; }
    267 
    268 struct is_sign_bit {
    269   bool isValue(const APInt &C) { return C.isSignBit(); }
    270 };
    271 
    272 /// m_SignBit() - Match an integer or vector with only the sign bit(s) set.
    273 inline cst_pred_ty<is_sign_bit> m_SignBit() {return cst_pred_ty<is_sign_bit>();}
    274 inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; }
    275 
    276 struct is_power2 {
    277   bool isValue(const APInt &C) { return C.isPowerOf2(); }
    278 };
    279 
    280 /// m_Power2() - Match an integer or vector power of 2.
    281 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
    282 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
    283 
    284 template<typename Class>
    285 struct bind_ty {
    286   Class *&VR;
    287   bind_ty(Class *&V) : VR(V) {}
    288 
    289   template<typename ITy>
    290   bool match(ITy *V) {
    291     if (Class *CV = dyn_cast<Class>(V)) {
    292       VR = CV;
    293       return true;
    294     }
    295     return false;
    296   }
    297 };
    298 
    299 /// m_Value - Match a value, capturing it if we match.
    300 inline bind_ty<Value> m_Value(Value *&V) { return V; }
    301 
    302 /// m_ConstantInt - Match a ConstantInt, capturing the value if we match.
    303 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
    304 
    305 /// m_Constant - Match a Constant, capturing the value if we match.
    306 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
    307 
    308 /// m_ConstantFP - Match a ConstantFP, capturing the value if we match.
    309 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
    310 
    311 /// specificval_ty - Match a specified Value*.
    312 struct specificval_ty {
    313   const Value *Val;
    314   specificval_ty(const Value *V) : Val(V) {}
    315 
    316   template<typename ITy>
    317   bool match(ITy *V) {
    318     return V == Val;
    319   }
    320 };
    321 
    322 /// m_Specific - Match if we have a specific specified value.
    323 inline specificval_ty m_Specific(const Value *V) { return V; }
    324 
    325 /// Match a specified floating point value or vector of all elements of that
    326 /// value.
    327 struct specific_fpval {
    328   double Val;
    329   specific_fpval(double V) : Val(V) {}
    330 
    331   template<typename ITy>
    332   bool match(ITy *V) {
    333     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
    334       return CFP->isExactlyValue(Val);
    335     if (V->getType()->isVectorTy())
    336       if (const Constant *C = dyn_cast<Constant>(V))
    337         if (ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
    338           return CFP->isExactlyValue(Val);
    339     return false;
    340   }
    341 };
    342 
    343 /// Match a specific floating point value or vector with all elements equal to
    344 /// the value.
    345 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
    346 
    347 /// Match a float 1.0 or vector with all elements equal to 1.0.
    348 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
    349 
    350 struct bind_const_intval_ty {
    351   uint64_t &VR;
    352   bind_const_intval_ty(uint64_t &V) : VR(V) {}
    353 
    354   template<typename ITy>
    355   bool match(ITy *V) {
    356     if (ConstantInt *CV = dyn_cast<ConstantInt>(V))
    357       if (CV->getBitWidth() <= 64) {
    358         VR = CV->getZExtValue();
    359         return true;
    360       }
    361     return false;
    362   }
    363 };
    364 
    365 /// m_ConstantInt - Match a ConstantInt and bind to its value.  This does not
    366 /// match ConstantInts wider than 64-bits.
    367 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
    368 
    369 //===----------------------------------------------------------------------===//
    370 // Matchers for specific binary operators.
