Home | History | Annotate | Download | only in hwui
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define LOG_TAG "OpenGLRenderer"
     18 
     19 // The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
     20 #define CASTER_Z_CAP_RATIO 0.95f
     21 
     22 // When there is no umbra, then just fake the umbra using
     23 // centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
     24 #define FAKE_UMBRA_SIZE_RATIO 0.05f
     25 
     26 // When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
     27 // That is consider pretty fine tessllated polygon so far.
     28 // This is just to prevent using too much some memory when edge slicing is not
     29 // needed any more.
     30 #define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
     31 /**
     32  * Extra vertices for the corner for smoother corner.
     33  * Only for outer loop.
     34  * Note that we use such extra memory to avoid an extra loop.
     35  */
     36 // For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
     37 // Set to 1 if we don't want to have any.
     38 #define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
     39 
     40 // For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
     41 // therefore, the maximum number of extra vertices will be twice bigger.
     42 #define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER  (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
     43 
     44 // For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
     45 #define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
     46 
     47 
     48 #include <math.h>
     49 #include <stdlib.h>
     50 #include <utils/Log.h>
     51 
     52 #include "ShadowTessellator.h"
     53 #include "SpotShadow.h"
     54 #include "Vertex.h"
     55 #include "utils/MathUtils.h"
     56 
     57 // TODO: After we settle down the new algorithm, we can remove the old one and
     58 // its utility functions.
     59 // Right now, we still need to keep it for comparison purpose and future expansion.
     60 namespace android {
     61 namespace uirenderer {
     62 
     63 static const float EPSILON = 1e-7;
     64 
     65 /**
     66  * For each polygon's vertex, the light center will project it to the receiver
     67  * as one of the outline vertex.
     68  * For each outline vertex, we need to store the position and normal.
     69  * Normal here is defined against the edge by the current vertex and the next vertex.
     70  */
     71 struct OutlineData {
     72     Vector2 position;
     73     Vector2 normal;
     74     float radius;
     75 };
     76 
     77 /**
     78  * For each vertex, we need to keep track of its angle, whether it is penumbra or
     79  * umbra, and its corresponding vertex index.
     80  */
     81 struct SpotShadow::VertexAngleData {
     82     // The angle to the vertex from the centroid.
     83     float mAngle;
     84     // True is the vertex comes from penumbra, otherwise it comes from umbra.
     85     bool mIsPenumbra;
     86     // The index of the vertex described by this data.
     87     int mVertexIndex;
     88     void set(float angle, bool isPenumbra, int index) {
     89         mAngle = angle;
     90         mIsPenumbra = isPenumbra;
     91         mVertexIndex = index;
     92     }
     93 };
     94 
     95 /**
     96  * Calculate the angle between and x and a y coordinate.
     97  * The atan2 range from -PI to PI.
     98  */
     99 static float angle(const Vector2& point, const Vector2& center) {
    100     return atan2(point.y - center.y, point.x - center.x);
    101 }
    102 
    103 /**
    104  * Calculate the intersection of a ray with the line segment defined by two points.
    105  *
    106  * Returns a negative value in error conditions.
    107 
    108  * @param rayOrigin The start of the ray
    109  * @param dx The x vector of the ray
    110  * @param dy The y vector of the ray
    111  * @param p1 The first point defining the line segment
    112  * @param p2 The second point defining the line segment
    113  * @return The distance along the ray if it intersects with the line segment, negative if otherwise
    114  */
    115 static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
    116         const Vector2& p1, const Vector2& p2) {
    117     // The math below is derived from solving this formula, basically the
    118     // intersection point should stay on both the ray and the edge of (p1, p2).
    119     // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
    120 
    121     float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
    122     if (divisor == 0) return -1.0f; // error, invalid divisor
    123 
    124 #if DEBUG_SHADOW
    125     float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
    126     if (interpVal < 0 || interpVal > 1) {
    127         ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
    128     }
    129 #endif
    130 
    131     float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
    132             rayOrigin.x * (p2.y - p1.y)) / divisor;
    133 
    134     return distance; // may be negative in error cases
    135 }
    136 
    137 /**
    138  * Sort points by their X coordinates
    139  *
    140  * @param points the points as a Vector2 array.
    141  * @param pointsLength the number of vertices of the polygon.
    142  */
    143 void SpotShadow::xsort(Vector2* points, int pointsLength) {
    144     quicksortX(points, 0, pointsLength - 1);
    145 }
    146 
    147 /**
    148  * compute the convex hull of a collection of Points
    149  *
    150  * @param points the points as a Vector2 array.
    151  * @param pointsLength the number of vertices of the polygon.
    152  * @param retPoly pre allocated array of floats to put the vertices
    153  * @return the number of points in the polygon 0 if no intersection
    154  */
    155 int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
    156     xsort(points, pointsLength);
    157     int n = pointsLength;
    158     Vector2 lUpper[n];
    159     lUpper[0] = points[0];
    160     lUpper[1] = points[1];
    161 
    162     int lUpperSize = 2;
    163 
    164     for (int i = 2; i < n; i++) {
    165         lUpper[lUpperSize] = points[i];
    166         lUpperSize++;
    167 
    168         while (lUpperSize > 2 && !ccw(
    169                 lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
    170                 lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
    171                 lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
    172             // Remove the middle point of the three last
    173             lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
    174             lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
    175             lUpperSize--;
    176         }
    177     }
    178 
    179     Vector2 lLower[n];
    180     lLower[0] = points[n - 1];
    181     lLower[1] = points[n - 2];
    182 
    183     int lLowerSize = 2;
    184 
    185     for (int i = n - 3; i >= 0; i--) {
    186         lLower[lLowerSize] = points[i];
    187         lLowerSize++;
    188 
    189         while (lLowerSize > 2 && !ccw(
    190                 lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
    191                 lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
    192                 lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
    193             // Remove the middle point of the three last
    194             lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
    195             lLowerSize--;
    196         }
    197     }
    198 
    199     // output points in CW ordering
    200     const int total = lUpperSize + lLowerSize - 2;
    201     int outIndex = total - 1;
    202     for (int i = 0; i < lUpperSize; i++) {
    203         retPoly[outIndex] = lUpper[i];
    204         outIndex--;
    205     }
    206 
    207     for (int i = 1; i < lLowerSize - 1; i++) {
    208         retPoly[outIndex] = lLower[i];
    209         outIndex--;
    210     }
    211     // TODO: Add test harness which verify that all the points are inside the hull.
