Home | History | Annotate | Download | only in IR
      1 //===-- ConstantsContext.h - Constants-related Context Interals -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines various helper methods and classes used by
     11 // LLVMContextImpl for creating and managing constants.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CONSTANTSCONTEXT_H
     16 #define LLVM_CONSTANTSCONTEXT_H
     17 
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/Hashing.h"
     20 #include "llvm/IR/InlineAsm.h"
     21 #include "llvm/IR/Instructions.h"
     22 #include "llvm/IR/Operator.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 #include <map>
     27 #include <tuple>
     28 
     29 #define DEBUG_TYPE "ir"
     30 
     31 namespace llvm {
     32 template<class ValType>
     33 struct ConstantTraits;
     34 
     35 /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
     36 /// behind the scenes to implement unary constant exprs.
     37 class UnaryConstantExpr : public ConstantExpr {
     38   void anchor() override;
     39   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
     40 public:
     41   // allocate space for exactly one operand
     42   void *operator new(size_t s) {
     43     return User::operator new(s, 1);
     44   }
     45   UnaryConstantExpr(unsigned Opcode, Constant *C, Type *Ty)
     46     : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
     47     Op<0>() = C;
     48   }
     49   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
     50 };
     51 
     52 /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
     53 /// behind the scenes to implement binary constant exprs.
     54 class BinaryConstantExpr : public ConstantExpr {
     55   void anchor() override;
     56   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
     57 public:
     58   // allocate space for exactly two operands
     59   void *operator new(size_t s) {
     60     return User::operator new(s, 2);
     61   }
     62   BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
     63                      unsigned Flags)
     64     : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
     65     Op<0>() = C1;
     66     Op<1>() = C2;
     67     SubclassOptionalData = Flags;
     68   }
     69   /// Transparently provide more efficient getOperand methods.
     70   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
     71 };
     72 
     73 /// SelectConstantExpr - This class is private to Constants.cpp, and is used
     74 /// behind the scenes to implement select constant exprs.
     75 class SelectConstantExpr : public ConstantExpr {
     76   void anchor() override;
     77   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
     78 public:
     79   // allocate space for exactly three operands
     80   void *operator new(size_t s) {
     81     return User::operator new(s, 3);
     82   }
     83   SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
     84     : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
     85     Op<0>() = C1;
     86     Op<1>() = C2;
     87     Op<2>() = C3;
     88   }
     89   /// Transparently provide more efficient getOperand methods.
     90   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
     91 };
     92 
     93 /// ExtractElementConstantExpr - This class is private to
     94 /// Constants.cpp, and is used behind the scenes to implement
     95 /// extractelement constant exprs.
     96 class ExtractElementConstantExpr : public ConstantExpr {
     97   void anchor() override;
     98   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
     99 public:
    100   // allocate space for exactly two operands
    101   void *operator new(size_t s) {
    102     return User::operator new(s, 2);
    103   }
    104   ExtractElementConstantExpr(Constant *C1, Constant *C2)
    105     : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
    106                    Instruction::ExtractElement, &Op<0>(), 2) {
    107     Op<0>() = C1;
    108     Op<1>() = C2;
    109   }
    110   /// Transparently provide more efficient getOperand methods.
    111   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    112 };
    113 
    114 /// InsertElementConstantExpr - This class is private to
    115 /// Constants.cpp, and is used behind the scenes to implement
    116 /// insertelement constant exprs.
    117 class InsertElementConstantExpr : public ConstantExpr {
    118   void anchor() override;
    119   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
    120 public:
    121   // allocate space for exactly three operands
    122   void *operator new(size_t s) {
    123     return User::operator new(s, 3);
    124   }
    125   InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
    126     : ConstantExpr(C1->getType(), Instruction::InsertElement,
    127                    &Op<0>(), 3) {
    128     Op<0>() = C1;
    129     Op<1>() = C2;
    130     Op<2>() = C3;
    131   }
    132   /// Transparently provide more efficient getOperand methods.
    133   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    134 };
    135 
    136 /// ShuffleVectorConstantExpr - This class is private to
    137 /// Constants.cpp, and is used behind the scenes to implement
    138 /// shufflevector constant exprs.