    371 //
    372 
    373 template<typename LHS_t, typename RHS_t, unsigned Opcode>
    374 struct BinaryOp_match {
    375   LHS_t L;
    376   RHS_t R;
    377 
    378   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
    379 
    380   template<typename OpTy>
    381   bool match(OpTy *V) {
    382     if (V->getValueID() == Value::InstructionVal + Opcode) {
    383       BinaryOperator *I = cast<BinaryOperator>(V);
    384       return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
    385     }
    386     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    387       return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) &&
    388              R.match(CE->getOperand(1));
    389     return false;
    390   }
    391 };
    392 
    393 template<typename LHS, typename RHS>
    394 inline BinaryOp_match<LHS, RHS, Instruction::Add>
    395 m_Add(const LHS &L, const RHS &R) {
    396   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
    397 }
    398 
    399 template<typename LHS, typename RHS>
    400 inline BinaryOp_match<LHS, RHS, Instruction::FAdd>
    401 m_FAdd(const LHS &L, const RHS &R) {
    402   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
    403 }
    404 
    405 template<typename LHS, typename RHS>
    406 inline BinaryOp_match<LHS, RHS, Instruction::Sub>
    407 m_Sub(const LHS &L, const RHS &R) {
    408   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
    409 }
    410 
    411 template<typename LHS, typename RHS>
    412 inline BinaryOp_match<LHS, RHS, Instruction::FSub>
    413 m_FSub(const LHS &L, const RHS &R) {
    414   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
    415 }
    416 
    417 template<typename LHS, typename RHS>
    418 inline BinaryOp_match<LHS, RHS, Instruction::Mul>
    419 m_Mul(const LHS &L, const RHS &R) {
    420   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
    421 }
    422 
    423 template<typename LHS, typename RHS>
    424 inline BinaryOp_match<LHS, RHS, Instruction::FMul>
    425 m_FMul(const LHS &L, const RHS &R) {
    426   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
    427 }
    428 
    429 template<typename LHS, typename RHS>
    430 inline BinaryOp_match<LHS, RHS, Instruction::UDiv>
    431 m_UDiv(const LHS &L, const RHS &R) {
    432   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
    433 }
    434 
    435 template<typename LHS, typename RHS>
    436 inline BinaryOp_match<LHS, RHS, Instruction::SDiv>
    437 m_SDiv(const LHS &L, const RHS &R) {
    438   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
    439 }
    440 
    441 template<typename LHS, typename RHS>
    442 inline BinaryOp_match<LHS, RHS, Instruction::FDiv>
    443 m_FDiv(const LHS &L, const RHS &R) {
    444   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
    445 }
    446 
    447 template<typename LHS, typename RHS>
    448 inline BinaryOp_match<LHS, RHS, Instruction::URem>
    449 m_URem(const LHS &L, const RHS &R) {
    450   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
    451 }
    452 
    453 template<typename LHS, typename RHS>
    454 inline BinaryOp_match<LHS, RHS, Instruction::SRem>
    455 m_SRem(const LHS &L, const RHS &R) {
    456   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
    457 }
    458 
    459 template<typename LHS, typename RHS>
    460 inline BinaryOp_match<LHS, RHS, Instruction::FRem>
    461 m_FRem(const LHS &L, const RHS &R) {
    462   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
    463 }
    464 
    465 template<typename LHS, typename RHS>
    466 inline BinaryOp_match<LHS, RHS, Instruction::And>
    467 m_And(const LHS &L, const RHS &R) {
    468   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
    469 }
    470 
    471 template<typename LHS, typename RHS>
    472 inline BinaryOp_match<LHS, RHS, Instruction::Or>
    473 m_Or(const LHS &L, const RHS &R) {
    474   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
    475 }
    476 
    477 template<typename LHS, typename RHS>
    478 inline BinaryOp_match<LHS, RHS, Instruction::Xor>
    479 m_Xor(const LHS &L, const RHS &R) {
    480   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
    481 }
    482 
    483 template<typename LHS, typename RHS>
    484 inline BinaryOp_match<LHS, RHS, Instruction::Shl>
    485 m_Shl(const LHS &L, const RHS &R) {
    486   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
    487 }
    488 
    489 template<typename LHS, typename RHS>
    490 inline BinaryOp_match<LHS, RHS, Instruction::LShr>
    491 m_LShr(const LHS &L, const RHS &R) {
    492   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
    493 }
    494 
    495 template<typename LHS, typename RHS>
    496 inline BinaryOp_match<LHS, RHS, Instruction::AShr>
    497 m_AShr(const LHS &L, const RHS &R) {
    498   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
    499 }
    500 
    501 template<typename LHS_t, typename RHS_t, unsigned Opcode, unsigned WrapFlags = 0>
    502 struct OverflowingBinaryOp_match {
    503   LHS_t L;
    504   RHS_t R;
    505 
    506   OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
    507 
    508   template<typename OpTy>
    509   bool match(OpTy *V) {
    510     if (OverflowingBinaryOperator *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
    511       if (Op->getOpcode() != Opcode)
    512         return false;