    212     return total;
    213 }
    214 
    215 /**
    216  * Test whether the 3 points form a counter clockwise turn.
    217  *
    218  * @return true if a right hand turn
    219  */
    220 bool SpotShadow::ccw(float ax, float ay, float bx, float by,
    221         float cx, float cy) {
    222     return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
    223 }
    224 
    225 /**
    226  * Sort points about a center point
    227  *
    228  * @param poly The in and out polyogon as a Vector2 array.
    229  * @param polyLength The number of vertices of the polygon.
    230  * @param center the center ctr[0] = x , ctr[1] = y to sort around.
    231  */
    232 void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
    233     quicksortCirc(poly, 0, polyLength - 1, center);
    234 }
    235 
    236 /**
    237  * Swap points pointed to by i and j
    238  */
    239 void SpotShadow::swap(Vector2* points, int i, int j) {
    240     Vector2 temp = points[i];
    241     points[i] = points[j];
    242     points[j] = temp;
    243 }
    244 
    245 /**
    246  * quick sort implementation about the center.
    247  */
    248 void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
    249         const Vector2& center) {
    250     int i = low, j = high;
    251     int p = low + (high - low) / 2;
    252     float pivot = angle(points[p], center);
    253     while (i <= j) {
    254         while (angle(points[i], center) > pivot) {
    255             i++;
    256         }
    257         while (angle(points[j], center) < pivot) {
    258             j--;
    259         }
    260 
    261         if (i <= j) {
    262             swap(points, i, j);
    263             i++;
    264             j--;
    265         }
    266     }
    267     if (low < j) quicksortCirc(points, low, j, center);
    268     if (i < high) quicksortCirc(points, i, high, center);
    269 }
    270 
    271 /**
    272  * Sort points by x axis
    273  *
    274  * @param points points to sort
    275  * @param low start index
    276  * @param high end index
    277  */
    278 void SpotShadow::quicksortX(Vector2* points, int low, int high) {
    279     int i = low, j = high;
    280     int p = low + (high - low) / 2;
    281     float pivot = points[p].x;
    282     while (i <= j) {
    283         while (points[i].x < pivot) {
    284             i++;
    285         }
    286         while (points[j].x > pivot) {
    287             j--;
    288         }
    289 
    290         if (i <= j) {
    291             swap(points, i, j);
    292             i++;
    293             j--;
    294         }
    295     }
    296     if (low < j) quicksortX(points, low, j);
    297     if (i < high) quicksortX(points, i, high);
    298 }
    299 
    300 /**
    301  * Test whether a point is inside the polygon.
    302  *
    303  * @param testPoint the point to test
    304  * @param poly the polygon
    305  * @return true if the testPoint is inside the poly.
    306  */
    307 bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
    308         const Vector2* poly, int len) {
    309     bool c = false;
    310     float testx = testPoint.x;
    311     float testy = testPoint.y;
    312     for (int i = 0, j = len - 1; i < len; j = i++) {
    313         float startX = poly[j].x;
    314         float startY = poly[j].y;
    315         float endX = poly[i].x;
    316         float endY = poly[i].y;
    317 
    318         if (((endY > testy) != (startY > testy))
    319             && (testx < (startX - endX) * (testy - endY)
    320              / (startY - endY) + endX)) {
    321             c = !c;
    322         }
    323     }
    324     return c;
    325 }
    326 
    327 /**
    328  * Make the polygon turn clockwise.
    329  *
    330  * @param polygon the polygon as a Vector2 array.
    331  * @param len the number of points of the polygon
    332  */
    333 void SpotShadow::makeClockwise(Vector2* polygon, int len) {
    334     if (polygon == 0  || len == 0) {
    335         return;
    336     }
    337     if (!ShadowTessellator::isClockwise(polygon, len)) {
    338         reverse(polygon, len);
    339     }
    340 }
    341 
    342 /**
    343  * Reverse the polygon
    344  *
    345  * @param polygon the polygon as a Vector2 array
    346  * @param len the number of points of the polygon
    347  */
    348 void SpotShadow::reverse(Vector2* polygon, int len) {
    349     int n = len / 2;
    350     for (int i = 0; i < n; i++) {
    351         Vector2 tmp = polygon[i];
    352         int k = len - 1 - i;
    353         polygon[i] = polygon[k];
    354         polygon[k] = tmp;
    355     }
    356 }
    357 
    358 /**
    359  * Compute a horizontal circular polygon about point (x , y , height) of radius
    360  * (size)
    361  *
    362  * @param points number of the points of the output polygon.
    363  * @param lightCenter the center of the light.
    364  * @param size the light size.
    365  * @param ret result polygon.
    366  */
    367 void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
    368         float size, Vector3* ret) {
    369     // TODO: Caching all the sin / cos values and store them in a look up table.
