1 // Copyright (c) 2011 The LevelDB Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. See the AUTHORS file for names of contributors. 4 5 #include "db/version_set.h" 6 7 #include <algorithm> 8 #include <stdio.h> 9 #include "db/filename.h" 10 #include "db/log_reader.h" 11 #include "db/log_writer.h" 12 #include "db/memtable.h" 13 #include "db/table_cache.h" 14 #include "leveldb/env.h" 15 #include "leveldb/table_builder.h" 16 #include "table/merger.h" 17 #include "table/two_level_iterator.h" 18 #include "util/coding.h" 19 #include "util/logging.h" 20 21 namespace leveldb { 22 23 static const int kTargetFileSize = 2 * 1048576; 24 25 // Maximum bytes of overlaps in grandparent (i.e., level+2) before we 26 // stop building a single file in a level->level+1 compaction. 27 static const int64_t kMaxGrandParentOverlapBytes = 10 * kTargetFileSize; 28 29 // Maximum number of bytes in all compacted files. We avoid expanding 30 // the lower level file set of a compaction if it would make the 31 // total compaction cover more than this many bytes. 32 static const int64_t kExpandedCompactionByteSizeLimit = 25 * kTargetFileSize; 33 34 static double MaxBytesForLevel(int level) { 35 // Note: the result for level zero is not really used since we set 36 // the level-0 compaction threshold based on number of files. 37 double result = 10 * 1048576.0; // Result for both level-0 and level-1 38 while (level > 1) { 39 result *= 10; 40 level--; 41 } 42 return result; 43 } 44 45 static uint64_t MaxFileSizeForLevel(int level) { 46 return kTargetFileSize; // We could vary per level to reduce number of files? 47 } 48 49 static int64_t TotalFileSize(const std::vector<FileMetaData*>& files) { 50 int64_t sum = 0; 51 for (size_t i = 0; i < files.size(); i++) { 52 sum += files[i]->file_size; 53 } 54 return sum; 55 } 56 57 Version::~Version() { 58 assert(refs_ == 0); 59 60 // Remove from linked list 61 prev_->next_ = next_; 62 next_->prev_ = prev_; 63 64 // Drop references to files 65 for (int level = 0; level < config::kNumLevels; level++) { 66 for (size_t i = 0; i < files_[level].size(); i++) { 67 FileMetaData* f = files_[level][i]; 68 assert(f->refs > 0); 69 f->refs--; 70 if (f->refs <= 0) { 71 delete f; 72 } 73 } 74 } 75 } 76 77 int FindFile(const InternalKeyComparator& icmp, 78 const std::vector<FileMetaData*>& files, 79 const Slice& key) { 80 uint32_t left = 0; 81 uint32_t right = files.size(); 82 while (left < right) { 83 uint32_t mid = (left + right) / 2; 84 const FileMetaData* f = files[mid]; 85 if (icmp.InternalKeyComparator::Compare(f->largest.Encode(), key) < 0) { 86 // Key at "mid.largest" is < "target". Therefore all 87 // files at or before "mid" are uninteresting. 88 left = mid + 1; 89 } else { 90 // Key at "mid.largest" is >= "target". Therefore all files 91 // after "mid" are uninteresting. 92 right = mid; 93 } 94 } 95 return right; 96 } 97 98 static bool AfterFile(const Comparator* ucmp, 99 const Slice* user_key, const FileMetaData* f) { 100 // NULL user_key occurs before all keys and is therefore never after *f 101 return (user_key != NULL && 102 ucmp->Compare(*user_key, f->largest.user_key()) > 0); 103 } 104 105 static bool BeforeFile(const Comparator* ucmp, 106 const Slice* user_key, const FileMetaData* f) { 107 // NULL user_key occurs after all keys and is therefore never before *f 108 return (user_key != NULL && 109 ucmp->Compare(*user_key, f->smallest.user_key()) < 0); 110 } 111 112 bool SomeFileOverlapsRange( 113 const InternalKeyComparator& icmp, 114 bool disjoint_sorted_files, 115 const std::vector<FileMetaData*>& files, 116 const Slice* smallest_user_key, 117 const Slice* largest_user_key) { 118 const Comparator* ucmp = icmp.user_comparator(); 119 if (!disjoint_sorted_files) { 120 // Need to check against all files 121 for (size_t i = 0; i < files.size(); i++) { 122 const FileMetaData* f = files[i]; 123 if (AfterFile(ucmp, smallest_user_key, f) || 124 BeforeFile(ucmp, largest_user_key, f)) { 125 // No overlap 126 } else { 127 return true; // Overlap 128 } 129 } 130 return false; 131 } 132 133 // Binary search over file list 134 uint32_t index = 0; 135 if (smallest_user_key != NULL) { 136 // Find the earliest possible internal key for smallest_user_key 137 InternalKey small(*smallest_user_key, kMaxSequenceNumber,kValueTypeForSeek); 138 index = FindFile(icmp, files, small.Encode()); 139 } 140 141 if (index >= files.size()) { 142 // beginning of range is after all files, so no overlap. 143 return false; 144 } 145 146 return !BeforeFile(ucmp, largest_user_key, files[index]); 147 } 148 149 // An internal iterator. For a given version/level pair, yields 150 // information about the files in the level. For a given entry, key() 151 // is the largest key that occurs in the file, and value() is an 152 // 16-byte value containing the file number and file size, both 153 // encoded using EncodeFixed64. 154 class Version::LevelFileNumIterator : public Iterator { 155 public: 156 LevelFileNumIterator(const InternalKeyComparator& icmp, 157 const std::vector<FileMetaData*>* flist) 158 : icmp_(icmp), 159 flist_(flist), 160 index_(flist->size()) { // Marks as invalid 161 } 162 virtual bool Valid() const { 163 return index_ < flist_->size(); 164 } 165 virtual void Seek(const Slice& target) { 166 index_ = FindFile(icmp_, *flist_, target); 167 } 168 virtual void SeekToFirst() { index_ = 0; } 169 virtual void SeekToLast() { 170 index_ = flist_->empty() ? 