    513       if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
    514           !Op->hasNoUnsignedWrap())
    515         return false;
    516       if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
    517           !Op->hasNoSignedWrap())
    518         return false;
    519       return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
    520     }
    521     return false;
    522   }
    523 };
    524 
    525 template <typename LHS, typename RHS>
    526 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
    527                                  OverflowingBinaryOperator::NoSignedWrap>
    528 m_NSWAdd(const LHS &L, const RHS &R) {
    529   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
    530                                    OverflowingBinaryOperator::NoSignedWrap>(
    531       L, R);
    532 }
    533 template <typename LHS, typename RHS>
    534 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
    535                                  OverflowingBinaryOperator::NoSignedWrap>
    536 m_NSWSub(const LHS &L, const RHS &R) {
    537   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
    538                                    OverflowingBinaryOperator::NoSignedWrap>(
    539       L, R);
    540 }
    541 template <typename LHS, typename RHS>
    542 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
    543                                  OverflowingBinaryOperator::NoSignedWrap>
    544 m_NSWMul(const LHS &L, const RHS &R) {
    545   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
    546                                    OverflowingBinaryOperator::NoSignedWrap>(
    547       L, R);
    548 }
    549 template <typename LHS, typename RHS>
    550 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
    551                                  OverflowingBinaryOperator::NoSignedWrap>
    552 m_NSWShl(const LHS &L, const RHS &R) {
    553   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
    554                                    OverflowingBinaryOperator::NoSignedWrap>(
    555       L, R);
    556 }
    557 
    558 template <typename LHS, typename RHS>
    559 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
    560                                  OverflowingBinaryOperator::NoUnsignedWrap>
    561 m_NUWAdd(const LHS &L, const RHS &R) {
    562   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
    563                                    OverflowingBinaryOperator::NoUnsignedWrap>(
    564       L, R);
    565 }
    566 template <typename LHS, typename RHS>
    567 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
    568                                  OverflowingBinaryOperator::NoUnsignedWrap>
    569 m_NUWSub(const LHS &L, const RHS &R) {
    570   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
    571                                    OverflowingBinaryOperator::NoUnsignedWrap>(
    572       L, R);
    573 }
    574 template <typename LHS, typename RHS>
    575 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
    576                                  OverflowingBinaryOperator::NoUnsignedWrap>
    577 m_NUWMul(const LHS &L, const RHS &R) {
    578   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
    579                                    OverflowingBinaryOperator::NoUnsignedWrap>(
    580       L, R);
    581 }
    582 template <typename LHS, typename RHS>
    583 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
    584                                  OverflowingBinaryOperator::NoUnsignedWrap>
    585 m_NUWShl(const LHS &L, const RHS &R) {
    586   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
    587                                    OverflowingBinaryOperator::NoUnsignedWrap>(
    588       L, R);
    589 }
    590 
    591 //===----------------------------------------------------------------------===//
    592 // Class that matches two different binary ops.
    593 //
    594 template<typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2>
    595 struct BinOp2_match {
    596   LHS_t L;
    597   RHS_t R;
    598 
    599   BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
    600 
    601   template<typename OpTy>
    602   bool match(OpTy *V) {
    603     if (V->getValueID() == Value::InstructionVal + Opc1 ||
    604         V->getValueID() == Value::InstructionVal + Opc2) {
    605       BinaryOperator *I = cast<BinaryOperator>(V);
    606       return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
    607     }
    608     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    609       return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) &&
    610              L.match(CE->getOperand(0)) && R.match(CE->getOperand(1));
    611     return false;
    612   }
    613 };
    614 
    615 /// m_Shr - Matches LShr or AShr.
    616 template<typename LHS, typename RHS>
    617 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>
    618 m_Shr(const LHS &L, const RHS &R) {
    619   return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R);
    620 }
    621 
    622 /// m_LogicalShift - Matches LShr or Shl.
    623 template<typename LHS, typename RHS>
    624 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>
    625 m_LogicalShift(const LHS &L, const RHS &R) {
    626   return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R);
    627 }
    628 
    629 /// m_IDiv - Matches UDiv and SDiv.
