1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file provides a simple and efficient mechanism for performing general 11 // tree-based pattern matches on the LLVM IR. The power of these routines is 12 // that it allows you to write concise patterns that are expressive and easy to 13 // understand. The other major advantage of this is that it allows you to 14 // trivially capture/bind elements in the pattern to variables. For example, 15 // you can do something like this: 16 // 17 // Value *Exp = ... 18 // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) 19 // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), 20 // m_And(m_Value(Y), m_ConstantInt(C2))))) { 21 // ... Pattern is matched and variables are bound ... 22 // } 23 // 24 // This is primarily useful to things like the instruction combiner, but can 25 // also be useful for static analysis tools or code generators. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #ifndef LLVM_IR_PATTERNMATCH_H 30 #define LLVM_IR_PATTERNMATCH_H 31 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 38 namespace llvm { 39 namespace PatternMatch { 40 41 template<typename Val, typename Pattern> 42 bool match(Val *V, const Pattern &P) { 43 return const_cast<Pattern&>(P).match(V); 44 } 45 46 47 template<typename SubPattern_t> 48 struct OneUse_match { 49 SubPattern_t SubPattern; 50 51 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} 52 53 template<typename OpTy> 54 bool match(OpTy *V) { 55 return V->hasOneUse() && SubPattern.match(V); 56 } 57 }; 58 59 template<typename T> 60 inline OneUse_match<T> m_OneUse(const T &SubPattern) { return SubPattern; } 61 62 63 template<typename Class> 64 struct class_match { 65 template<typename ITy> 66 bool match(ITy *V) { return isa<Class>(V); } 67 }; 68 69 /// m_Value() - Match an arbitrary value and ignore it. 70 inline class_match<Value> m_Value() { return class_match<Value>(); } 71 /// m_ConstantInt() - Match an arbitrary ConstantInt and ignore it. 72 inline class_match<ConstantInt> m_ConstantInt() { 73 return class_match<ConstantInt>(); 74 } 75 /// m_Undef() - Match an arbitrary undef constant. 76 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); } 77 78 inline class_match<Constant> m_Constant() { return class_match<Constant>(); } 79 80 /// Matching combinators 81 template<typename LTy, typename RTy> 82 struct match_combine_or { 83 LTy L; 84 RTy R; 85 86 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) { } 87 88 template<typename ITy> 89 bool match(ITy *V) { 90 if (L.match(V)) 91 return true; 92 if (R.match(V)) 93 return true; 94 return false; 95 } 96 }; 97 98 template<typename LTy, typename RTy> 99 struct match_combine_and { 100 LTy L; 101 RTy R; 102 103 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) { } 104 105 template<typename ITy> 106 bool match(ITy *V) { 107 if (L.match(V)) 108 if (R.match(V)) 109 return true; 110 return false; 111 } 112 }; 113 114 /// Combine two pattern matchers matching L || R 115 template<typename LTy, typename RTy> 116 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { 117 return match_combine_or<LTy, RTy>(L, R); 118 } 119 120 /// Combine two pattern matchers matching L && R 121 template<typename LTy, typename RTy> 122 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { 123 return match_combine_and<LTy, RTy>(L, R); 124 } 125 126 struct match_zero { 127 template<typename ITy> 128 bool match(ITy *V) { 129 if (const Constant *C = dyn_cast<Constant>(V)) 130 return C->isNullValue(); 131 return false; 132 } 133 }; 134 135 /// m_Zero() - Match an arbitrary zero/null constant. This includes 136 /// zero_initializer for vectors and ConstantPointerNull for pointers. 137 inline match_zero m_Zero() { return match_zero(); } 138 139 struct match_neg_zero { 140 template<typename ITy> 141 bool match(ITy *V) { 142 if (const Constant *C = dyn_cast<Constant>(V)) 143 return C->isNegativeZeroValue(); 144 return false; 145 } 146 }; 147 148 /// m_NegZero() - Match an arbitrary zero/null constant. This includes 149 /// zero_initializer for vectors and ConstantPointerNull for pointers. For 150 /// floating point constants, this will match negative zero but not positive 151 /// zero 152 inline match_neg_zero m_NegZero() { return match_neg_zero(); } 153 154 /// m_AnyZero() - Match an arbitrary zero/null constant. This includes 155 /// zero_initializer for vectors and ConstantPointerNull for pointers. For 156 /// floating point constants, this will match negative zero and positive zero 157 inline match_combine_or<match_zero, match_neg_zero> m_AnyZero() { 158 return m_CombineOr(m_Zero(), m_NegZero()); 159 } 160 161 struct apint_match { 162 const APInt *&Res; 163 apint_match(const APInt *&R) : Res(R) {} 164 template<typename ITy> 165 bool match(ITy *V) { 166 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 167 Res = &CI->getValue(); 168 return true; 169 } 170 if (V->getType()->isVectorTy()) 171 if (const Constant *C = dyn_cast<Constant>(V)) 172 if (ConstantInt *CI = 173 dyn_cast_or_null<ConstantInt>(C->getSplatValue())) { 174 Res = &CI->getValue(); 175 return true; 176 } 177 return false; 178 } 179 }; 180 181 /// m_APInt - Match a ConstantInt or splatted ConstantVector, binding the 182 /// specified pointer to the contained APInt. 