    370     for (int i = 0; i < points; i++) {
    371         float angle = 2 * i * M_PI / points;
    372         ret[i].x = cosf(angle) * size + lightCenter.x;
    373         ret[i].y = sinf(angle) * size + lightCenter.y;
    374         ret[i].z = lightCenter.z;
    375     }
    376 }
    377 
    378 /**
    379  * From light center, project one vertex to the z=0 surface and get the outline.
    380  *
    381  * @param outline The result which is the outline position.
    382  * @param lightCenter The center of light.
    383  * @param polyVertex The input polygon's vertex.
    384  *
    385  * @return float The ratio of (polygon.z / light.z - polygon.z)
    386  */
    387 float SpotShadow::projectCasterToOutline(Vector2& outline,
    388         const Vector3& lightCenter, const Vector3& polyVertex) {
    389     float lightToPolyZ = lightCenter.z - polyVertex.z;
    390     float ratioZ = CASTER_Z_CAP_RATIO;
    391     if (lightToPolyZ != 0) {
    392         // If any caster's vertex is almost above the light, we just keep it as 95%
    393         // of the height of the light.
    394         ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
    395     }
    396 
    397     outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
    398     outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
    399     return ratioZ;
    400 }
    401 
    402 /**
    403  * Generate the shadow spot light of shape lightPoly and a object poly
    404  *
    405  * @param isCasterOpaque whether the caster is opaque
    406  * @param lightCenter the center of the light
    407  * @param lightSize the radius of the light
    408  * @param poly x,y,z vertexes of a convex polygon that occludes the light source
    409  * @param polyLength number of vertexes of the occluding polygon
    410  * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
    411  *                            empty strip if error.
    412  */
    413 void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
    414         float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
    415         VertexBuffer& shadowTriangleStrip) {
    416     if (CC_UNLIKELY(lightCenter.z <= 0)) {
    417         ALOGW("Relative Light Z is not positive. No spot shadow!");
    418         return;
    419     }
    420     if (CC_UNLIKELY(polyLength < 3)) {
    421 #if DEBUG_SHADOW
    422         ALOGW("Invalid polygon length. No spot shadow!");
    423 #endif
    424         return;
    425     }
    426     OutlineData outlineData[polyLength];
    427     Vector2 outlineCentroid;
    428     // Calculate the projected outline for each polygon's vertices from the light center.
    429     //
    430     //                       O     Light
    431     //                      /
    432     //                    /
    433     //                   .     Polygon vertex
    434     //                 /
    435     //               /
    436     //              O     Outline vertices
    437     //
    438     // Ratio = (Poly - Outline) / (Light - Poly)
    439     // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
    440     // Outline's radius / Light's radius = Ratio
    441 
    442     // Compute the last outline vertex to make sure we can get the normal and outline
    443     // in one single loop.
    444     projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
    445             poly[polyLength - 1]);
    446 
    447     // Take the outline's polygon, calculate the normal for each outline edge.
    448     int currentNormalIndex = polyLength - 1;
    449     int nextNormalIndex = 0;
    450 
    451     for (int i = 0; i < polyLength; i++) {
    452         float ratioZ = projectCasterToOutline(outlineData[i].position,
    453                 lightCenter, poly[i]);
    454         outlineData[i].radius = ratioZ * lightSize;
    455 
    456         outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
    457                 outlineData[currentNormalIndex].position,
    458                 outlineData[nextNormalIndex].position);
    459         currentNormalIndex = (currentNormalIndex + 1) % polyLength;
    460         nextNormalIndex++;
    461     }
    462 
    463     projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
    464 
    465     int penumbraIndex = 0;
    466     // Then each polygon's vertex produce at minmal 2 penumbra vertices.
    467     // Since the size can be dynamic here, we keep track of the size and update
    468     // the real size at the end.
    469     int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
    470     Vector2 penumbra[allocatedPenumbraLength];
    471     int totalExtraCornerSliceNumber = 0;
    472 
    473     Vector2 umbra[polyLength];
    474 
    475     // When centroid is covered by all circles from outline, then we consider
    476     // the umbra is invalid, and we will tune down the shadow strength.
    477     bool hasValidUmbra = true;
    478     // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
    479     float minRaitoVI = FLT_MAX;
    480 
    481     for (int i = 0; i < polyLength; i++) {
    482         // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
    483         // There is no guarantee that the penumbra is still convex, but for
    484         // each outline vertex, it will connect to all its corresponding penumbra vertices as
    485         // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
    486         //
    487         // Penumbra Vertices marked as Pi
    488         // Outline Vertices marked as Vi
    489         //                                            (P3)
    490         //          (P2)                               |     ' (P4)
    491         //   (P1)'   |                                 |   '
    492         //         ' |                                 | '
    493         // (P0)  ------------------------------------------------(P5)
    494         //           | (V0)                            |(V1)
    495         //           |                                 |
    496         //           |                                 |
    497         //           |                                 |
    498         //           |                                 |
    499         //           |                                 |
    500         //           |                                 |
    501         //           |                                 |
    502         //           |                                 |
    503         //       (V3)-----------------------------------(V2)
    504         int preNormalIndex = (i + polyLength - 1) % polyLength;
    505 
    506         const Vector2& previousNormal = outlineData[preNormalIndex].normal;
    507         const Vector2& currentNormal = outlineData[i].normal;
    508 
    509         // Depending on how roundness we want for each corner, we can subdivide
    510         // further here and/or introduce some heuristic to decide how much the
    511         // subdivision should be.