    630 template<typename LHS, typename RHS>
    631 inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>
    632 m_IDiv(const LHS &L, const RHS &R) {
    633   return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R);
    634 }
    635 
    636 //===----------------------------------------------------------------------===//
    637 // Class that matches exact binary ops.
    638 //
    639 template<typename SubPattern_t>
    640 struct Exact_match {
    641   SubPattern_t SubPattern;
    642 
    643   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
    644 
    645   template<typename OpTy>
    646   bool match(OpTy *V) {
    647     if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V))
    648       return PEO->isExact() && SubPattern.match(V);
    649     return false;
    650   }
    651 };
    652 
    653 template<typename T>
    654 inline Exact_match<T> m_Exact(const T &SubPattern) { return SubPattern; }
    655 
    656 //===----------------------------------------------------------------------===//
    657 // Matchers for CmpInst classes
    658 //
    659 
    660 template<typename LHS_t, typename RHS_t, typename Class, typename PredicateTy>
    661 struct CmpClass_match {
    662   PredicateTy &Predicate;
    663   LHS_t L;
    664   RHS_t R;
    665 
    666   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
    667     : Predicate(Pred), L(LHS), R(RHS) {}
    668 
    669   template<typename OpTy>
    670   bool match(OpTy *V) {
    671     if (Class *I = dyn_cast<Class>(V))
    672       if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
    673         Predicate = I->getPredicate();
    674         return true;
    675       }
    676     return false;
    677   }
    678 };
    679 
    680 template<typename LHS, typename RHS>
    681 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
    682 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
    683   return CmpClass_match<LHS, RHS,
    684                         ICmpInst, ICmpInst::Predicate>(Pred, L, R);
    685 }
    686 
    687 template<typename LHS, typename RHS>
    688 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
    689 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
    690   return CmpClass_match<LHS, RHS,
    691                         FCmpInst, FCmpInst::Predicate>(Pred, L, R);
    692 }
    693 
    694 //===----------------------------------------------------------------------===//
    695 // Matchers for SelectInst classes
    696 //
    697 
    698 template<typename Cond_t, typename LHS_t, typename RHS_t>
    699 struct SelectClass_match {
    700   Cond_t C;
    701   LHS_t L;
    702   RHS_t R;
    703 
    704   SelectClass_match(const Cond_t &Cond, const LHS_t &LHS,
    705                     const RHS_t &RHS)
    706     : C(Cond), L(LHS), R(RHS) {}
    707 
    708   template<typename OpTy>
    709   bool match(OpTy *V) {
    710     if (SelectInst *I = dyn_cast<SelectInst>(V))
    711       return C.match(I->getOperand(0)) &&
    712              L.match(I->getOperand(1)) &&
    713              R.match(I->getOperand(2));
    714     return false;
    715   }
    716 };
    717 
    718 template<typename Cond, typename LHS, typename RHS>
    719 inline SelectClass_match<Cond, LHS, RHS>
    720 m_Select(const Cond &C, const LHS &L, const RHS &R) {
    721   return SelectClass_match<Cond, LHS, RHS>(C, L, R);
    722 }
    723 
    724 /// m_SelectCst - This matches a select of two constants, e.g.:
    725 ///    m_SelectCst<-1, 0>(m_Value(V))
    726 template<int64_t L, int64_t R, typename Cond>
    727 inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R> >
    728 m_SelectCst(const Cond &C) {
    729   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
    730 }
    731 
    732 
    733 //===----------------------------------------------------------------------===//
    734 // Matchers for CastInst classes
    735 //
    736 
    737 template<typename Op_t, unsigned Opcode>
    738 struct CastClass_match {
    739   Op_t Op;
    740 
    741   CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
    742 
    743   template<typename OpTy>
    744   bool match(OpTy *V) {
    745     if (Operator *O = dyn_cast<Operator>(V))
    746       return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