183 inline apint_match m_APInt(const APInt *&Res) { return Res; } 184 185 186 template<int64_t Val> 187 struct constantint_match { 188 template<typename ITy> 189 bool match(ITy *V) { 190 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 191 const APInt &CIV = CI->getValue(); 192 if (Val >= 0) 193 return CIV == static_cast<uint64_t>(Val); 194 // If Val is negative, and CI is shorter than it, truncate to the right 195 // number of bits. If it is larger, then we have to sign extend. Just 196 // compare their negated values. 197 return -CIV == -Val; 198 } 199 return false; 200 } 201 }; 202 203 /// m_ConstantInt<int64_t> - Match a ConstantInt with a specific value. 204 template<int64_t Val> 205 inline constantint_match<Val> m_ConstantInt() { 206 return constantint_match<Val>(); 207 } 208 209 /// cst_pred_ty - This helper class is used to match scalar and vector constants 210 /// that satisfy a specified predicate. 211 template<typename Predicate> 212 struct cst_pred_ty : public Predicate { 213 template<typename ITy> 214 bool match(ITy *V) { 215 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 216 return this->isValue(CI->getValue()); 217 if (V->getType()->isVectorTy()) 218 if (const Constant *C = dyn_cast<Constant>(V)) 219 if (const ConstantInt *CI = 220 dyn_cast_or_null<ConstantInt>(C->getSplatValue())) 221 return this->isValue(CI->getValue()); 222 return false; 223 } 224 }; 225 226 /// api_pred_ty - This helper class is used to match scalar and vector constants 227 /// that satisfy a specified predicate, and bind them to an APInt. 228 template<typename Predicate> 229 struct api_pred_ty : public Predicate { 230 const APInt *&Res; 231 api_pred_ty(const APInt *&R) : Res(R) {} 232 template<typename ITy> 233 bool match(ITy *V) { 234 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 235 if (this->isValue(CI->getValue())) { 236 Res = &CI->getValue(); 237 return true; 238 } 239 if (V->getType()->isVectorTy()) 240 if (const Constant *C = dyn_cast<Constant>(V)) 241 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) 242 if (this->isValue(CI->getValue())) { 243 Res = &CI->getValue(); 244 return true; 245 } 246 247 return false; 248 } 249 }; 250 251 252 struct is_one { 253 bool isValue(const APInt &C) { return C == 1; } 254 }; 255 256 /// m_One() - Match an integer 1 or a vector with all elements equal to 1. 257 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); } 258 inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; } 259 260 struct is_all_ones { 261 bool isValue(const APInt &C) { return C.isAllOnesValue(); } 262 }; 263 264 /// m_AllOnes() - Match an integer or vector with all bits set to true. 265 inline cst_pred_ty<is_all_ones> m_AllOnes() {return cst_pred_ty<is_all_ones>();} 266 inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; } 267 268 struct is_sign_bit { 269 bool isValue(const APInt &C) { return C.isSignBit(); } 270 }; 271 272 /// m_SignBit() - Match an integer or vector with only the sign bit(s) set. 273 inline cst_pred_ty<is_sign_bit> m_SignBit() {return cst_pred_ty<is_sign_bit>();} 274 inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; } 275 276 struct is_power2 { 277 bool isValue(const APInt &C) { return C.isPowerOf2(); } 278 }; 279 280 /// m_Power2() - Match an integer or vector power of 2. 281 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); } 282 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; } 283 284 template<typename Class> 285 struct bind_ty { 286 Class *&VR; 287 bind_ty(Class *&V) : VR(V) {} 288 289 template<typename ITy> 290 bool match(ITy *V) { 291 if (Class *CV = dyn_cast<Class>(V)) { 292 VR = CV; 293 return true; 294 } 295 return false; 296 } 297 }; 298 299 /// m_Value - Match a value, capturing it if we match. 300 inline bind_ty<Value> m_Value(Value *&V) { return V; } 301 302 /// m_ConstantInt - Match a ConstantInt, capturing the value if we match. 303 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } 304 305 /// m_Constant - Match a Constant, capturing the value if we match. 306 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } 307 308 /// m_ConstantFP - Match a ConstantFP, capturing the value if we match. 309 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; } 310 311 /// specificval_ty - Match a specified Value*. 312 struct specificval_ty { 313 const Value *Val; 314 specificval_ty(const Value *V) : Val(V) {} 315 316 template<typename ITy> 317 bool match(ITy *V) { 318 return V == Val; 319 } 320 }; 321 322 /// m_Specific - Match if we have a specific specified value. 323 inline specificval_ty m_Specific(const Value *V) { return V; } 324 325 /// Match a specified floating point value or vector of all elements of that 326 /// value. 