    512         int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
    513                 previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
    514 
    515         int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
    516         totalExtraCornerSliceNumber += currentExtraSliceNumber;
    517 #if DEBUG_SHADOW
    518         ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
    519         ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
    520         ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
    521 #endif
    522         if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
    523             currentCornerSliceNumber = 1;
    524         }
    525         for (int k = 0; k <= currentCornerSliceNumber; k++) {
    526             Vector2 avgNormal =
    527                     (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
    528                     currentCornerSliceNumber;
    529             avgNormal.normalize();
    530             penumbra[penumbraIndex++] = outlineData[i].position +
    531                     avgNormal * outlineData[i].radius;
    532         }
    533 
    534 
    535         // Compute the umbra by the intersection from the outline's centroid!
    536         //
    537         //       (V) ------------------------------------
    538         //           |          '                       |
    539         //           |         '                        |
    540         //           |       ' (I)                      |
    541         //           |    '                             |
    542         //           | '             (C)                |
    543         //           |                                  |
    544         //           |                                  |
    545         //           |                                  |
    546         //           |                                  |
    547         //           ------------------------------------
    548         //
    549         // Connect a line b/t the outline vertex (V) and the centroid (C), it will
    550         // intersect with the outline vertex's circle at point (I).
    551         // Now, ratioVI = VI / VC, ratioIC = IC / VC
    552         // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
    553         //
    554         // When all of the outline circles cover the the outline centroid, (like I is
    555         // on the other side of C), there is no real umbra any more, so we just fake
    556         // a small area around the centroid as the umbra, and tune down the spot
    557         // shadow's umbra strength to simulate the effect the whole shadow will
    558         // become lighter in this case.
    559         // The ratio can be simulated by using the inverse of maximum of ratioVI for
    560         // all (V).
    561         float distOutline = (outlineData[i].position - outlineCentroid).length();
    562         if (CC_UNLIKELY(distOutline == 0)) {
    563             // If the outline has 0 area, then there is no spot shadow anyway.
    564             ALOGW("Outline has 0 area, no spot shadow!");
    565             return;
    566         }
    567 
    568         float ratioVI = outlineData[i].radius / distOutline;
    569         minRaitoVI = MathUtils::min(minRaitoVI, ratioVI);
    570         if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
    571             ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
    572         }
    573         // When we know we don't have valid umbra, don't bother to compute the
    574         // values below. But we can't skip the loop yet since we want to know the
    575         // maximum ratio.
    576         float ratioIC = 1 - ratioVI;
    577         umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
    578     }
    579 
    580     hasValidUmbra = (minRaitoVI <= 1.0);
    581     float shadowStrengthScale = 1.0;
    582     if (!hasValidUmbra) {
    583 #if DEBUG_SHADOW
    584         ALOGW("The object is too close to the light or too small, no real umbra!");
    585 #endif
    586         for (int i = 0; i < polyLength; i++) {
    587             umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
    588                     outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
    589         }
    590         shadowStrengthScale = 1.0 / minRaitoVI;
    591     }
    592 
    593     int penumbraLength = penumbraIndex;
    594     int umbraLength = polyLength;
    595 
    596 #if DEBUG_SHADOW
    597     ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
    598     dumpPolygon(poly, polyLength, "input poly");
    599     dumpPolygon(penumbra, penumbraLength, "penumbra");
    600     dumpPolygon(umbra, umbraLength, "umbra");
    601     ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
    602 #endif
    603 
    604     // The penumbra and umbra needs to be in convex shape to keep consistency
    605     // and quality.
    606     // Since we are still shooting rays to penumbra, it needs to be convex.
    607     // Umbra can be represented as a fan from the centroid, but visually umbra
    608     // looks nicer when it is convex.
    609     Vector2 finalUmbra[umbraLength];
    610     Vector2 finalPenumbra[penumbraLength];
    611     int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
    612     int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
    613 
    614     generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
    615             finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
    616             shadowTriangleStrip, outlineCentroid);
    617 
    618 }
    619 
    620 /**
    621  * This is only for experimental purpose.
    622  * After intersections are calculated, we could smooth the polygon if needed.
    623  * So far, we don't think it is more appealing yet.
    624  *
    625  * @param level The level of smoothness.
    626  * @param rays The total number of rays.
    627  * @param rayDist (In and Out) The distance for each ray.
    628  *
    629  */
    630 void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
    631     for (int k = 0; k < level; k++) {
    632         for (int i = 0; i < rays; i++) {
    633             float p1 = rayDist[(rays - 1 + i) % rays];
    634             float p2 = rayDist[i];
    635             float p3 = rayDist[(i + 1) % rays];
    636             rayDist[i] = (p1 + p2 * 2 + p3) / 4;
    637         }
    638     }
    639 }
    640 
    641 // Index pair is meant for storing the tessellation information for the penumbra
    642 // area. One index must come from exterior tangent of the circles, the other one
    643 // must come from the interior tangent of the circles.
    644 struct IndexPair {
    645     int outerIndex;
    646     int innerIndex;
    647 };
    648 
    649 // For one penumbra vertex, find the cloest umbra vertex and return its index.
    650 inline int getClosestUmbraIndex(const Vector2& pivot, const Vector2* polygon, int polygonLength) {
    651     float minLengthSquared = FLT_MAX;
    652     int resultIndex = -1;
    653     bool hasDecreased = false;
    654     // Starting with some negative offset, assuming both umbra and penumbra are starting
    655     // at the same angle, this can help to find the result faster.
    656     // Normally, loop 3 times, we can find the closest point.
    657     int offset = polygonLength - 2;
    658     for (int i = 0; i < polygonLength; i++) {
    659         int currentIndex = (i + offset) % polygonLength;
    660         float currentLengthSquared = (pivot - polygon[currentIndex]).lengthSquared();
    661         if (currentLengthSquared < minLengthSquared) {
    662             if (minLengthSquared != FLT_MAX) {
    663                 hasDecreased = true;
    664             }
    665             minLengthSquared = currentLengthSquared;
    666             resultIndex = currentIndex;
    667         } else if (currentLengthSquared > minLengthSquared && hasDecreased) {
    668             // Early break b/c we have found the closet one and now the length
    669             // is increasing again.