    747     return false;
    748   }
    749 };
    750 
    751 /// m_BitCast
    752 template<typename OpTy>
    753 inline CastClass_match<OpTy, Instruction::BitCast>
    754 m_BitCast(const OpTy &Op) {
    755   return CastClass_match<OpTy, Instruction::BitCast>(Op);
    756 }
    757 
    758 /// m_PtrToInt
    759 template<typename OpTy>
    760 inline CastClass_match<OpTy, Instruction::PtrToInt>
    761 m_PtrToInt(const OpTy &Op) {
    762   return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
    763 }
    764 
    765 /// m_Trunc
    766 template<typename OpTy>
    767 inline CastClass_match<OpTy, Instruction::Trunc>
    768 m_Trunc(const OpTy &Op) {
    769   return CastClass_match<OpTy, Instruction::Trunc>(Op);
    770 }
    771 
    772 /// m_SExt
    773 template<typename OpTy>
    774 inline CastClass_match<OpTy, Instruction::SExt>
    775 m_SExt(const OpTy &Op) {
    776   return CastClass_match<OpTy, Instruction::SExt>(Op);
    777 }
    778 
    779 /// m_ZExt
    780 template<typename OpTy>
    781 inline CastClass_match<OpTy, Instruction::ZExt>
    782 m_ZExt(const OpTy &Op) {
    783   return CastClass_match<OpTy, Instruction::ZExt>(Op);
    784 }
    785 
    786 /// m_UIToFP
    787 template<typename OpTy>
    788 inline CastClass_match<OpTy, Instruction::UIToFP>
    789 m_UIToFP(const OpTy &Op) {
    790   return CastClass_match<OpTy, Instruction::UIToFP>(Op);
    791 }
    792 
    793 /// m_SIToFP
    794 template<typename OpTy>
    795 inline CastClass_match<OpTy, Instruction::SIToFP>
    796 m_SIToFP(const OpTy &Op) {
    797   return CastClass_match<OpTy, Instruction::SIToFP>(Op);
    798 }
    799 
    800 //===----------------------------------------------------------------------===//
    801 // Matchers for unary operators
    802 //
    803 
    804 template<typename LHS_t>
    805 struct not_match {
    806   LHS_t L;
    807 
    808   not_match(const LHS_t &LHS) : L(LHS) {}
    809 
    810   template<typename OpTy>
    811   bool match(OpTy *V) {
    812     if (Operator *O = dyn_cast<Operator>(V))
    813       if (O->getOpcode() == Instruction::Xor)
    814         return matchIfNot(O->getOperand(0), O->getOperand(1));
    815     return false;
    816   }
    817 private:
    818   bool matchIfNot(Value *LHS, Value *RHS) {
    819     return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) ||
    820             // FIXME: Remove CV.
    821             isa<ConstantVector>(RHS)) &&
    822            cast<Constant>(RHS)->isAllOnesValue() &&
    823            L.match(LHS);
    824   }
    825 };
    826 
    827 template<typename LHS>
    828 inline not_match<LHS> m_Not(const LHS &L) { return L; }
    829 
    830 
    831 template<typename LHS_t>
    832 struct neg_match {
    833   LHS_t L;
    834 
    835   neg_match(const LHS_t &LHS) : L(LHS) {}
    836 
    837   template<typename OpTy>
    838   bool match(OpTy *V) {
    839     if (Operator *O = dyn_cast<Operator>(V))
    840       if (O->getOpcode() == Instruction::Sub)
    841         return matchIfNeg(O->getOperand(0), O->getOperand(1));
    842     return false;
    843   }
    844 private:
    845   bool matchIfNeg(Value *LHS, Value *RHS) {
    846     return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) ||
    847             isa<ConstantAggregateZero>(LHS)) &&
    848            L.match(RHS);
    849   }
    850 };
    851 
    852 /// m_Neg - Match an integer negate.
    853 template<typename LHS>
    854 inline neg_match<LHS> m_Neg(const LHS &L) { return L; }
    855 
    856 
    857 template<typename LHS_t>
    858 struct fneg_match {
    859   LHS_t L;
    860 
    861   fneg_match(const LHS_t &LHS) : L(LHS) {}
    862 
    863   template<typename OpTy>
    864   bool match(OpTy *V) {
    865     if (Operator *O = dyn_cast<Operator>(V))
    866       if (O->getOpcode() == Instruction::FSub)
    867         return matchIfFNeg(O->getOperand(0), O->getOperand(1));
    868     return false;
    869   }
    870 private:
    871   bool matchIfFNeg(Value *LHS, Value *RHS) {
    872     if (ConstantFP *C = dyn_cast<ConstantFP>(LHS))
    873       return C->isNegativeZeroValue() && L.match(RHS);
    874     return false;
    875   }
    876 };
    877 
    878 /// m_FNeg - Match a floating point negate.