0 : flist_->size() - 1; 171 } 172 virtual void Next() { 173 assert(Valid()); 174 index_++; 175 } 176 virtual void Prev() { 177 assert(Valid()); 178 if (index_ == 0) { 179 index_ = flist_->size(); // Marks as invalid 180 } else { 181 index_--; 182 } 183 } 184 Slice key() const { 185 assert(Valid()); 186 return (*flist_)[index_]->largest.Encode(); 187 } 188 Slice value() const { 189 assert(Valid()); 190 EncodeFixed64(value_buf_, (*flist_)[index_]->number); 191 EncodeFixed64(value_buf_+8, (*flist_)[index_]->file_size); 192 return Slice(value_buf_, sizeof(value_buf_)); 193 } 194 virtual Status status() const { return Status::OK(); } 195 private: 196 const InternalKeyComparator icmp_; 197 const std::vector<FileMetaData*>* const flist_; 198 uint32_t index_; 199 200 // Backing store for value(). Holds the file number and size. 201 mutable char value_buf_[16]; 202 }; 203 204 static Iterator* GetFileIterator(void* arg, 205 const ReadOptions& options, 206 const Slice& file_value) { 207 TableCache* cache = reinterpret_cast<TableCache*>(arg); 208 if (file_value.size() != 16) { 209 return NewErrorIterator( 210 Status::Corruption("FileReader invoked with unexpected value")); 211 } else { 212 return cache->NewIterator(options, 213 DecodeFixed64(file_value.data()), 214 DecodeFixed64(file_value.data() + 8)); 215 } 216 } 217 218 Iterator* Version::NewConcatenatingIterator(const ReadOptions& options, 219 int level) const { 220 return NewTwoLevelIterator( 221 new LevelFileNumIterator(vset_->icmp_, &files_[level]), 222 &GetFileIterator, vset_->table_cache_, options); 223 } 224 225 void Version::AddIterators(const ReadOptions& options, 226 std::vector<Iterator*>* iters) { 227 // Merge all level zero files together since they may overlap 228 for (size_t i = 0; i < files_[0].size(); i++) { 229 iters->push_back( 230 vset_->table_cache_->NewIterator( 231 options, files_[0][i]->number, files_[0][i]->file_size)); 232 } 233 234 // For levels > 0, we can use a concatenating iterator that sequentially 235 // walks through the non-overlapping files in the level, opening them 236 // lazily. 237 for (int level = 1; level < config::kNumLevels; level++) { 238 if (!files_[level].empty()) { 239 iters->push_back(NewConcatenatingIterator(options, level)); 240 } 241 } 242 } 243 244 // Callback from TableCache::Get() 245 namespace { 246 enum SaverState { 247 kNotFound, 248 kFound, 249 kDeleted, 250 kCorrupt, 251 }; 252 struct Saver { 253 SaverState state; 254 const Comparator* ucmp; 255 Slice user_key; 256 std::string* value; 257 }; 258 } 259 static void SaveValue(void* arg, const Slice& ikey, const Slice& v) { 260 Saver* s = reinterpret_cast<Saver*>(arg); 261 ParsedInternalKey parsed_key; 262 if (!ParseInternalKey(ikey, &parsed_key)) { 263 s->state = kCorrupt; 264 } else { 265 if (s->ucmp->Compare(parsed_key.user_key, s->user_key) == 0) { 266 s->state = (parsed_key.type == kTypeValue) ? kFound : kDeleted; 267 if (s->state == kFound) { 268 s->value->assign(v.data(), v.size()); 269 } 270 } 271 } 272 } 273 274 static bool NewestFirst(FileMetaData* a, FileMetaData* b) { 275 return a->number > b->number; 276 } 277 278 void Version::ForEachOverlapping(Slice user_key, Slice internal_key, 279 void* arg, 280 bool (*func)(void*, int, FileMetaData*)) { 281 // TODO(sanjay): Change Version::Get() to use this function. 282 const Comparator* ucmp = vset_->icmp_.user_comparator(); 283 284 // Search level-0 in order from newest to oldest. 285 std::vector<FileMetaData*> tmp; 286 tmp.reserve(files_[0].size()); 287 for (uint32_t i = 0; i < files_[0].size(); i++) { 288 FileMetaData* f = files_[0][i]; 289 if (ucmp->Compare(user_key, f->smallest.user_key()) >= 0 && 290 ucmp->Compare(user_key, f->largest.user_key()) <= 0) { 291 tmp.push_back(f); 292 } 293 } 294 if (!tmp.empty()) { 295 std::sort(tmp.begin(), tmp.end(), NewestFirst); 296 for (uint32_t i = 0; i < tmp.size(); i++) { 297 if (!(*func)(arg, 0, tmp[i])) { 298 return; 299 } 300 } 301 } 302 303 // Search other levels. 304 for (int level = 1; level < config::kNumLevels; level++) { 305 size_t num_files = files_[level].size(); 306 if (num_files == 0) continue; 307 308 // Binary search to find earliest index whose largest key >= internal_key. 309 uint32_t index = FindFile(vset_->icmp_, files_[level], internal_key); 310 if (index < num_files) { 311 FileMetaData* f = files_[level][index]; 312 if (ucmp->Compare(user_key, f->smallest.user_key()) < 0) { 313 // All of "f" is past any data for user_key 314 } else { 315 if (!(*func)(arg, level, f)) { 316 return; 317 } 318 } 319 } 320 } 321 } 322 323 Status Version::Get(const ReadOptions& options, 324 const LookupKey& k, 325 std::string* value, 326 GetStats* stats) { 327 Slice ikey = k.internal_key(); 328 Slice user_key = k.user_key(); 329 const Comparator* ucmp = vset_->icmp_.user_comparator(); 330 Status s; 331 332 stats->seek_file = NULL; 333 stats->seek_file_level = -1; 334 FileMetaData* last_file_read = NULL; 335 int last_file_read_level = -1; 336 337 // We can search level-by-level since entries never hop across 338 // levels. Therefore we are guaranteed that if we find data 339 // in an smaller level, later levels are irrelevant. 340 std::vector<FileMetaData*> tmp; 341 FileMetaData* tmp2; 342 for (int level = 0; level < config::kNumLevels; level++) { 343 size_t num_files = files_[level].size(); 344 if (num_files == 0) continue; 345 346 // Get the list of files to search in this level 347 FileMetaData* const* files = &files_[level][0]; 348 if (level == 0) { 349 // Level-0 files may overlap each other. Find all files that 350 // overlap user_key and process them in order from newest to oldest. 