    670             break;
    671         }
    672     }
    673     if(resultIndex == -1) {
    674         ALOGE("resultIndex is -1, the polygon must be invalid!");
    675         resultIndex = 0;
    676     }
    677     return resultIndex;
    678 }
    679 
    680 // Allow some epsilon here since the later ray intersection did allow for some small
    681 // floating point error, when the intersection point is slightly outside the segment.
    682 inline bool sameDirections(bool isPositiveCross, float a, float b) {
    683     if (isPositiveCross) {
    684         return a >= -EPSILON && b >= -EPSILON;
    685     } else {
    686         return a <= EPSILON && b <= EPSILON;
    687     }
    688 }
    689 
    690 // Find the right polygon edge to shoot the ray at.
    691 inline int findPolyIndex(bool isPositiveCross, int startPolyIndex, const Vector2& umbraDir,
    692         const Vector2* polyToCentroid, int polyLength) {
    693     // Make sure we loop with a bound.
    694     for (int i = 0; i < polyLength; i++) {
    695         int currentIndex = (i + startPolyIndex) % polyLength;
    696         const Vector2& currentToCentroid = polyToCentroid[currentIndex];
    697         const Vector2& nextToCentroid = polyToCentroid[(currentIndex + 1) % polyLength];
    698 
    699         float currentCrossUmbra = currentToCentroid.cross(umbraDir);
    700         float umbraCrossNext = umbraDir.cross(nextToCentroid);
    701         if (sameDirections(isPositiveCross, currentCrossUmbra, umbraCrossNext)) {
    702 #if DEBUG_SHADOW
    703             ALOGD("findPolyIndex loop %d times , index %d", i, currentIndex );
    704 #endif
    705             return currentIndex;
    706         }
    707     }
    708     LOG_ALWAYS_FATAL("Can't find the right polygon's edge from startPolyIndex %d", startPolyIndex);
    709     return -1;
    710 }
    711 
    712 // Generate the index pair for penumbra / umbra vertices, and more penumbra vertices
    713 // if needed.
    714 inline void genNewPenumbraAndPairWithUmbra(const Vector2* penumbra, int penumbraLength,
    715         const Vector2* umbra, int umbraLength, Vector2* newPenumbra, int& newPenumbraIndex,
    716         IndexPair* verticesPair, int& verticesPairIndex) {
    717     // In order to keep everything in just one loop, we need to pre-compute the
    718     // closest umbra vertex for the last penumbra vertex.
    719     int previousClosestUmbraIndex = getClosestUmbraIndex(penumbra[penumbraLength - 1],
    720             umbra, umbraLength);
    721     for (int i = 0; i < penumbraLength; i++) {
    722         const Vector2& currentPenumbraVertex = penumbra[i];
    723         // For current penumbra vertex, starting from previousClosestUmbraIndex,
    724         // then check the next one until the distance increase.
    725         // The last one before the increase is the umbra vertex we need to pair with.
    726         float currentLengthSquared =
    727                 (currentPenumbraVertex - umbra[previousClosestUmbraIndex]).lengthSquared();
    728         int currentClosestUmbraIndex = previousClosestUmbraIndex;
    729         int indexDelta = 0;
    730         for (int j = 1; j < umbraLength; j++) {
    731             int newUmbraIndex = (previousClosestUmbraIndex + j) % umbraLength;
    732             float newLengthSquared = (currentPenumbraVertex - umbra[newUmbraIndex]).lengthSquared();
    733             if (newLengthSquared > currentLengthSquared) {
    734                 // currentClosestUmbraIndex is the umbra vertex's index which has
    735                 // currently found smallest distance, so we can simply break here.
    736                 break;
    737             } else {
    738                 currentLengthSquared = newLengthSquared;
    739                 indexDelta++;
    740                 currentClosestUmbraIndex = newUmbraIndex;
    741             }
    742         }
    743 
    744         if (indexDelta > 1) {
    745             // For those umbra don't have  penumbra, generate new penumbra vertices by interpolation.
    746             //
    747             // Assuming Pi for penumbra vertices, and Ui for umbra vertices.
    748             // In the case like below P1 paired with U1 and P2 paired with  U5.
    749             // U2 to U4 are unpaired umbra vertices.
    750             //
    751             // P1                                        P2
    752             // |                                          |
    753             // U1     U2                   U3     U4     U5
    754             //
    755             // We will need to generate 3 more penumbra vertices P1.1, P1.2, P1.3
    756             // to pair with U2 to U4.
    757             //
    758             // P1     P1.1                P1.2   P1.3    P2
    759             // |       |                   |      |      |
    760             // U1     U2                   U3     U4     U5
    761             //
    762             // That distance ratio b/t Ui to U1 and Ui to U5 decides its paired penumbra
    763             // vertex's location.
    764             int newPenumbraNumber = indexDelta - 1;
    765 
    766             float accumulatedDeltaLength[newPenumbraNumber];
    767             float totalDeltaLength = 0;
    768 
    769             // To save time, cache the previous umbra vertex info outside the loop
    770             // and update each loop.
    771             Vector2 previousClosestUmbra = umbra[previousClosestUmbraIndex];
    772             Vector2 skippedUmbra;
    773             // Use umbra data to precompute the length b/t unpaired umbra vertices,
    774             // and its ratio against the total length.