    879 template<typename LHS>
    880 inline fneg_match<LHS> m_FNeg(const LHS &L) { return L; }
    881 
    882 
    883 //===----------------------------------------------------------------------===//
    884 // Matchers for control flow.
    885 //
    886 
    887 struct br_match {
    888   BasicBlock *&Succ;
    889   br_match(BasicBlock *&Succ)
    890     : Succ(Succ) {
    891   }
    892 
    893   template<typename OpTy>
    894   bool match(OpTy *V) {
    895     if (BranchInst *BI = dyn_cast<BranchInst>(V))
    896       if (BI->isUnconditional()) {
    897         Succ = BI->getSuccessor(0);
    898         return true;
    899       }
    900     return false;
    901   }
    902 };
    903 
    904 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
    905 
    906 template<typename Cond_t>
    907 struct brc_match {
    908   Cond_t Cond;
    909   BasicBlock *&T, *&F;
    910   brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
    911     : Cond(C), T(t), F(f) {
    912   }
    913 
    914   template<typename OpTy>
    915   bool match(OpTy *V) {
    916     if (BranchInst *BI = dyn_cast<BranchInst>(V))
    917       if (BI->isConditional() && Cond.match(BI->getCondition())) {
    918         T = BI->getSuccessor(0);
    919         F = BI->getSuccessor(1);
    920         return true;
    921       }
    922     return false;
    923   }
    924 };
    925 
    926 template<typename Cond_t>
    927 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
    928   return brc_match<Cond_t>(C, T, F);
    929 }
    930 
    931 
    932 //===----------------------------------------------------------------------===//
    933 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
    934 //
    935 
    936 template<typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t>
    937 struct MaxMin_match {
    938   LHS_t L;
    939   RHS_t R;
    940 
    941   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS)
    942     : L(LHS), R(RHS) {}
    943 
    944   template<typename OpTy>
    945   bool match(OpTy *V) {
    946     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
    947     SelectInst *SI = dyn_cast<SelectInst>(V);
    948     if (!SI)
    949       return false;
    950     CmpInst_t *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
    951     if (!Cmp)
    952       return false;
    953     // At this point we have a select conditioned on a comparison.  Check that
    954     // it is the values returned by the select that are being compared.
    955     Value *TrueVal = SI->getTrueValue();
    956     Value *FalseVal = SI->getFalseValue();
    957     Value *LHS = Cmp->getOperand(0);
    958     Value *RHS = Cmp->getOperand(1);
    959     if ((TrueVal != LHS || FalseVal != RHS) &&
    960         (TrueVal != RHS || FalseVal != LHS))
    961       return false;
    962     typename CmpInst_t::Predicate Pred = LHS == TrueVal ?
    963       Cmp->getPredicate() : Cmp->getSwappedPredicate();
    964     // Does "(x pred y) ? x : y" represent the desired max/min operation?
    965     if (!Pred_t::match(Pred))
    966       return false;
    967     // It does!  Bind the operands.
    968     return L.match(LHS) && R.match(RHS);
    969   }
    970 };
    971 
    972 /// smax_pred_ty - Helper class for identifying signed max predicates.
    973 struct smax_pred_ty {
    974   static bool match(ICmpInst::Predicate Pred) {
    975     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
    976   }
    977 };
    978 
    979 /// smin_pred_ty - Helper class for identifying signed min predicates.
    980 struct smin_pred_ty {
    981   static bool match(ICmpInst::Predicate Pred) {
    982     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
    983   }
    984 };
    985 
    986 /// umax_pred_ty - Helper class for identifying unsigned max predicates.
    987 struct umax_pred_ty {
    988   static bool match(ICmpInst::Predicate Pred) {
    989     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
    990   }
    991 };
    992 
    993 /// umin_pred_ty - Helper class for identifying unsigned min predicates.
    994 struct umin_pred_ty {
    995   static bool match(ICmpInst::Predicate Pred) {
    996     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
    997   }
    998 };
    999 
   1000 /// ofmax_pred_ty - Helper class for identifying ordered max predicates.