327 struct specific_fpval { 328 double Val; 329 specific_fpval(double V) : Val(V) {} 330 331 template<typename ITy> 332 bool match(ITy *V) { 333 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 334 return CFP->isExactlyValue(Val); 335 if (V->getType()->isVectorTy()) 336 if (const Constant *C = dyn_cast<Constant>(V)) 337 if (ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) 338 return CFP->isExactlyValue(Val); 339 return false; 340 } 341 }; 342 343 /// Match a specific floating point value or vector with all elements equal to 344 /// the value. 345 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } 346 347 /// Match a float 1.0 or vector with all elements equal to 1.0. 348 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } 349 350 struct bind_const_intval_ty { 351 uint64_t &VR; 352 bind_const_intval_ty(uint64_t &V) : VR(V) {} 353 354 template<typename ITy> 355 bool match(ITy *V) { 356 if (ConstantInt *CV = dyn_cast<ConstantInt>(V)) 357 if (CV->getBitWidth() <= 64) { 358 VR = CV->getZExtValue(); 359 return true; 360 } 361 return false; 362 } 363 }; 364 365 /// m_ConstantInt - Match a ConstantInt and bind to its value. This does not 366 /// match ConstantInts wider than 64-bits. 367 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } 368 369 //===----------------------------------------------------------------------===// 370 // Matchers for specific binary operators. 371 // 372 373 template<typename LHS_t, typename RHS_t, unsigned Opcode> 374 struct BinaryOp_match { 375 LHS_t L; 376 RHS_t R; 377 378 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 379 380 template<typename OpTy> 381 bool match(OpTy *V) { 382 if (V->getValueID() == Value::InstructionVal + Opcode) { 383 BinaryOperator *I = cast<BinaryOperator>(V); 384 return L.match(I->getOperand(0)) && R.match(I->getOperand(1)); 385 } 386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 387 return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) && 388 R.match(CE->getOperand(1)); 389 return false; 390 } 391 }; 392 393 template<typename LHS, typename RHS> 394 inline BinaryOp_match<LHS, RHS, Instruction::Add> 395 m_Add(const LHS &L, const RHS &R) { 396 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); 397 } 398 399 template<typename LHS, typename RHS> 400 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> 401 m_FAdd(const LHS &L, const RHS &R) { 402 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); 403 } 404 405 template<typename LHS, typename RHS> 406 inline BinaryOp_match<LHS, RHS, Instruction::Sub> 407 m_Sub(const LHS &L, const RHS &R) { 408 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); 409 } 410 411 template<typename LHS, typename RHS> 412 inline BinaryOp_match<LHS, RHS, Instruction::FSub> 413 m_FSub(const LHS &L, const RHS &R) { 414 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); 415 } 416 417 template<typename LHS, typename RHS> 418 inline BinaryOp_match<LHS, RHS, Instruction::Mul> 419 m_Mul(const LHS &L, const RHS &R) { 420 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); 421 } 422 423 template<typename LHS, typename RHS> 424 inline BinaryOp_match<LHS, RHS, Instruction::FMul> 425 m_FMul(const LHS &L, const RHS &R) { 426 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); 427 } 428 429 template<typename LHS, typename RHS> 430 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> 431 m_UDiv(const LHS &L, const RHS &R) { 432 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); 433 } 434 435 template<typename LHS, typename RHS> 436 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> 437 m_SDiv(const LHS &L, const RHS &R) { 438 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); 439 } 440 441 template<typename LHS, typename RHS> 442 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> 443 m_FDiv(const LHS &L, const RHS &R) { 444 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); 445 } 446 447 template<typename LHS, typename RHS> 448 inline BinaryOp_match<LHS, RHS, Instruction::URem> 449 m_URem(const LHS &L, const RHS &R) { 450 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); 451 } 452 453 template<typename LHS, typename RHS> 454 inline BinaryOp_match<LHS, RHS, Instruction::SRem> 455 m_SRem(const LHS &L, const RHS &R) { 456 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); 457 } 458 459 template<typename LHS, typename RHS> 460 inline BinaryOp_match<LHS, RHS, Instruction::FRem> 461 m_FRem(const LHS &L, const RHS &R) { 462 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); 463 } 464 465 template<typename LHS, typename RHS> 466 inline BinaryOp_match<LHS, RHS, Instruction::And> 467 m_And(const LHS &L, const RHS &R) { 468 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); 469 } 470 471 template<typename LHS, typename RHS> 472 inline BinaryOp_match<LHS, RHS, Instruction::Or> 473 m_Or(const LHS &L, const RHS &R) { 474 