    775             for (int k = 0; k < indexDelta; k++) {
    776                 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
    777                 skippedUmbra = umbra[skippedUmbraIndex];
    778                 float currentDeltaLength = (skippedUmbra - previousClosestUmbra).length();
    779 
    780                 totalDeltaLength += currentDeltaLength;
    781                 accumulatedDeltaLength[k] = totalDeltaLength;
    782 
    783                 previousClosestUmbra = skippedUmbra;
    784             }
    785 
    786             const Vector2& previousPenumbra = penumbra[(i + penumbraLength - 1) % penumbraLength];
    787             // Then for each unpaired umbra vertex, create a new penumbra by the ratio,
    788             // and pair them togehter.
    789             for (int k = 0; k < newPenumbraNumber; k++) {
    790                 float weightForCurrentPenumbra = 1.0f;
    791                 if (totalDeltaLength != 0.0f) {
    792                     weightForCurrentPenumbra = accumulatedDeltaLength[k] / totalDeltaLength;
    793                 }
    794                 float weightForPreviousPenumbra = 1.0f - weightForCurrentPenumbra;
    795 
    796                 Vector2 interpolatedPenumbra = currentPenumbraVertex * weightForCurrentPenumbra +
    797                     previousPenumbra * weightForPreviousPenumbra;
    798 
    799                 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
    800                 verticesPair[verticesPairIndex++] = {newPenumbraIndex, skippedUmbraIndex};
    801                 newPenumbra[newPenumbraIndex++] = interpolatedPenumbra;
    802             }
    803         }
    804         verticesPair[verticesPairIndex++] = {newPenumbraIndex, currentClosestUmbraIndex};
    805         newPenumbra[newPenumbraIndex++] = currentPenumbraVertex;
    806 
    807         previousClosestUmbraIndex = currentClosestUmbraIndex;
    808     }
    809 }
    810 
    811 // Precompute all the polygon's vector, return true if the reference cross product is positive.
    812 inline bool genPolyToCentroid(const Vector2* poly2d, int polyLength,
    813         const Vector2& centroid, Vector2* polyToCentroid) {
    814     for (int j = 0; j < polyLength; j++) {
    815         polyToCentroid[j] = poly2d[j] - centroid;
    816         // Normalize these vectors such that we can use epsilon comparison after
    817         // computing their cross products with another normalized vector.
    818         polyToCentroid[j].normalize();
    819     }
    820     float refCrossProduct = 0;
    821     for (int j = 0; j < polyLength; j++) {
    822         refCrossProduct = polyToCentroid[j].cross(polyToCentroid[(j + 1) % polyLength]);
    823         if (refCrossProduct != 0) {
    824             break;
    825         }
    826     }
    827 
    828     return refCrossProduct > 0;
    829 }
    830 
    831 // For one umbra vertex, shoot an ray from centroid to it.
    832 // If the ray hit the polygon first, then return the intersection point as the
    833 // closer vertex.
    834 inline Vector2 getCloserVertex(const Vector2& umbraVertex, const Vector2& centroid,
    835         const Vector2* poly2d, int polyLength, const Vector2* polyToCentroid,
    836         bool isPositiveCross, int& previousPolyIndex) {
    837     Vector2 umbraToCentroid = umbraVertex - centroid;
    838     float distanceToUmbra = umbraToCentroid.length();
    839     umbraToCentroid = umbraToCentroid / distanceToUmbra;
    840 
    841     // previousPolyIndex is updated for each item such that we can minimize the
    842     // looping inside findPolyIndex();
    843     previousPolyIndex = findPolyIndex(isPositiveCross, previousPolyIndex,
    844             umbraToCentroid, polyToCentroid, polyLength);
    845 
    846     float dx = umbraToCentroid.x;
    847     float dy = umbraToCentroid.y;
    848     float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
    849             poly2d[previousPolyIndex], poly2d[(previousPolyIndex + 1) % polyLength]);
    850     if (distanceToIntersectPoly < 0) {
    851         distanceToIntersectPoly = 0;
    852     }
    853 
    854     // Pick the closer one as the occluded area vertex.
    855     Vector2 closerVertex;
    856     if (distanceToIntersectPoly < distanceToUmbra) {
    857         closerVertex.x = centroid.x + dx * distanceToIntersectPoly;
    858         closerVertex.y = centroid.y + dy * distanceToIntersectPoly;
    859     } else {
    860         closerVertex = umbraVertex;
    861     }
    862 
    863     return closerVertex;
    864 }
    865 
    866 /**
    867  * Generate a triangle strip given two convex polygon
    868 **/
    869 void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
    870         Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
    871         const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
    872         const Vector2& centroid) {
    873     bool hasOccludedUmbraArea = false;
    874     Vector2 poly2d[polyLength];
    875 
    876     if (isCasterOpaque) {
    877         for (int i = 0; i < polyLength; i++) {
    878             poly2d[i].x = poly[i].x;
    879             poly2d[i].y = poly[i].y;
    880         }
    881         // Make sure the centroid is inside the umbra, otherwise, fall back to the
    882         // approach as if there is no occluded umbra area.
    883         if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
    884             hasOccludedUmbraArea = true;
    885         }
    886     }
    887 
    888     // For each penumbra vertex, find its corresponding closest umbra vertex index.
    889     //
    890     // Penumbra Vertices marked as Pi
    891     // Umbra Vertices marked as Ui
    892     //                                            (P3)
    893     //          (P2)                               |     ' (P4)
    894     //   (P1)'   |                                 |   '
    895     //         ' |                                 | '
    896     // (P0)  ------------------------------------------------(P5)
    897     //           | (U0)                            |(U1)
    898     //           |                                 |
    899     //           |                                 |(U2)     (P5.1)
    900     //           |                                 |
    901     //           |                                 |
    902     //           |                                 |
    903     //           |                                 |
    904     //           |                                 |
    905     //           |                                 |
    906     //       (U4)-----------------------------------(U3)      (P6)
    907     //
    908     // At least, like P0, P1, P2, they will find the matching umbra as U0.