   1001 struct ofmax_pred_ty {
   1002   static bool match(FCmpInst::Predicate Pred) {
   1003     return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
   1004   }
   1005 };
   1006 
   1007 /// ofmin_pred_ty - Helper class for identifying ordered min predicates.
   1008 struct ofmin_pred_ty {
   1009   static bool match(FCmpInst::Predicate Pred) {
   1010     return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
   1011   }
   1012 };
   1013 
   1014 /// ufmax_pred_ty - Helper class for identifying unordered max predicates.
   1015 struct ufmax_pred_ty {
   1016   static bool match(FCmpInst::Predicate Pred) {
   1017     return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
   1018   }
   1019 };
   1020 
   1021 /// ufmin_pred_ty - Helper class for identifying unordered min predicates.
   1022 struct ufmin_pred_ty {
   1023   static bool match(FCmpInst::Predicate Pred) {
   1024     return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
   1025   }
   1026 };
   1027 
   1028 template<typename LHS, typename RHS>
   1029 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>
   1030 m_SMax(const LHS &L, const RHS &R) {
   1031   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
   1032 }
   1033 
   1034 template<typename LHS, typename RHS>
   1035 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>
   1036 m_SMin(const LHS &L, const RHS &R) {
   1037   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
   1038 }
   1039 
   1040 template<typename LHS, typename RHS>
   1041 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>
   1042 m_UMax(const LHS &L, const RHS &R) {
   1043   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
   1044 }
   1045 
   1046 template<typename LHS, typename RHS>
   1047 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>
   1048 m_UMin(const LHS &L, const RHS &R) {
   1049   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
   1050 }
   1051 
   1052 /// \brief Match an 'ordered' floating point maximum function.
   1053 /// Floating point has one special value 'NaN'. Therefore, there is no total
   1054 /// order. However, if we can ignore the 'NaN' value (for example, because of a
   1055 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
   1056 /// semantics. In the presence of 'NaN' we have to preserve the original
   1057 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
   1058 ///
   1059 ///                         max(L, R)  iff L and R are not NaN
   1060 ///  m_OrdFMax(L, R) =      R          iff L or R are NaN
   1061 template<typename LHS, typename RHS>
   1062 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>
   1063 m_OrdFMax(const LHS &L, const RHS &R) {
   1064   return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
   1065 }
   1066 
   1067 /// \brief Match an 'ordered' floating point minimum function.
   1068 /// Floating point has one special value 'NaN'. Therefore, there is no total
   1069 /// order. However, if we can ignore the 'NaN' value (for example, because of a
   1070 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
   1071 /// semantics. In the presence of 'NaN' we have to preserve the original
   1072 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
   1073 ///
   1074 ///                         max(L, R)  iff L and R are not NaN
   1075 ///  m_OrdFMin(L, R) =      R          iff L or R are NaN
   1076 template<typename LHS, typename RHS>
   1077 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>
   1078 m_OrdFMin(const LHS &L, const RHS &R) {
   1079   return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
   1080 }
   1081 
   1082 /// \brief Match an 'unordered' floating point maximum function.
   1083 /// Floating point has one special value 'NaN'. Therefore, there is no total
   1084 /// order. However, if we can ignore the 'NaN' value (for example, because of a
   1085 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
   1086 /// semantics. In the presence of 'NaN' we have to preserve the original
   1087 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
   1088 ///
   1089 ///                         max(L, R)  iff L and R are not NaN
   1090 ///  m_UnordFMin(L, R) =    L          iff L or R are NaN
   1091 template<typename LHS, typename RHS>
   1092 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
   1093 m_UnordFMax(const LHS &L, const RHS &R) {
   1094   return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
   1095 }
   1096 
   1097 /// \brief Match an 'unordered' floating point minimum function.