351 tmp.reserve(num_files); 352 for (uint32_t i = 0; i < num_files; i++) { 353 FileMetaData* f = files[i]; 354 if (ucmp->Compare(user_key, f->smallest.user_key()) >= 0 && 355 ucmp->Compare(user_key, f->largest.user_key()) <= 0) { 356 tmp.push_back(f); 357 } 358 } 359 if (tmp.empty()) continue; 360 361 std::sort(tmp.begin(), tmp.end(), NewestFirst); 362 files = &tmp[0]; 363 num_files = tmp.size(); 364 } else { 365 // Binary search to find earliest index whose largest key >= ikey. 366 uint32_t index = FindFile(vset_->icmp_, files_[level], ikey); 367 if (index >= num_files) { 368 files = NULL; 369 num_files = 0; 370 } else { 371 tmp2 = files[index]; 372 if (ucmp->Compare(user_key, tmp2->smallest.user_key()) < 0) { 373 // All of "tmp2" is past any data for user_key 374 files = NULL; 375 num_files = 0; 376 } else { 377 files = &tmp2; 378 num_files = 1; 379 } 380 } 381 } 382 383 for (uint32_t i = 0; i < num_files; ++i) { 384 if (last_file_read != NULL && stats->seek_file == NULL) { 385 // We have had more than one seek for this read. Charge the 1st file. 386 stats->seek_file = last_file_read; 387 stats->seek_file_level = last_file_read_level; 388 } 389 390 FileMetaData* f = files[i]; 391 last_file_read = f; 392 last_file_read_level = level; 393 394 Saver saver; 395 saver.state = kNotFound; 396 saver.ucmp = ucmp; 397 saver.user_key = user_key; 398 saver.value = value; 399 s = vset_->table_cache_->Get(options, f->number, f->file_size, 400 ikey, &saver, SaveValue); 401 if (!s.ok()) { 402 return s; 403 } 404 switch (saver.state) { 405 case kNotFound: 406 break; // Keep searching in other files 407 case kFound: 408 return s; 409 case kDeleted: 410 s = Status::NotFound(Slice()); // Use empty error message for speed 411 return s; 412 case kCorrupt: 413 s = Status::Corruption("corrupted key for ", user_key); 414 return s; 415 } 416 } 417 } 418 419 return Status::NotFound(Slice()); // Use an empty error message for speed 420 } 421 422 bool Version::UpdateStats(const GetStats& stats) { 423 FileMetaData* f = stats.seek_file; 424 if (f != NULL) { 425 f->allowed_seeks--; 426 if (f->allowed_seeks <= 0 && file_to_compact_ == NULL) { 427 file_to_compact_ = f; 428 file_to_compact_level_ = stats.seek_file_level; 429 return true; 430 } 431 } 432 return false; 433 } 434 435 bool Version::RecordReadSample(Slice internal_key) { 436 ParsedInternalKey ikey; 437 if (!ParseInternalKey(internal_key, &ikey)) { 438 return false; 439 } 440 441 struct State { 442 GetStats stats; // Holds first matching file 443 int matches; 444 445 static bool Match(void* arg, int level, FileMetaData* f) { 446 State* state = reinterpret_cast<State*>(arg); 447 state->matches++; 448 if (state->matches == 1) { 449 // Remember first match. 450 state->stats.seek_file = f; 451 state->stats.seek_file_level = level; 452 } 453 // We can stop iterating once we have a second match. 454 return state->matches < 2; 455 } 456 }; 457 458 State state; 459 state.matches = 0; 460 ForEachOverlapping(ikey.user_key, internal_key, &state, &State::Match); 461 462 // Must have at least two matches since we want to merge across 463 // files. But what if we have a single file that contains many 464 // overwrites and deletions? Should we have another mechanism for 465 // finding such files? 466 if (state.matches >= 2) { 467 // 1MB cost is about 1 seek (see comment in Builder::Apply). 468 return UpdateStats(state.stats); 469 } 470 return false; 471 } 472 473 void Version::Ref() { 474 ++refs_; 475 } 476 477 void Version::Unref() { 478 assert(this != &vset_->dummy_versions_); 479 assert(refs_ >= 1); 480 --refs_; 481 if (refs_ == 0) { 482 delete this; 483 } 484 } 485 486 bool Version::OverlapInLevel(int level, 487 const Slice* smallest_user_key, 488 const Slice* largest_user_key) { 489 return SomeFileOverlapsRange(vset_->icmp_, (level > 0), files_[level], 490 smallest_user_key, largest_user_key); 491 } 492 493 int Version::PickLevelForMemTableOutput( 494 const Slice& smallest_user_key, 495 const Slice& largest_user_key) { 496 int level = 0; 497 if (!OverlapInLevel(0, &smallest_user_key, &largest_user_key)) { 498 // Push to next level if there is no overlap in next level, 499 // and the #bytes overlapping in the level after that are limited. 500 InternalKey start(smallest_user_key, kMaxSequenceNumber, kValueTypeForSeek); 501 InternalKey limit(largest_user_key, 0, static_cast<ValueType>(0)); 502 std::vector<FileMetaData*> overlaps; 503 while (level < config::kMaxMemCompactLevel) { 504 if (OverlapInLevel(level + 1, &smallest_user_key, &largest_user_key)) { 505 break; 506 } 507 if (level + 2 < config::kNumLevels) { 508 // Check that file does not overlap too many grandparent bytes. 509 GetOverlappingInputs(level + 2, &start, &limit, &overlaps); 510 const int64_t sum = TotalFileSize(overlaps); 511 if (sum > kMaxGrandParentOverlapBytes) { 512 break; 513 } 514 } 515 level++; 516 } 517 } 518 return level; 519 } 520 521 // Store in "*inputs" all files in "level" that overlap [begin,end] 522 void Version::GetOverlappingInputs( 523 int level, 524 const InternalKey* begin, 525 const InternalKey* end, 526 std::vector<FileMetaData*>* inputs) { 527 assert(level >= 0); 528 assert(level < config::kNumLevels); 529 inputs->clear(); 530 Slice user_begin, user_end; 531 if (begin != NULL) { 532 user_begin = begin->user_key(); 533 } 534 if (end != NULL) { 535 user_end = end->user_key(); 536 } 537 const Comparator* user_cmp = vset_->icmp_.user_comparator(); 538 for (size_t i = 0; i < files_[level].size(); ) { 539 FileMetaData* f = files_[level][i++]; 540 const Slice file_start = f->smallest.user_key(); 541 const Slice file_limit = f->largest.user_key(); 542 if (begin != NULL && user_cmp->Compare(file_limit, user_begin) < 0) { 543 // "f" is completely before specified range; skip it 544 } else if (end != NULL && user_cmp->Compare(file_start, user_end) > 0) { 545 // "f" is completely after specified range; skip it 546 } else { 547 inputs->push_back(f); 548 if (level == 0) { 549 // Level-0 files may overlap each other. So check if the newly 550 // added file has expanded the range. If so, restart search. 551 if (begin != NULL && user_cmp->Compare(file_start, user_begin) < 0) { 552 user_begin = file_start; 553 inputs->clear(); 554 i = 0; 555 } else if (end != NULL && user_cmp->Compare(file_limit, user_end) > 0) { 556 user_end = file_limit; 557 inputs->clear(); 558 i = 0; 559 } 560 } 561 } 562 } 563 } 564 565 std::string Version::DebugString() const { 566 std::string r; 567 for (int level = 0; level < config::kNumLevels; level++) { 568 // E.g., 569 // --- level 1 --- 570 // 17:123['a' .. 