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); 475 } 476 477 template<typename LHS, typename RHS> 478 inline BinaryOp_match<LHS, RHS, Instruction::Xor> 479 m_Xor(const LHS &L, const RHS &R) { 480 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); 481 } 482 483 template<typename LHS, typename RHS> 484 inline BinaryOp_match<LHS, RHS, Instruction::Shl> 485 m_Shl(const LHS &L, const RHS &R) { 486 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); 487 } 488 489 template<typename LHS, typename RHS> 490 inline BinaryOp_match<LHS, RHS, Instruction::LShr> 491 m_LShr(const LHS &L, const RHS &R) { 492 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); 493 } 494 495 template<typename LHS, typename RHS> 496 inline BinaryOp_match<LHS, RHS, Instruction::AShr> 497 m_AShr(const LHS &L, const RHS &R) { 498 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); 499 } 500 501 template<typename LHS_t, typename RHS_t, unsigned Opcode, unsigned WrapFlags = 0> 502 struct OverflowingBinaryOp_match { 503 LHS_t L; 504 RHS_t R; 505 506 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 507 508 template<typename OpTy> 509 bool match(OpTy *V) { 510 if (OverflowingBinaryOperator *Op = dyn_cast<OverflowingBinaryOperator>(V)) { 511 if (Op->getOpcode() != Opcode) 512 return false; 513 if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap && 514 !Op->hasNoUnsignedWrap()) 515 return false; 516 if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap && 517 !Op->hasNoSignedWrap()) 518 return false; 519 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1)); 520 } 521 return false; 522 } 523 }; 524 525 template <typename LHS, typename RHS> 526 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 527 OverflowingBinaryOperator::NoSignedWrap> 528 m_NSWAdd(const LHS &L, const RHS &R) { 529 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 530 OverflowingBinaryOperator::NoSignedWrap>( 531 L, R); 532 } 533 template <typename LHS, typename RHS> 534 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 535 OverflowingBinaryOperator::NoSignedWrap> 536 m_NSWSub(const LHS &L, const RHS &R) { 537 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 538 OverflowingBinaryOperator::NoSignedWrap>( 539 L, R); 540 } 541 template <typename LHS, typename RHS> 542 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 543 OverflowingBinaryOperator::NoSignedWrap> 544 m_NSWMul(const LHS &L, const RHS &R) { 545 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 546 OverflowingBinaryOperator::NoSignedWrap>( 547 L, R); 548 } 549 template <typename LHS, typename RHS> 550 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 551 OverflowingBinaryOperator::NoSignedWrap> 552 m_NSWShl(const LHS &L, const RHS &R) { 553 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 554 OverflowingBinaryOperator::NoSignedWrap>( 555 L, R); 556 } 557 558 template <typename LHS, typename RHS> 559 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 560 OverflowingBinaryOperator::NoUnsignedWrap> 561 m_NUWAdd(const LHS &L, const RHS &R) { 562 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 563 OverflowingBinaryOperator::NoUnsignedWrap>( 564 L, R); 565 } 566 template <typename LHS, typename RHS> 567 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 568 OverflowingBinaryOperator::NoUnsignedWrap> 569 m_NUWSub(const LHS &L, const RHS &R) { 570 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 571 OverflowingBinaryOperator::NoUnsignedWrap>( 572 L, R); 573 } 574 template <typename LHS, typename RHS> 575 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 576 OverflowingBinaryOperator::NoUnsignedWrap> 577 m_NUWMul(const LHS &L, const RHS &R) { 578 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 579 OverflowingBinaryOperator::NoUnsignedWrap>( 580 L, R); 581 } 582 template <typename LHS, typename RHS> 583 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 584 OverflowingBinaryOperator::NoUnsignedWrap> 585 m_NUWShl(const LHS &L, const RHS &R) { 586 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 587 OverflowingBinaryOperator::NoUnsignedWrap>( 588 L, R); 589 } 590 591 //===----------------------------------------------------------------------===// 592 // Class that matches two different binary ops. 593 // 594 template<typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2> 595 struct BinOp2_match { 596 LHS_t L; 597 RHS_t R; 598 599 BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 600 601 template<typename OpTy> 602 bool match(OpTy *V) { 603 if (V->getValueID() == Value::InstructionVal + Opc1 || 604 V->getValueID() == Value::InstructionVal + Opc2) { 605 BinaryOperator *I = cast<BinaryOperator>(V); 606 return L.match(I->getOperand(0)) && R.match(I->getOperand(1)); 607 } 608 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 609 return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) && 610 L.match(CE->getOperand(0)) && R.match(CE->getOperand(1)); 611 return false; 612 } 613 }; 614 615 /// m_Shr - Matches LShr or AShr. 616 template<typename LHS, typename RHS> 617 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr> 618 m_Shr(const LHS &L, const RHS &R) { 619 return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R); 620 } 621 622 /// m_LogicalShift - Matches LShr or Shl. 623 template<typename LHS, typename RHS> 624 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl> 625 m_LogicalShift(const LHS &L, const RHS &R) { 626 return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R); 627 } 628 629 /// m_IDiv - Matches UDiv and SDiv. 630 template<typename LHS, typename RHS> 631 inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv> 632 m_IDiv(const LHS &L, const RHS &R) { 633 return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R); 634 } 635 636 //===----------------------------------------------------------------------===// 637 // Class that matches exact binary ops. 638 // 639 template<typename SubPattern_t> 640 struct Exact_match { 641 SubPattern_t SubPattern; 642 643 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} 644 645 template<typename OpTy> 646 bool match(OpTy *V) { 647 if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V)) 648 return PEO->isExact() && SubPattern.match(V); 649 return false; 650 } 651 }; 652 653 template<typename T> 654 inline Exact_match<T> m_Exact(const T &SubPattern) { return SubPattern; } 655 656 //===----------------------------------------------------------------------===// 657 // Matchers for CmpInst classes 658 // 659 660 template<typename LHS_t, typename RHS_t, typename Class, typename PredicateTy> 661 struct CmpClass_match { 662 PredicateTy &Predicate; 663 LHS_t L; 664 RHS_t R; 665 666 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) 667 : Predicate(Pred), L(LHS), R(RHS) {} 668 669 template<typename OpTy> 670 bool match(OpTy *V) { 671 if (Class *I = dyn_cast<Class>(V)) 672 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) { 673 Predicate = I->getPredicate(); 674 return true; 675 } 676 return false; 677 } 678 }; 679 680 template<typename LHS, typename RHS> 681 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> 682 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 683 return CmpClass_match<LHS, RHS, 684 ICmpInst, ICmpInst::Predicate>(Pred, L, R); 685 } 686 687 template<typename LHS, typename RHS> 688 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> 689 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 690 return CmpClass_match<LHS, RHS, 691 FCmpInst, FCmpInst::Predicate>(Pred, L, R); 692 } 693 694 //===----------------------------------------------------------------------===// 695 // Matchers for SelectInst classes 696 // 697 698 template<typename Cond_t, typename LHS_t, typename RHS_t> 699 struct SelectClass_match { 700 Cond_t C; 701 LHS_t L; 702 RHS_t R; 703 704 SelectClass_match(const Cond_t &Cond, const LHS_t &LHS, 705 const RHS_t &RHS) 706 : C(Cond), L(LHS), R(RHS) {} 707 708 template<typename OpTy> 709 bool match(OpTy *V) { 710 if (SelectInst *I = dyn_cast<SelectInst>(V)) 711 return C.match(I->getOperand(0)) && 712 L.match(I->getOperand(1)) && 713 R.match(I->getOperand(2)); 714 return false; 715 } 716 }; 717 718 template<typename Cond, typename LHS, typename RHS> 719 inline SelectClass_match<Cond, LHS, RHS> 720 m_Select(const Cond &C, const LHS &L, const RHS &R) { 721 return SelectClass_match<Cond, LHS, RHS>(C, L, R); 722 } 723 724 /// m_SelectCst - This matches a select of two constants, e.g.: 725 /// m_SelectCst<-1, 0>(m_Value(V)) 726 template<int64_t L, int64_t R, typename Cond> 727 inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R> > 728 m_SelectCst(const Cond &C) { 729 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); 730 } 731 732 733 //===----------------------------------------------------------------------===// 734 // Matchers for CastInst classes 735 // 736 737 template<typename Op_t, unsigned Opcode> 738 struct CastClass_match { 739 Op_t Op; 740 741 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {} 742 743 template<typename OpTy> 744 bool match(OpTy *V) { 745 if (Operator *O = dyn_cast<Operator>(V)) 746 return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); 747 return false; 748 } 749 }; 750 751 /// m_BitCast 752 template<typename OpTy> 753 inline CastClass_match<OpTy, Instruction::BitCast> 754 m_BitCast(const OpTy &Op) { 755 return CastClass_match<OpTy, Instruction::BitCast>(Op); 756 } 757 758 /// m_PtrToInt 759 template<typename OpTy> 760 inline CastClass_match<OpTy, Instruction::PtrToInt> 761 m_PtrToInt(const OpTy &Op) { 762 return CastClass_match<OpTy, Instruction::PtrToInt>(Op); 763 } 764 765 /// m_Trunc 766 template<typename OpTy> 767 inline CastClass_match<OpTy, Instruction::Trunc> 768 m_Trunc(const OpTy &Op) { 769 return CastClass_match<OpTy, Instruction::Trunc>(Op); 770 } 771 772 /// m_SExt 773 template<typename OpTy> 774 inline CastClass_match<OpTy, Instruction::SExt> 775 m_SExt(const OpTy &Op) { 776 