    909     // If we jump over some umbra vertex without matching penumbra vertex, then
    910     // we will generate some new penumbra vertex by interpolation. Like P6 is
    911     // matching U3, but U2 is not matched with any penumbra vertex.
    912     // So interpolate P5.1 out and match U2.
    913     // In this way, every umbra vertex will have a matching penumbra vertex.
    914     //
    915     // The total pair number can be as high as umbraLength + penumbraLength.
    916     const int maxNewPenumbraLength = umbraLength + penumbraLength;
    917     IndexPair verticesPair[maxNewPenumbraLength];
    918     int verticesPairIndex = 0;
    919 
    920     // Cache all the existing penumbra vertices and newly interpolated vertices into a
    921     // a new array.
    922     Vector2 newPenumbra[maxNewPenumbraLength];
    923     int newPenumbraIndex = 0;
    924 
    925     // For each penumbra vertex, find its closet umbra vertex by comparing the
    926     // neighbor umbra vertices.
    927     genNewPenumbraAndPairWithUmbra(penumbra, penumbraLength, umbra, umbraLength, newPenumbra,
    928             newPenumbraIndex, verticesPair, verticesPairIndex);
    929     ShadowTessellator::checkOverflow(verticesPairIndex, maxNewPenumbraLength, "Spot pair");
    930     ShadowTessellator::checkOverflow(newPenumbraIndex, maxNewPenumbraLength, "Spot new penumbra");
    931 #if DEBUG_SHADOW
    932     for (int i = 0; i < umbraLength; i++) {
    933         ALOGD("umbra i %d,  [%f, %f]", i, umbra[i].x, umbra[i].y);
    934     }
    935     for (int i = 0; i < newPenumbraIndex; i++) {
    936         ALOGD("new penumbra i %d,  [%f, %f]", i, newPenumbra[i].x, newPenumbra[i].y);
    937     }
    938     for (int i = 0; i < verticesPairIndex; i++) {
    939         ALOGD("index i %d,  [%d, %d]", i, verticesPair[i].outerIndex, verticesPair[i].innerIndex);
    940     }
    941 #endif
    942 
    943     // For the size of vertex buffer, we need 3 rings, one has newPenumbraSize,
    944     // one has umbraLength, the last one has at most umbraLength.
    945     //
    946     // For the size of index buffer, the umbra area needs (2 * umbraLength + 2).
    947     // The penumbra one can vary a bit, but it is bounded by (2 * verticesPairIndex + 2).
    948     // And 2 more for jumping between penumbra to umbra.
    949     const int newPenumbraLength = newPenumbraIndex;
    950     const int totalVertexCount = newPenumbraLength + umbraLength * 2;
    951     const int totalIndexCount = 2 * umbraLength + 2 * verticesPairIndex + 6;
    952     AlphaVertex* shadowVertices =
    953             shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
    954     uint16_t* indexBuffer =
    955             shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
    956     int vertexBufferIndex = 0;
    957     int indexBufferIndex = 0;
    958 
    959     // Fill the IB and VB for the penumbra area.
    960     for (int i = 0; i < newPenumbraLength; i++) {
    961         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], newPenumbra[i].x,
    962                 newPenumbra[i].y, 0.0f);
    963     }
    964     for (int i = 0; i < umbraLength; i++) {
    965         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], umbra[i].x, umbra[i].y,
    966                 M_PI);
    967     }
    968 
    969     for (int i = 0; i < verticesPairIndex; i++) {
    970         indexBuffer[indexBufferIndex++] = verticesPair[i].outerIndex;
    971         // All umbra index need to be offseted by newPenumbraSize.
    972         indexBuffer[indexBufferIndex++] = verticesPair[i].innerIndex + newPenumbraLength;
    973     }
    974     indexBuffer[indexBufferIndex++] = verticesPair[0].outerIndex;
    975     indexBuffer[indexBufferIndex++] = verticesPair[0].innerIndex + newPenumbraLength;
    976 
    977     // Now fill the IB and VB for the umbra area.
    978     // First duplicated the index from previous strip and the first one for the
    979     // degenerated triangles.
    980     indexBuffer[indexBufferIndex] = indexBuffer[indexBufferIndex - 1];
    981     indexBufferIndex++;
    982     indexBuffer[indexBufferIndex++] = newPenumbraLength + 0;
    983     // Save the first VB index for umbra area in order to close the loop.
    984     int savedStartIndex = vertexBufferIndex;
    985 
    986     if (hasOccludedUmbraArea) {
    987         // Precompute all the polygon's vector, and the reference cross product,
    988         // in order to find the right polygon edge for the ray to intersect.
    989         Vector2 polyToCentroid[polyLength];
    990         bool isPositiveCross = genPolyToCentroid(poly2d, polyLength, centroid, polyToCentroid);
    991 
    992         // Because both the umbra and polygon are going in the same direction,
    993         // we can save the previous polygon index to make sure we have less polygon
    994         // vertex to compute for each ray.
    995         int previousPolyIndex = 0;
    996         for (int i = 0; i < umbraLength; i++) {
    997             // Shoot a ray from centroid to each umbra vertices and pick the one with
    998             // shorter distance to the centroid, b/t the umbra vertex or the intersection point.
    999             Vector2 closerVertex = getCloserVertex(umbra[i], centroid, poly2d, polyLength,
   1000                     polyToCentroid, isPositiveCross, previousPolyIndex);
   1001 
   1002             // We already stored the umbra vertices, just need to add the occlued umbra's ones.