'd'] 571 // 20:43['e' .. 'g'] 572 r.append("--- level "); 573 AppendNumberTo(&r, level); 574 r.append(" ---\n"); 575 const std::vector<FileMetaData*>& files = files_[level]; 576 for (size_t i = 0; i < files.size(); i++) { 577 r.push_back(' '); 578 AppendNumberTo(&r, files[i]->number); 579 r.push_back(':'); 580 AppendNumberTo(&r, files[i]->file_size); 581 r.append("["); 582 r.append(files[i]->smallest.DebugString()); 583 r.append(" .. "); 584 r.append(files[i]->largest.DebugString()); 585 r.append("]\n"); 586 } 587 } 588 return r; 589 } 590 591 // A helper class so we can efficiently apply a whole sequence 592 // of edits to a particular state without creating intermediate 593 // Versions that contain full copies of the intermediate state. 594 class VersionSet::Builder { 595 private: 596 // Helper to sort by v->files_[file_number].smallest 597 struct BySmallestKey { 598 const InternalKeyComparator* internal_comparator; 599 600 bool operator()(FileMetaData* f1, FileMetaData* f2) const { 601 int r = internal_comparator->Compare(f1->smallest, f2->smallest); 602 if (r != 0) { 603 return (r < 0); 604 } else { 605 // Break ties by file number 606 return (f1->number < f2->number); 607 } 608 } 609 }; 610 611 typedef std::set<FileMetaData*, BySmallestKey> FileSet; 612 struct LevelState { 613 std::set<uint64_t> deleted_files; 614 FileSet* added_files; 615 }; 616 617 VersionSet* vset_; 618 Version* base_; 619 LevelState levels_[config::kNumLevels]; 620 621 public: 622 // Initialize a builder with the files from *base and other info from *vset 623 Builder(VersionSet* vset, Version* base) 624 : vset_(vset), 625 base_(base) { 626 base_->Ref(); 627 BySmallestKey cmp; 628 cmp.internal_comparator = &vset_->icmp_; 629 for (int level = 0; level < config::kNumLevels; level++) { 630 levels_[level].added_files = new FileSet(cmp); 631 } 632 } 633 634 ~Builder() { 635 for (int level = 0; level < config::kNumLevels; level++) { 636 const FileSet* added = levels_[level].added_files; 637 std::vector<FileMetaData*> to_unref; 638 to_unref.reserve(added->size()); 639 for (FileSet::const_iterator it = added->begin(); 640 it != added->end(); ++it) { 641 to_unref.push_back(*it); 642 } 643 delete added; 644 for (uint32_t i = 0; i < to_unref.size(); i++) { 645 FileMetaData* f = to_unref[i]; 646 f->refs--; 647 if (f->refs <= 0) { 648 delete f; 649 } 650 } 651 } 652 base_->Unref(); 653 } 654 655 // Apply all of the edits in *edit to the current state. 656 void Apply(VersionEdit* edit) { 657 // Update compaction pointers 658 for (size_t i = 0; i < edit->compact_pointers_.size(); i++) { 659 const int level = edit->compact_pointers_[i].first; 660 vset_->compact_pointer_[level] = 661 edit->compact_pointers_[i].second.Encode().ToString(); 662 } 663 664 // Delete files 665 const VersionEdit::DeletedFileSet& del = edit->deleted_files_; 666 for (VersionEdit::DeletedFileSet::const_iterator iter = del.begin(); 667 iter != del.end(); 668 ++iter) { 669 const int level = iter->first; 670 const uint64_t number = iter->second; 671 levels_[level].deleted_files.insert(number); 672 } 673 674 // Add new files 675 for (size_t i = 0; i < edit->new_files_.size(); i++) { 676 const int level = edit->new_files_[i].first; 677 FileMetaData* f = new FileMetaData(edit->new_files_[i].second); 678 f->refs = 1; 679 680 // We arrange to automatically compact this file after 681 // a certain number of seeks. Let's assume: 682 // (1) One seek costs 10ms 683 // (2) Writing or reading 1MB costs 10ms (100MB/s) 684 // (3) A compaction of 1MB does 25MB of IO: 685 // 1MB read from this level 686 // 10-12MB read from next level (boundaries may be misaligned) 687 // 10-12MB written to next level 688 // This implies that 25 seeks cost the same as the compaction 689 // of 1MB of data. I.e., one seek costs approximately the 690 // same as the compaction of 40KB of data. We are a little 691 // conservative and allow approximately one seek for every 16KB 692 // of data before triggering a compaction. 693 f->allowed_seeks = (f->file_size / 16384); 694 if (f->allowed_seeks < 100) f->allowed_seeks = 100; 695 696 levels_[level].deleted_files.erase(f->number); 697 levels_[level].added_files->insert(f); 698 } 699 } 700 701 // Save the current state in *v. 702 void SaveTo(Version* v) { 703 BySmallestKey cmp; 704 cmp.internal_comparator = &vset_->icmp_; 705 for (int level = 0; level < config::kNumLevels; level++) { 706 // Merge the set of added files with the set of pre-existing files. 707 // Drop any deleted files. Store the result in *v. 708 const std::vector<FileMetaData*>& base_files = base_->files_[level]; 709 std::vector<FileMetaData*>::const_iterator base_iter = base_files.begin(); 710 std::vector<FileMetaData*>::const_iterator base_end = base_files.end(); 711 const FileSet* added = levels_[level].added_files; 712 v->files_[level].reserve(base_files.size() + added->size()); 713 for (FileSet::const_iterator added_iter = added->begin(); 714 added_iter != added->end(); 715 ++added_iter) { 716 // Add all smaller files listed in base_ 717 for (std::vector<FileMetaData*>::const_iterator bpos 718 = std::upper_bound(base_iter, base_end, *added_iter, cmp); 719 base_iter != bpos; 720 ++base_iter) { 721 MaybeAddFile(v, level, *base_iter); 722 } 723 724 MaybeAddFile(v, level, *added_iter); 725 } 726 727 // Add remaining base files 728 for (; base_iter != base_end; ++base_iter) { 729 MaybeAddFile(v, level, *base_iter); 730 } 731 732 #ifndef NDEBUG 733 // Make sure there is no overlap in levels > 0 734 if (level > 0) { 735 for (uint32_t i = 1; i < v->files_[level].size(); i++) { 736 const InternalKey& prev_end = v->files_[level][i-1]->largest; 737 const InternalKey& this_begin = v->files_[level][i]->smallest; 738 if (vset_->icmp_.Compare(prev_end, this_begin) >= 0) { 739 fprintf(stderr, "overlapping ranges in same level %s vs. %s\n", 740 prev_end.DebugString().c_str(), 741 