return CastClass_match<OpTy, Instruction::SExt>(Op); 777 } 778 779 /// m_ZExt 780 template<typename OpTy> 781 inline CastClass_match<OpTy, Instruction::ZExt> 782 m_ZExt(const OpTy &Op) { 783 return CastClass_match<OpTy, Instruction::ZExt>(Op); 784 } 785 786 /// m_UIToFP 787 template<typename OpTy> 788 inline CastClass_match<OpTy, Instruction::UIToFP> 789 m_UIToFP(const OpTy &Op) { 790 return CastClass_match<OpTy, Instruction::UIToFP>(Op); 791 } 792 793 /// m_SIToFP 794 template<typename OpTy> 795 inline CastClass_match<OpTy, Instruction::SIToFP> 796 m_SIToFP(const OpTy &Op) { 797 return CastClass_match<OpTy, Instruction::SIToFP>(Op); 798 } 799 800 //===----------------------------------------------------------------------===// 801 // Matchers for unary operators 802 // 803 804 template<typename LHS_t> 805 struct not_match { 806 LHS_t L; 807 808 not_match(const LHS_t &LHS) : L(LHS) {} 809 810 template<typename OpTy> 811 bool match(OpTy *V) { 812 if (Operator *O = dyn_cast<Operator>(V)) 813 if (O->getOpcode() == Instruction::Xor) 814 return matchIfNot(O->getOperand(0), O->getOperand(1)); 815 return false; 816 } 817 private: 818 bool matchIfNot(Value *LHS, Value *RHS) { 819 return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) || 820 // FIXME: Remove CV. 821 isa<ConstantVector>(RHS)) && 822 cast<Constant>(RHS)->isAllOnesValue() && 823 L.match(LHS); 824 } 825 }; 826 827 template<typename LHS> 828 inline not_match<LHS> m_Not(const LHS &L) { return L; } 829 830 831 template<typename LHS_t> 832 struct neg_match { 833 LHS_t L; 834 835 neg_match(const LHS_t &LHS) : L(LHS) {} 836 837 template<typename OpTy> 838 bool match(OpTy *V) { 839 if (Operator *O = dyn_cast<Operator>(V)) 840 if (O->getOpcode() == Instruction::Sub) 841 return matchIfNeg(O->getOperand(0), O->getOperand(1)); 842 return false; 843 } 844 private: 845 bool matchIfNeg(Value *LHS, Value *RHS) { 846 return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) || 847 isa<ConstantAggregateZero>(LHS)) && 848 L.match(RHS); 849 } 850 }; 851 852 /// m_Neg - Match an integer negate. 853 template<typename LHS> 854 inline neg_match<LHS> m_Neg(const LHS &L) { return L; } 855 856 857 template<typename LHS_t> 858 struct fneg_match { 859 LHS_t L; 860 861 fneg_match(const LHS_t &LHS) : L(LHS) {} 862 863 template<typename OpTy> 864 bool match(OpTy *V) { 865 if (Operator *O = dyn_cast<Operator>(V)) 866 if (O->getOpcode() == Instruction::FSub) 867 return matchIfFNeg(O->getOperand(0), O->getOperand(1)); 868 return false; 869 } 870 private: 871 bool matchIfFNeg(Value *LHS, Value *RHS) { 872 if (ConstantFP *C = dyn_cast<ConstantFP>(LHS)) 873 return C->isNegativeZeroValue() && L.match(RHS); 874 return false; 875 } 876 }; 877 878 /// m_FNeg - Match a floating point negate. 879 template<typename LHS> 880 inline fneg_match<LHS> m_FNeg(const LHS &L) { return L; } 881 882 883 //===----------------------------------------------------------------------===// 884 // Matchers for control flow. 885 // 886 887 struct br_match { 888 BasicBlock *&Succ; 889 br_match(BasicBlock *&Succ) 890 : Succ(Succ) { 891 } 892 893 template<typename OpTy> 894 bool match(OpTy *V) { 895 if (BranchInst *BI = dyn_cast<BranchInst>(V)) 896 if (BI->isUnconditional()) { 897 Succ = BI->getSuccessor(0); 898 return true; 899 } 900 return false; 901 } 902 }; 903 904 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } 905 906 template<typename Cond_t> 907 struct brc_match { 908 Cond_t Cond; 909 BasicBlock *&T, *&F; 910 brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f) 911 : Cond(C), T(t), F(f) { 912 } 913 914 template<typename OpTy> 915 bool match(OpTy *V) { 916 if (BranchInst *BI = dyn_cast<BranchInst>(V)) 917 if (BI->isConditional() && Cond.match(BI->getCondition())) { 918 T = BI->getSuccessor(0); 919 F = BI->getSuccessor(1); 920 return true; 921 } 922 return false; 923 } 924 }; 925 926 template<typename Cond_t> 927 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { 928 return brc_match<Cond_t>(C, T, F); 929 } 930 931 932 //===----------------------------------------------------------------------===// 933 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). 934 // 935 936 template<typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t> 937 struct MaxMin_match { 938 LHS_t L; 939 RHS_t R; 940 941 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) 942 : L(LHS), R(RHS) {} 943 944 template<typename OpTy> 945 bool match(OpTy *V) { 946 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". 947 SelectInst *SI = dyn_cast<SelectInst>(V); 948 if (!SI) 949 return false; 950 CmpInst_t *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); 951 if (!Cmp) 952 return false; 953 // At this point we have a select conditioned on a comparison. Check that 954 // it is the values returned by the select that are being compared. 