   1098 /// Floating point has one special value 'NaN'. Therefore, there is no total
   1099 /// order. However, if we can ignore the 'NaN' value (for example, because of a
   1100 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
   1101 /// semantics. In the presence of 'NaN' we have to preserve the original
   1102 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
   1103 ///
   1104 ///                          max(L, R)  iff L and R are not NaN
   1105 ///  m_UnordFMin(L, R) =     L          iff L or R are NaN
   1106 template<typename LHS, typename RHS>
   1107 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
   1108 m_UnordFMin(const LHS &L, const RHS &R) {
   1109   return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
   1110 }
   1111 
   1112 template<typename Opnd_t>
   1113 struct Argument_match {
   1114   unsigned OpI;
   1115   Opnd_t Val;
   1116   Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) { }
   1117 
   1118   template<typename OpTy>
   1119   bool match(OpTy *V) {
   1120     CallSite CS(V);
   1121     return CS.isCall() && Val.match(CS.getArgument(OpI));
   1122   }
   1123 };
   1124 
   1125 /// Match an argument
   1126 template<unsigned OpI, typename Opnd_t>
   1127 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
   1128   return Argument_match<Opnd_t>(OpI, Op);
   1129 }
   1130 
   1131 /// Intrinsic matchers.
   1132 struct IntrinsicID_match {
   1133   unsigned ID;
   1134   IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) { }
   1135 
   1136   template<typename OpTy>
   1137   bool match(OpTy *V) {
   1138     IntrinsicInst *II = dyn_cast<IntrinsicInst>(V);
   1139     return II && II->getIntrinsicID() == ID;
   1140   }
   1141 };
   1142 
   1143 /// Intrinsic matches are combinations of ID matchers, and argument
   1144 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
   1145 /// them with lower arity matchers. Here's some convenient typedefs for up to
   1146 /// several arguments, and more can be added as needed
   1147 template <typename T0 = void, typename T1 = void, typename T2 = void,
   1148           typename T3 = void, typename T4 = void, typename T5 = void,
   1149           typename T6 = void, typename T7 = void, typename T8 = void,
   1150           typename T9 = void, typename T10 = void> struct m_Intrinsic_Ty;
   1151 template <typename T0>
   1152 struct m_Intrinsic_Ty<T0> {
   1153   typedef match_combine_and<IntrinsicID_match, Argument_match<T0> > Ty;
   1154 };
   1155 template <typename T0, typename T1>
   1156 struct m_Intrinsic_Ty<T0, T1> {
   1157   typedef match_combine_and<typename m_Intrinsic_Ty<T0>::Ty,
   1158                             Argument_match<T1> > Ty;
   1159 };
   1160 template <typename T0, typename T1, typename T2>
   1161 struct m_Intrinsic_Ty<T0, T1, T2> {
   1162   typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
   1163                             Argument_match<T2> > Ty;
   1164 };
   1165 template <typename T0, typename T1, typename T2, typename T3>
   1166 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
   1167   typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
   1168                             Argument_match<T3> > Ty;
   1169 };
   1170 
   1171 /// Match intrinsic calls like this:
   1172 ///   m_Intrinsic<Intrinsic::fabs>(m_Value(X))
   1173 template <Intrinsic::ID IntrID>
   1174 inline IntrinsicID_match
   1175 m_Intrinsic() { return IntrinsicID_match(IntrID); }
   1176 
   1177 template<Intrinsic::ID IntrID, typename T0>
   1178 inline typename m_Intrinsic_Ty<T0>::Ty
   1179 m_Intrinsic(const T0 &Op0) {
   1180   return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
   1181 }
   1182 
   1183 template<Intrinsic::ID IntrID, typename T0, typename T1>
   1184 inline typename m_Intrinsic_Ty<T0, T1>::Ty
   1185 m_Intrinsic(const T0 &Op0, const T1 &Op1) {
   1186   return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
   1187 }
   1188 
   1189 template<Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
   1190 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
   1191 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
   1192   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
   1193 }
   1194 
   1195 template<Intrinsic::ID IntrID, typename T0, typename T1, typename T2, typename T3>
   1196 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
   1197 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
   1198   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
   1199 }
   1200 
   1201 // Helper intrinsic matching specializations
   1202 template<typename Opnd0>
   1203 inline typename m_Intrinsic_Ty<Opnd0>::Ty
   1204 m_BSwap(const Opnd0 &Op0) {
   1205   return m_Intrinsic<Intrinsic::bswap>(Op0);
   1206 }
   1207 
   1208 } // end namespace PatternMatch
   1209 } // end namespace llvm
   1210 
   1211 #endif
   1212