this_begin.DebugString().c_str()); 742 abort(); 743 } 744 } 745 } 746 #endif 747 } 748 } 749 750 void MaybeAddFile(Version* v, int level, FileMetaData* f) { 751 if (levels_[level].deleted_files.count(f->number) > 0) { 752 // File is deleted: do nothing 753 } else { 754 std::vector<FileMetaData*>* files = &v->files_[level]; 755 if (level > 0 && !files->empty()) { 756 // Must not overlap 757 assert(vset_->icmp_.Compare((*files)[files->size()-1]->largest, 758 f->smallest) < 0); 759 } 760 f->refs++; 761 files->push_back(f); 762 } 763 } 764 }; 765 766 VersionSet::VersionSet(const std::string& dbname, 767 const Options* options, 768 TableCache* table_cache, 769 const InternalKeyComparator* cmp) 770 : env_(options->env), 771 dbname_(dbname), 772 options_(options), 773 table_cache_(table_cache), 774 icmp_(*cmp), 775 next_file_number_(2), 776 manifest_file_number_(0), // Filled by Recover() 777 last_sequence_(0), 778 log_number_(0), 779 prev_log_number_(0), 780 descriptor_file_(NULL), 781 descriptor_log_(NULL), 782 dummy_versions_(this), 783 current_(NULL) { 784 AppendVersion(new Version(this)); 785 } 786 787 VersionSet::~VersionSet() { 788 current_->Unref(); 789 assert(dummy_versions_.next_ == &dummy_versions_); // List must be empty 790 delete descriptor_log_; 791 delete descriptor_file_; 792 } 793 794 void VersionSet::AppendVersion(Version* v) { 795 // Make "v" current 796 assert(v->refs_ == 0); 797 assert(v != current_); 798 if (current_ != NULL) { 799 current_->Unref(); 800 } 801 current_ = v; 802 v->Ref(); 803 804 // Append to linked list 805 v->prev_ = dummy_versions_.prev_; 806 v->next_ = &dummy_versions_; 807 v->prev_->next_ = v; 808 v->next_->prev_ = v; 809 } 810 811 Status VersionSet::LogAndApply(VersionEdit* edit, port::Mutex* mu) { 812 if (edit->has_log_number_) { 813 assert(edit->log_number_ >= log_number_); 814 assert(edit->log_number_ < next_file_number_); 815 } else { 816 edit->SetLogNumber(log_number_); 817 } 818 819 if (!edit->has_prev_log_number_) { 820 edit->SetPrevLogNumber(prev_log_number_); 821 } 822 823 edit->SetNextFile(next_file_number_); 824 edit->SetLastSequence(last_sequence_); 825 826 Version* v = new Version(this); 827 { 828 Builder builder(this, current_); 829 builder.Apply(edit); 830 builder.SaveTo(v); 831 } 832 Finalize(v); 833 834 // Initialize new descriptor log file if necessary by creating 835 // a temporary file that contains a snapshot of the current version. 836 std::string new_manifest_file; 837 Status s; 838 if (descriptor_log_ == NULL) { 839 // No reason to unlock *mu here since we only hit this path in the 840 // first call to LogAndApply (when opening the database). 841 assert(descriptor_file_ == NULL); 842 new_manifest_file = DescriptorFileName(dbname_, manifest_file_number_); 843 edit->SetNextFile(next_file_number_); 844 s = env_->NewWritableFile(new_manifest_file, &descriptor_file_); 845 if (s.ok()) { 846 descriptor_log_ = new log::Writer(descriptor_file_); 847 s = WriteSnapshot(descriptor_log_); 848 } 849 } 850 851 // Unlock during expensive MANIFEST log write 852 { 853 mu->Unlock(); 854 855 // Write new record to MANIFEST log 856 if (s.ok()) { 857 std::string record; 858 edit->EncodeTo(&record); 859 s = descriptor_log_->AddRecord(record); 860 if (s.ok()) { 861 s = descriptor_file_->Sync(); 862 } 863 if (!s.ok()) { 864 Log(options_->info_log, "MANIFEST write: %s\n", s.ToString().c_str()); 865 } 866 } 867 868 // If we just created a new descriptor file, install it by writing a 869 // new CURRENT file that points to it. 870 if (s.ok() && !new_manifest_file.empty()) { 871 s = SetCurrentFile(env_, dbname_, manifest_file_number_); 872 } 873 874 mu->Lock(); 875 } 876 877 // Install the new version 878 if (s.ok()) { 879 AppendVersion(v); 880 log_number_ = edit->log_number_; 881 prev_log_number_ = edit->prev_log_number_; 882 } else { 883 delete v; 884 if (!new_manifest_file.empty()) { 885 delete descriptor_log_; 886 delete descriptor_file_; 887 descriptor_log_ = NULL; 888 descriptor_file_ = NULL; 889 env_->DeleteFile(new_manifest_file); 890 } 891 } 892 893 return s; 894 } 895 896 Status VersionSet::Recover() { 897 struct LogReporter : public log::Reader::Reporter { 898 Status* status; 899 virtual void Corruption(size_t bytes, const Status& s) { 900 if (this->status->ok()) *this->status = s; 901 } 902 }; 903 904 // Read "CURRENT" file, which contains a pointer to the current manifest file 905 std::string current; 906 Status s = ReadFileToString(env_, CurrentFileName(dbname_), ¤t); 907 if (!s.ok()) { 908 return s; 909 } 910 if (current.empty() || current[current.size()-1] != '\n') { 911 return Status::Corruption("CURRENT file does not end with newline"); 912 } 913 current.resize(current.size() - 1); 914 915 std::string dscname = dbname_ + "/" + current; 916 SequentialFile* file; 917 s = env_->NewSequentialFile(dscname, &file); 918 if (!s.ok()) { 919 return s; 920 } 921 922 bool have_log_number = false; 923 bool have_prev_log_number = false; 924 bool have_next_file = false; 925 bool have_last_sequence = false; 926 uint64_t next_file = 0; 927 uint64_t last_sequence = 0; 928 uint64_t log_number = 0; 929 uint64_t prev_log_number = 0; 930 Builder builder(this, current_); 931 932 { 933 LogReporter reporter; 934 reporter.status = &s; 935 log::Reader reader(file, &reporter, true/*checksum*/, 0/*initial_offset*/); 936 Slice record; 937 std::string scratch; 938 while (reader.ReadRecord(&record, &scratch) && s.ok()) { 939 VersionEdit edit; 940 s = edit.DecodeFrom(record); 941 if (s.ok()) { 942 if (edit.has_comparator_ && 943 edit.comparator_ != icmp_.user_comparator()->Name()) { 944 s = Status::InvalidArgument( 945 edit.comparator_ + " does not match existing comparator ", 946 icmp_.user_comparator()->Name()); 947 } 948 } 949 950 if (s.ok()) { 951 builder.Apply(&edit); 952 } 953 954 if (edit.has_log_number_) { 955 log_number = edit.log_number_; 956 have_log_number = true; 957 } 958 959 if (edit.has_prev_log_number_) { 960 prev_log_number = edit.prev_log_number_; 961 have_prev_log_number = true; 962 } 963 964 if (edit.has_next_file_number_) { 965 next_file = edit.next_file_number_; 966 have_next_file = true; 967 } 968 969 if (edit.has_last_sequence_) { 970 last_sequence = edit.last_sequence_; 971 have_last_sequence = true; 972 } 973 } 974 } 975 delete file; 976 file = NULL; 977 978 if (s.ok()) { 979 if (!have_next_file) { 980 s = Status::Corruption("no meta-nextfile entry in descriptor"); 981 } else if (!have_log_number) { 982 s = Status::Corruption("no meta-lognumber entry in descriptor"); 983 } else if (!have_last_sequence) { 984 s = Status::Corruption("no last-sequence-number entry in descriptor"); 985 } 986 987 if (!have_prev_log_number) { 988 prev_log_number = 0; 989 } 990 991 MarkFileNumberUsed(prev_log_number); 992 MarkFileNumberUsed(log_number); 993 } 994 995 if (s.ok()) { 996 Version* v = new Version(this); 997 builder.SaveTo(v); 998 // Install recovered version 999 Finalize(v); 1000 AppendVersion(v); 1001 manifest_file_number_ = next_file; 1002 next_file_number_ = next_file + 1; 1003 last_sequence_ = last_sequence; 1004 log_number_ = log_number; 1005 prev_log_number_ = prev_log_number; 1006 } 1007 1008 return s; 1009 } 1010 1011 void VersionSet::MarkFileNumberUsed(uint64_t number) { 1012 if (next_file_number_ <= number) { 1013 next_file_number_ = number + 1; 1014 } 1015 } 1016 1017 void VersionSet::Finalize(Version* v) { 1018 // Precomputed best level for next compaction 1019 int best_level = -1; 1020 double best_score = -1; 1021 1022 for (int level = 0; level < config::kNumLevels-1; level++) { 1023 double score; 1024 if (level == 0) { 1025 // We treat level-0 specially by bounding the number of files 1026 // instead of number of bytes for two reasons: 1027 // 1028 // (1) With larger write-buffer sizes, it is nice not to do too 1029 // many level-0 compactions. 1030 // 1031 // (2) The files in level-0 are merged on every read and 1032 // therefore we wish to avoid too many files when the individual 1033 // file size is small (perhaps because of a small write-buffer 1034 // setting, or very high compression ratios, or lots of 1035 // overwrites/deletions). 1036 score = v->files_[level].size() / 1037 static_cast<double>(config::kL0_CompactionTrigger); 1038 } else { 1039 // Compute the ratio of current size to size limit. 1040 const uint64_t level_bytes = TotalFileSize(v->files_[level]); 1041 score = static_cast<double>(level_bytes) / MaxBytesForLevel(level); 1042 } 1043 1044 if (score > best_score) { 1045 best_level = level; 1046 best_score = score; 1047 } 1048 } 1049 1050 v->compaction_level_ = best_level; 1051 v->compaction_score_ = best_score; 1052 } 1053 1054 Status VersionSet::WriteSnapshot(log::Writer* log) { 1055 // TODO: Break up into multiple records to reduce memory usage on recovery? 1056 1057 // Save metadata 1058 VersionEdit edit; 1059 edit.SetComparatorName(icmp_.user_comparator()->Name()); 1060 1061 // Save compaction pointers 1062 for (int level = 0; level < config::kNumLevels; level++) { 1063 if (!compact_pointer_[level].empty()) { 1064 InternalKey key; 1065 key.DecodeFrom(compact_pointer_[level]); 1066 edit.SetCompactPointer(level, key); 1067 } 1068 } 1069 1070 // Save files 1071 for (int level = 0; level < config::kNumLevels; level++) { 1072 const std::vector<FileMetaData*>& files = current_->files_[level]; 1073 for (size_t i = 0; i < files.size(); i++) { 1074 const FileMetaData* f = files[i]; 1075 edit.AddFile(level, f->number, f->file_size, f->smallest, f->largest); 1076 } 1077 } 1078 1079 std::string record; 1080 edit.EncodeTo(&record); 1081 return log->AddRecord(record); 1082 } 1083 1084 int VersionSet::NumLevelFiles(int level) const { 1085 assert(level >= 0); 1086 assert(level < config::kNumLevels); 1087 return current_->files_[level].size(); 1088 } 1089 1090 const char* VersionSet::LevelSummary(LevelSummaryStorage* scratch) const { 1091 // Update code if kNumLevels changes 1092 assert(config::kNumLevels == 7); 1093 snprintf(scratch->buffer, sizeof(scratch->buffer), 1094 "files[ %d %d %d %d %d %d %d ]", 1095 int(current_->files_[0].size()), 1096 int(current_->files_[1].size()), 1097 int(current_->files_[2].size()), 1098 int(current_->files_[3].size()), 1099 int(current_->files_[4].size()), 1100 int(current_->files_[5].size()), 1101 int(current_->files_[6].size())); 1102 return scratch->buffer; 1103 } 1104 1105 uint64_t VersionSet::ApproximateOffsetOf(Version* v, const InternalKey& ikey) { 1106 uint64_t result = 0; 1107 for (int level = 0; level < config::kNumLevels; level++) { 1108 const std::vector<FileMetaData*>& files = v->files_[level]; 1109 for (size_t i = 0; i < files.size(); i++) { 1110 if (icmp_.Compare(files[i]->largest, ikey) <= 0) { 1111 // Entire file is before "ikey", so just add the file size 1112 result += files[i]->file_size; 1113 } else if (icmp_.Compare(files[i]->smallest, ikey) > 0) { 1114 // Entire file is after "ikey", so ignore 1115 if (level > 0) { 1116 // Files other than level 0 are sorted by meta->smallest, so 1117 // no further files in this level will contain data for 1118 // "ikey". 1119 break; 1120 } 1121 } else { 1122 // "ikey" falls in the range for this table. Add the 1123 // approximate offset of "ikey" within the table. 