955 Value *TrueVal = SI->getTrueValue(); 956 Value *FalseVal = SI->getFalseValue(); 957 Value *LHS = Cmp->getOperand(0); 958 Value *RHS = Cmp->getOperand(1); 959 if ((TrueVal != LHS || FalseVal != RHS) && 960 (TrueVal != RHS || FalseVal != LHS)) 961 return false; 962 typename CmpInst_t::Predicate Pred = LHS == TrueVal ? 963 Cmp->getPredicate() : Cmp->getSwappedPredicate(); 964 // Does "(x pred y) ? x : y" represent the desired max/min operation? 965 if (!Pred_t::match(Pred)) 966 return false; 967 // It does! Bind the operands. 968 return L.match(LHS) && R.match(RHS); 969 } 970 }; 971 972 /// smax_pred_ty - Helper class for identifying signed max predicates. 973 struct smax_pred_ty { 974 static bool match(ICmpInst::Predicate Pred) { 975 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; 976 } 977 }; 978 979 /// smin_pred_ty - Helper class for identifying signed min predicates. 980 struct smin_pred_ty { 981 static bool match(ICmpInst::Predicate Pred) { 982 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; 983 } 984 }; 985 986 /// umax_pred_ty - Helper class for identifying unsigned max predicates. 987 struct umax_pred_ty { 988 static bool match(ICmpInst::Predicate Pred) { 989 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; 990 } 991 }; 992 993 /// umin_pred_ty - Helper class for identifying unsigned min predicates. 994 struct umin_pred_ty { 995 static bool match(ICmpInst::Predicate Pred) { 996 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; 997 } 998 }; 999 1000 /// ofmax_pred_ty - Helper class for identifying ordered max predicates. 1001 struct ofmax_pred_ty { 1002 static bool match(FCmpInst::Predicate Pred) { 1003 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; 1004 } 1005 }; 1006 1007 /// ofmin_pred_ty - Helper class for identifying ordered min predicates. 1008 struct ofmin_pred_ty { 1009 static bool match(FCmpInst::Predicate Pred) { 1010 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; 1011 } 1012 }; 1013 1014 /// ufmax_pred_ty - Helper class for identifying unordered max predicates. 1015 struct ufmax_pred_ty { 1016 static bool match(FCmpInst::Predicate Pred) { 1017 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; 1018 } 1019 }; 1020 1021 /// ufmin_pred_ty - Helper class for identifying unordered min predicates. 1022 struct ufmin_pred_ty { 1023 static bool match(FCmpInst::Predicate Pred) { 1024 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; 1025 } 1026 }; 1027 1028 template<typename LHS, typename RHS> 1029 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> 1030 m_SMax(const LHS &L, const RHS &R) { 1031 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); 1032 } 1033 1034 template<typename LHS, typename RHS> 1035 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> 1036 m_SMin(const LHS &L, const RHS &R) { 1037 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); 1038 } 1039 1040 template<typename LHS, typename RHS> 1041 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> 1042 m_UMax(const LHS &L, const RHS &R) { 1043 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); 1044 } 1045 1046 template<typename LHS, typename RHS> 1047 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> 1048 m_UMin(const LHS &L, const RHS &R) { 1049 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); 1050 } 1051 1052 /// \brief Match an 'ordered' floating point maximum function. 1053 /// Floating point has one special value 'NaN'. Therefore, there is no total 1054 /// order. However, if we can ignore the 'NaN' value (for example, because of a 1055 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' 1056 /// semantics. In the presence of 'NaN' we have to preserve the original 1057 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. 1058 /// 1059 /// max(L, R) iff L and R are not NaN 1060 /// m_OrdFMax(L, R) = R iff L or R are NaN 1061 template<typename LHS, typename RHS> 1062 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> 1063 m_OrdFMax(const LHS &L, const RHS &R) { 1064 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); 1065 } 1066 1067 /// \brief Match an 'ordered' floating point minimum function. 1068 /// Floating point has one special value 'NaN'. Therefore, there is no total 1069 /// order. However, if we can ignore the 'NaN' value (for example, because of a 1070 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' 1071 /// semantics. In the presence of 'NaN' we have to preserve the original 1072 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. 1073 /// 1074 /// max(L, R) iff L and R are not NaN 1075 /// m_OrdFMin(L, R) = R iff L or R are NaN 1076 template<typename LHS, typename RHS> 1077 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> 1078 m_OrdFMin(const LHS &L, const RHS &R) { 1079 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); 1080 } 1081 1082 /// \brief Match an 'unordered' floating point maximum function. 