   1003             indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
   1004             indexBuffer[indexBufferIndex++] = vertexBufferIndex;
   1005             AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
   1006                     closerVertex.x, closerVertex.y, M_PI);
   1007         }
   1008     } else {
   1009         // If there is no occluded umbra at all, then draw the triangle fan
   1010         // starting from the centroid to all umbra vertices.
   1011         int lastCentroidIndex = vertexBufferIndex;
   1012         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
   1013                 centroid.y, M_PI);
   1014         for (int i = 0; i < umbraLength; i++) {
   1015             indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
   1016             indexBuffer[indexBufferIndex++] = lastCentroidIndex;
   1017         }
   1018     }
   1019     // Closing the umbra area triangle's loop here.
   1020     indexBuffer[indexBufferIndex++] = newPenumbraLength;
   1021     indexBuffer[indexBufferIndex++] = savedStartIndex;
   1022 
   1023     // At the end, update the real index and vertex buffer size.
   1024     shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
   1025     shadowTriangleStrip.updateIndexCount(indexBufferIndex);
   1026     ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
   1027     ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
   1028 
   1029     shadowTriangleStrip.setMode(VertexBuffer::kIndices);
   1030     shadowTriangleStrip.computeBounds<AlphaVertex>();
   1031 }
   1032 
   1033 #if DEBUG_SHADOW
   1034 
   1035 #define TEST_POINT_NUMBER 128
   1036 /**
   1037  * Calculate the bounds for generating random test points.
   1038  */
   1039 void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
   1040         Vector2& upperBound) {
   1041     if (inVector.x < lowerBound.x) {
   1042         lowerBound.x = inVector.x;
   1043     }
   1044 
   1045     if (inVector.y < lowerBound.y) {
   1046         lowerBound.y = inVector.y;
   1047     }
   1048 
   1049     if (inVector.x > upperBound.x) {
   1050         upperBound.x = inVector.x;
   1051     }
   1052 
   1053     if (inVector.y > upperBound.y) {
   1054         upperBound.y = inVector.y;
   1055     }
   1056 }
   1057 
   1058 /**
   1059  * For debug purpose, when things go wrong, dump the whole polygon data.
   1060  */
   1061 void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
   1062     for (int i = 0; i < polyLength; i++) {
   1063         ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
   1064     }
   1065 }
   1066 
   1067 /**
   1068  * For debug purpose, when things go wrong, dump the whole polygon data.
   1069  */
   1070 void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
   1071     for (int i = 0; i < polyLength; i++) {
   1072         ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
   1073     }
   1074 }
   1075 
   1076 /**
   1077  * Test whether the polygon is convex.
   1078  */
   1079 bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
   1080         const char* name) {
   1081     bool isConvex = true;
   1082     for (int i = 0; i < polygonLength; i++) {
   1083         Vector2 start = polygon[i];
   1084         Vector2 middle = polygon[(i + 1) % polygonLength];
   1085         Vector2 end = polygon[(i + 2) % polygonLength];
   1086 
   1087         float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) -
   1088                 (float(middle.y) - start.y) * (float(end.x) - start.x);
   1089         bool isCCWOrCoLinear = (delta >= EPSILON);
   1090 
   1091         if (isCCWOrCoLinear) {
   1092             ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
   1093                     "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
   1094                     name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
   1095             isConvex = false;
   1096             break;
   1097         }
   1098     }
   1099     return isConvex;
   1100 }
   1101 
   1102 /**
   1103  * Test whether or not the polygon (intersection) is within the 2 input polygons.
   1104  * Using Marte Carlo method, we generate a random point, and if it is inside the
   1105  * intersection, then it must be inside both source polygons.
   1106  */
   1107 void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
   1108         const Vector2* poly2, int poly2Length,
   1109         const Vector2* intersection, int intersectionLength) {
   1110     // Find the min and max of x and y.
   1111     Vector2 lowerBound = {FLT_MAX, FLT_MAX};
   1112     Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
   1113     for (int i = 0; i < poly1Length; i++) {
   1114         updateBound(poly1[i], lowerBound, upperBound);
   1115     }
   1116     for (int i = 0; i < poly2Length; i++) {
   1117         updateBound(poly2[i], lowerBound, upperBound);
   1118     }
   1119 
   1120     bool dumpPoly = false;
   1121     for (int k = 0; k < TEST_POINT_NUMBER; k++) {
   1122         // Generate a random point between minX, minY and maxX, maxY.
   1123         float randomX = rand() / float(RAND_MAX);
   1124         float randomY = rand() / float(RAND_MAX);
   1125 
   1126         Vector2 testPoint;
   1127         testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
   1128         testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
   1129 
   1130         // If the random point is in both poly 1 and 2, then it must be intersection.
   1131         if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
   1132             if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
   1133                 dumpPoly = true;
   1134                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
   1135                         " not in the poly1",
   1136                         testPoint.x, testPoint.y);
   1137             }
   1138 
   1139             if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
   1140                 dumpPoly = true;
   1141                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
   1142                         " not in the poly2",
   1143                         testPoint.x, testPoint.y);
   1144             }
   1145         }
   1146     }
   1147 
   1148     if (dumpPoly) {
   1149         dumpPolygon(intersection, intersectionLength, "intersection");
   1150         for (int i = 1; i < intersectionLength; i++) {
   1151             Vector2 delta = intersection[i] - intersection[i - 1];
   1152             ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
   1153         }
   1154 
   1155         dumpPolygon(poly1, poly1Length, "poly 1");
   1156         dumpPolygon(poly2, poly2Length, "poly 2");
   1157     }
   1158 }
   1159 #endif
   1160 
   1161 }; // namespace uirenderer
   1162 }; // namespace android
   1163