1124 Table* tableptr; 1125 Iterator* iter = table_cache_->NewIterator( 1126 ReadOptions(), files[i]->number, files[i]->file_size, &tableptr); 1127 if (tableptr != NULL) { 1128 result += tableptr->ApproximateOffsetOf(ikey.Encode()); 1129 } 1130 delete iter; 1131 } 1132 } 1133 } 1134 return result; 1135 } 1136 1137 void VersionSet::AddLiveFiles(std::set<uint64_t>* live) { 1138 for (Version* v = dummy_versions_.next_; 1139 v != &dummy_versions_; 1140 v = v->next_) { 1141 for (int level = 0; level < config::kNumLevels; level++) { 1142 const std::vector<FileMetaData*>& files = v->files_[level]; 1143 for (size_t i = 0; i < files.size(); i++) { 1144 live->insert(files[i]->number); 1145 } 1146 } 1147 } 1148 } 1149 1150 int64_t VersionSet::NumLevelBytes(int level) const { 1151 assert(level >= 0); 1152 assert(level < config::kNumLevels); 1153 return TotalFileSize(current_->files_[level]); 1154 } 1155 1156 int64_t VersionSet::MaxNextLevelOverlappingBytes() { 1157 int64_t result = 0; 1158 std::vector<FileMetaData*> overlaps; 1159 for (int level = 1; level < config::kNumLevels - 1; level++) { 1160 for (size_t i = 0; i < current_->files_[level].size(); i++) { 1161 const FileMetaData* f = current_->files_[level][i]; 1162 current_->GetOverlappingInputs(level+1, &f->smallest, &f->largest, 1163 &overlaps); 1164 const int64_t sum = TotalFileSize(overlaps); 1165 if (sum > result) { 1166 result = sum; 1167 } 1168 } 1169 } 1170 return result; 1171 } 1172 1173 // Stores the minimal range that covers all entries in inputs in 1174 // *smallest, *largest. 1175 // REQUIRES: inputs is not empty 1176 void VersionSet::GetRange(const std::vector<FileMetaData*>& inputs, 1177 InternalKey* smallest, 1178 InternalKey* largest) { 1179 assert(!inputs.empty()); 1180 smallest->Clear(); 1181 largest->Clear(); 1182 for (size_t i = 0; i < inputs.size(); i++) { 1183 FileMetaData* f = inputs[i]; 1184 if (i == 0) { 1185 *smallest = f->smallest; 1186 *largest = f->largest; 1187 } else { 1188 if (icmp_.Compare(f->smallest, *smallest) < 0) { 1189 *smallest = f->smallest; 1190 } 1191 if (icmp_.Compare(f->largest, *largest) > 0) { 1192 *largest = f->largest; 1193 } 1194 } 1195 } 1196 } 1197 1198 // Stores the minimal range that covers all entries in inputs1 and inputs2 1199 // in *smallest, *largest. 1200 // REQUIRES: inputs is not empty 1201 void VersionSet::GetRange2(const std::vector<FileMetaData*>& inputs1, 1202 const std::vector<FileMetaData*>& inputs2, 1203 InternalKey* smallest, 1204 InternalKey* largest) { 1205 std::vector<FileMetaData*> all = inputs1; 1206 all.insert(all.end(), inputs2.begin(), inputs2.end()); 1207 GetRange(all, smallest, largest); 1208 } 1209 1210 Iterator* VersionSet::MakeInputIterator(Compaction* c) { 1211 ReadOptions options; 1212 options.verify_checksums = options_->paranoid_checks; 1213 options.fill_cache = false; 1214 1215 // Level-0 files have to be merged together. For other levels, 1216 // we will make a concatenating iterator per level. 1217 // TODO(opt): use concatenating iterator for level-0 if there is no overlap 1218 const int space = (c->level() == 0 ? c->inputs_[0].size() + 1 : 2); 1219 Iterator** list = new Iterator*[space]; 1220 int num = 0; 1221 for (int which = 0; which < 2; which++) { 1222 if (!c->inputs_[which].empty()) { 1223 if (c->level() + which == 0) { 1224 const std::vector<FileMetaData*>& files = c->inputs_[which]; 1225 for (size_t i = 0; i < files.size(); i++) { 1226 list[num++] = table_cache_->NewIterator( 1227 options, files[i]->number, files[i]->file_size); 1228 } 1229 } else { 1230 // Create concatenating iterator for the files from this level 1231 list[num++] = NewTwoLevelIterator( 1232 new Version::LevelFileNumIterator(icmp_, &c->inputs_[which]), 1233 &GetFileIterator, table_cache_, options); 1234 } 1235 } 1236 } 1237 assert(num <= space); 1238 Iterator* result = NewMergingIterator(&icmp_, list, num); 1239 delete[] list; 1240 return result; 1241 } 1242 1243 Compaction* VersionSet::PickCompaction() { 1244 Compaction* c; 1245 int level; 1246 1247 // We prefer compactions triggered by too much data in a level over 1248 // the compactions triggered by seeks. 1249 const bool size_compaction = (current_->compaction_score_ >= 1); 1250 const bool seek_compaction = (current_->file_to_compact_ != NULL); 1251 if (size_compaction) { 1252 level = current_->compaction_level_; 1253 assert(level >= 0); 1254 assert(level+1 < config::kNumLevels); 1255 c = new Compaction(level); 1256 1257 // Pick the first file that comes after compact_pointer_[level] 1258 for (size_t i = 0; i < current_->files_[level].size(); i++) { 1259 FileMetaData* f = current_->files_[level][i]; 1260 if (compact_pointer_[level].empty() || 1261 icmp_.Compare(f->largest.Encode(), compact_pointer_[level]) > 0) { 1262 c->inputs_[0].push_back(f); 1263 break; 1264 } 1265 } 1266 if (c->inputs_[0].empty()) { 1267 // Wrap-around to the beginning of the key space 1268 c->inputs_[0].push_back(current_->files_[level][0]); 1269 } 1270 } else if (seek_compaction) { 1271 level = current_->file_to_compact_level_; 1272 c = new Compaction(level); 1273 c->inputs_[0].push_back(current_->file_to_compact_); 1274 } else { 1275 return NULL; 1276 } 1277 1278 c->input_version_ = current_; 1279 c->input_version_->Ref(); 1280 1281 // Files in level 0 may overlap each other, so pick up all overlapping ones 1282 if (level == 0) { 1283 InternalKey smallest, largest; 1284 GetRange(c->inputs_[0], &smallest, &largest); 1285 // Note that the next call will discard the file we placed in 1286 // c->inputs_[0] earlier and replace it with an overlapping set 1287 // which will include the picked file. 1288 current_->GetOverlappingInputs(0, &smallest, &largest, &c->inputs_[0]); 1289 assert(!c->inputs_[0].empty()); 1290 } 1291 1292 SetupOtherInputs(c); 1293 1294 return c; 1295 } 1296 1297 void VersionSet::SetupOtherInputs(Compaction* c) { 1298 const int level = c->level(); 1299 InternalKey smallest, largest; 1300 GetRange(c->inputs_[0], &smallest, &largest); 1301 1302 current_->GetOverlappingInputs(level+1, &smallest, &largest, &c->inputs_[1]); 1303 1304 // Get entire range covered by compaction 1305 InternalKey all_start, all_limit; 1306 GetRange2(c->inputs_[0], c->inputs_[1], &all_start, &all_limit); 1307 1308 // See if we can grow the number of inputs in "level" without 1309 // changing the number of "level+1" files we pick up. 1310 if (!c->inputs_[1].empty()) { 1311 std::vector<FileMetaData*> expanded0; 