1083 /// Floating point has one special value 'NaN'. Therefore, there is no total 1084 /// order. However, if we can ignore the 'NaN' value (for example, because of a 1085 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' 1086 /// semantics. In the presence of 'NaN' we have to preserve the original 1087 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. 1088 /// 1089 /// max(L, R) iff L and R are not NaN 1090 /// m_UnordFMin(L, R) = L iff L or R are NaN 1091 template<typename LHS, typename RHS> 1092 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> 1093 m_UnordFMax(const LHS &L, const RHS &R) { 1094 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); 1095 } 1096 1097 /// \brief Match an 'unordered' floating point minimum function. 1098 /// Floating point has one special value 'NaN'. Therefore, there is no total 1099 /// order. However, if we can ignore the 'NaN' value (for example, because of a 1100 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' 1101 /// semantics. In the presence of 'NaN' we have to preserve the original 1102 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. 1103 /// 1104 /// max(L, R) iff L and R are not NaN 1105 /// m_UnordFMin(L, R) = L iff L or R are NaN 1106 template<typename LHS, typename RHS> 1107 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> 1108 m_UnordFMin(const LHS &L, const RHS &R) { 1109 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); 1110 } 1111 1112 template<typename Opnd_t> 1113 struct Argument_match { 1114 unsigned OpI; 1115 Opnd_t Val; 1116 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) { } 1117 1118 template<typename OpTy> 1119 bool match(OpTy *V) { 1120 CallSite CS(V); 1121 return CS.isCall() && Val.match(CS.getArgument(OpI)); 1122 } 1123 }; 1124 1125 /// Match an argument 1126 template<unsigned OpI, typename Opnd_t> 1127 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { 1128 return Argument_match<Opnd_t>(OpI, Op); 1129 } 1130 1131 /// Intrinsic matchers. 1132 struct IntrinsicID_match { 1133 unsigned ID; 1134 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) { } 1135 1136 template<typename OpTy> 1137 bool match(OpTy *V) { 1138 IntrinsicInst *II = dyn_cast<IntrinsicInst>(V); 1139 return II && II->getIntrinsicID() == ID; 1140 } 1141 }; 1142 1143 /// Intrinsic matches are combinations of ID matchers, and argument 1144 /// matchers. Higher arity matcher are defined recursively in terms of and-ing 1145 /// them with lower arity matchers. Here's some convenient typedefs for up to 1146 /// several arguments, and more can be added as needed 1147 template <typename T0 = void, typename T1 = void, typename T2 = void, 1148 typename T3 = void, typename T4 = void, typename T5 = void, 1149 typename T6 = void, typename T7 = void, typename T8 = void, 1150 typename T9 = void, typename T10 = void> struct m_Intrinsic_Ty; 1151 template <typename T0> 1152 struct m_Intrinsic_Ty<T0> { 1153 typedef match_combine_and<IntrinsicID_match, Argument_match<T0> > Ty; 1154 }; 1155 template <typename T0, typename T1> 1156 struct m_Intrinsic_Ty<T0, T1> { 1157 typedef match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, 1158 Argument_match<T1> > Ty; 1159 }; 1160 template <typename T0, typename T1, typename T2> 1161 struct m_Intrinsic_Ty<T0, T1, T2> { 1162 typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, 1163 Argument_match<T2> > Ty; 1164 }; 1165 template <typename T0, typename T1, typename T2, typename T3> 1166 struct m_Intrinsic_Ty<T0, T1, T2, T3> { 1167 typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, 1168 Argument_match<T3> > Ty; 1169 }; 1170 1171 /// Match intrinsic calls like this: 1172 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X)) 1173 template <Intrinsic::ID IntrID> 1174 inline IntrinsicID_match 1175 m_Intrinsic() { return IntrinsicID_match(IntrID); } 1176 1177 template<Intrinsic::ID IntrID, typename T0> 1178 inline typename m_Intrinsic_Ty<T0>::Ty 1179 m_Intrinsic(const T0 &Op0) { 1180 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); 1181 } 1182 1183 template<Intrinsic::ID IntrID, typename T0, typename T1> 1184 inline typename m_Intrinsic_Ty<T0, T1>::Ty 1185 m_Intrinsic(const T0 &Op0, const T1 &Op1) { 1186 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); 1187 } 1188 1189 template<Intrinsic::ID IntrID, typename T0, typename T1, typename T2> 1190 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty 1191 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { 1192 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); 1193 } 1194 1195 template<Intrinsic::ID IntrID, typename T0, typename T1, typename T2, typename T3> 1196 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty 1197 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { 1198 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); 1199 } 1200 1201 // Helper intrinsic matching specializations 1202 template<typename Opnd0> 1203 inline typename m_Intrinsic_Ty<Opnd0>::Ty 1204 m_BSwap(const Opnd0 &Op0) { 1205 return m_Intrinsic<Intrinsic::bswap>(Op0); 1206 } 1207 1208 } // end namespace PatternMatch 1209 } // end namespace llvm 1210 1211 #endif 1212