1312 current_->GetOverlappingInputs(level, &all_start, &all_limit, &expanded0); 1313 const int64_t inputs0_size = TotalFileSize(c->inputs_[0]); 1314 const int64_t inputs1_size = TotalFileSize(c->inputs_[1]); 1315 const int64_t expanded0_size = TotalFileSize(expanded0); 1316 if (expanded0.size() > c->inputs_[0].size() && 1317 inputs1_size + expanded0_size < kExpandedCompactionByteSizeLimit) { 1318 InternalKey new_start, new_limit; 1319 GetRange(expanded0, &new_start, &new_limit); 1320 std::vector<FileMetaData*> expanded1; 1321 current_->GetOverlappingInputs(level+1, &new_start, &new_limit, 1322 &expanded1); 1323 if (expanded1.size() == c->inputs_[1].size()) { 1324 Log(options_->info_log, 1325 "Expanding@%d %d+%d (%ld+%ld bytes) to %d+%d (%ld+%ld bytes)\n", 1326 level, 1327 int(c->inputs_[0].size()), 1328 int(c->inputs_[1].size()), 1329 long(inputs0_size), long(inputs1_size), 1330 int(expanded0.size()), 1331 int(expanded1.size()), 1332 long(expanded0_size), long(inputs1_size)); 1333 smallest = new_start; 1334 largest = new_limit; 1335 c->inputs_[0] = expanded0; 1336 c->inputs_[1] = expanded1; 1337 GetRange2(c->inputs_[0], c->inputs_[1], &all_start, &all_limit); 1338 } 1339 } 1340 } 1341 1342 // Compute the set of grandparent files that overlap this compaction 1343 // (parent == level+1; grandparent == level+2) 1344 if (level + 2 < config::kNumLevels) { 1345 current_->GetOverlappingInputs(level + 2, &all_start, &all_limit, 1346 &c->grandparents_); 1347 } 1348 1349 if (false) { 1350 Log(options_->info_log, "Compacting %d '%s' .. '%s'", 1351 level, 1352 smallest.DebugString().c_str(), 1353 largest.DebugString().c_str()); 1354 } 1355 1356 // Update the place where we will do the next compaction for this level. 1357 // We update this immediately instead of waiting for the VersionEdit 1358 // to be applied so that if the compaction fails, we will try a different 1359 // key range next time. 1360 compact_pointer_[level] = largest.Encode().ToString(); 1361 c->edit_.SetCompactPointer(level, largest); 1362 } 1363 1364 Compaction* VersionSet::CompactRange( 1365 int level, 1366 const InternalKey* begin, 1367 const InternalKey* end) { 1368 std::vector<FileMetaData*> inputs; 1369 current_->GetOverlappingInputs(level, begin, end, &inputs); 1370 if (inputs.empty()) { 1371 return NULL; 1372 } 1373 1374 // Avoid compacting too much in one shot in case the range is large. 1375 // But we cannot do this for level-0 since level-0 files can overlap 1376 // and we must not pick one file and drop another older file if the 1377 // two files overlap. 1378 if (level > 0) { 1379 const uint64_t limit = MaxFileSizeForLevel(level); 1380 uint64_t total = 0; 1381 for (size_t i = 0; i < inputs.size(); i++) { 1382 uint64_t s = inputs[i]->file_size; 1383 total += s; 1384 if (total >= limit) { 1385 inputs.resize(i + 1); 1386 break; 1387 } 1388 } 1389 } 1390 1391 Compaction* c = new Compaction(level); 1392 c->input_version_ = current_; 1393 c->input_version_->Ref(); 1394 c->inputs_[0] = inputs; 1395 SetupOtherInputs(c); 1396 return c; 1397 } 1398 1399 Compaction::Compaction(int level) 1400 : level_(level), 1401 max_output_file_size_(MaxFileSizeForLevel(level)), 1402 input_version_(NULL), 1403 grandparent_index_(0), 1404 seen_key_(false), 1405 overlapped_bytes_(0) { 1406 for (int i = 0; i < config::kNumLevels; i++) { 1407 level_ptrs_[i] = 0; 1408 } 1409 } 1410 1411 Compaction::~Compaction() { 1412 if (input_version_ != NULL) { 1413 input_version_->Unref(); 1414 } 1415 } 1416 1417 bool Compaction::IsTrivialMove() const { 1418 // Avoid a move if there is lots of overlapping grandparent data. 1419 // Otherwise, the move could create a parent file that will require 1420 // a very expensive merge later on. 1421 return (num_input_files(0) == 1 && 1422 num_input_files(1) == 0 && 1423 TotalFileSize(grandparents_) <= kMaxGrandParentOverlapBytes); 1424 } 1425 1426 void Compaction::AddInputDeletions(VersionEdit* edit) { 1427 for (int which = 0; which < 2; which++) { 1428 for (size_t i = 0; i < inputs_[which].size(); i++) { 1429 edit->DeleteFile(level_ + which, inputs_[which][i]->number); 1430 } 1431 } 1432 } 1433 1434 bool Compaction::IsBaseLevelForKey(const Slice& user_key) { 1435 // Maybe use binary search to find right entry instead of linear search? 1436 const Comparator* user_cmp = input_version_->vset_->icmp_.user_comparator(); 1437 for (int lvl = level_ + 2; lvl < config::kNumLevels; lvl++) { 1438 const std::vector<FileMetaData*>& files = input_version_->files_[lvl]; 1439 for (; level_ptrs_[lvl] < files.size(); ) { 1440 FileMetaData* f = files[level_ptrs_[lvl]]; 1441 if (user_cmp->Compare(user_key, f->largest.user_key()) <= 0) { 1442 // We've advanced far enough 1443 if (user_cmp->Compare(user_key, f->smallest.user_key()) >= 0) { 1444 // Key falls in this file's range, so definitely not base level 1445 return false; 1446 } 1447 break; 1448 } 1449 level_ptrs_[lvl]++; 1450 } 1451 } 1452 return true; 1453 } 1454 1455 bool Compaction::ShouldStopBefore(const Slice& internal_key) { 1456 // Scan to find earliest grandparent file that contains key. 1457 const InternalKeyComparator* icmp = &input_version_->vset_->icmp_; 1458 while (grandparent_index_ < grandparents_.size() && 1459 icmp->Compare(internal_key, 1460 grandparents_[grandparent_index_]->largest.Encode()) > 0) { 1461 if (seen_key_) { 1462 overlapped_bytes_ += grandparents_[grandparent_index_]->file_size; 1463 } 1464 grandparent_index_++; 1465 } 1466 seen_key_ = true; 1467 1468 if (overlapped_bytes_ > kMaxGrandParentOverlapBytes) { 1469 // Too much overlap for current output; start new output 1470 overlapped_bytes_ = 0; 1471 return true; 1472 } else { 1473 return false; 1474 } 1475 } 1476 1477 void Compaction::ReleaseInputs() { 1478 if (input_version_ != NULL) { 1479 input_version_->Unref(); 1480 input_version_ = NULL; 1481 } 1482 } 1483 1484 } // namespace leveldb 1485