    139 class ShuffleVectorConstantExpr : public ConstantExpr {
    140   void anchor() override;
    141   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
    142 public:
    143   // allocate space for exactly three operands
    144   void *operator new(size_t s) {
    145     return User::operator new(s, 3);
    146   }
    147   ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
    148   : ConstantExpr(VectorType::get(
    149                    cast<VectorType>(C1->getType())->getElementType(),
    150                    cast<VectorType>(C3->getType())->getNumElements()),
    151                  Instruction::ShuffleVector,
    152                  &Op<0>(), 3) {
    153     Op<0>() = C1;
    154     Op<1>() = C2;
    155     Op<2>() = C3;
    156   }
    157   /// Transparently provide more efficient getOperand methods.
    158   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    159 };
    160 
    161 /// ExtractValueConstantExpr - This class is private to
    162 /// Constants.cpp, and is used behind the scenes to implement
    163 /// extractvalue constant exprs.
    164 class ExtractValueConstantExpr : public ConstantExpr {
    165   void anchor() override;
    166   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
    167 public:
    168   // allocate space for exactly one operand
    169   void *operator new(size_t s) {
    170     return User::operator new(s, 1);
    171   }
    172   ExtractValueConstantExpr(Constant *Agg,
    173                            const SmallVector<unsigned, 4> &IdxList,
    174                            Type *DestTy)
    175     : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
    176       Indices(IdxList) {
    177     Op<0>() = Agg;
    178   }
    179 
    180   /// Indices - These identify which value to extract.
    181   const SmallVector<unsigned, 4> Indices;
    182 
    183   /// Transparently provide more efficient getOperand methods.
    184   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    185 };
    186 
    187 /// InsertValueConstantExpr - This class is private to
    188 /// Constants.cpp, and is used behind the scenes to implement
    189 /// insertvalue constant exprs.
    190 class InsertValueConstantExpr : public ConstantExpr {
    191   void anchor() override;
    192   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
    193 public:
    194   // allocate space for exactly one operand
    195   void *operator new(size_t s) {
    196     return User::operator new(s, 2);
    197   }
    198   InsertValueConstantExpr(Constant *Agg, Constant *Val,
    199                           const SmallVector<unsigned, 4> &IdxList,
    200                           Type *DestTy)
    201     : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
    202       Indices(IdxList) {
    203     Op<0>() = Agg;
    204     Op<1>() = Val;
    205   }
    206 
    207   /// Indices - These identify the position for the insertion.
    208   const SmallVector<unsigned, 4> Indices;
    209 
    210   /// Transparently provide more efficient getOperand methods.
    211   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    212 };
    213 
    214 
    215 /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
    216 /// used behind the scenes to implement getelementpr constant exprs.
    217 class GetElementPtrConstantExpr : public ConstantExpr {
    218   void anchor() override;
    219   GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
    220                             Type *DestTy);
    221 public:
    222   static GetElementPtrConstantExpr *Create(Constant *C,
    223                                            ArrayRef<Constant*> IdxList,
    224                                            Type *DestTy,
    225                                            unsigned Flags) {
    226     GetElementPtrConstantExpr *Result =
    227       new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
    228     Result->SubclassOptionalData = Flags;
    229     return Result;
    230   }
    231   /// Transparently provide more efficient getOperand methods.
    232   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    233 };
    234 
    235 // CompareConstantExpr - This class is private to Constants.cpp, and is used
    236 // behind the scenes to implement ICmp and FCmp constant expressions. This is
    237 // needed in order to store the predicate value for these instructions.
    238 class CompareConstantExpr : public ConstantExpr {
    239   void anchor() override;
    240   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
    241 public:
    242   // allocate space for exactly two operands
    243   void *operator new(size_t s) {
    244     return User::operator new(s, 2);
    245   }
    246   unsigned short predicate;
    247   CompareConstantExpr(Type *ty, Instruction::OtherOps opc,
    248                       unsigned short pred,  Constant* LHS, Constant* RHS)
    249     : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
    250     Op<0>() = LHS;
    251     Op<1>() = RHS;
    252   }
    253   /// Transparently provide more efficient getOperand methods.
    254   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    255 };
    256 
    257 template <>
    258 struct OperandTraits<UnaryConstantExpr> :
    259   public FixedNumOperandTraits<UnaryConstantExpr, 1> {
    260 };
    261 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
    262 
    263 template <>
    264 struct OperandTraits<BinaryConstantExpr> :
    265   public FixedNumOperandTraits<BinaryConstantExpr, 2> {
    266 };
    267 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
    268 
    269 template <>
    270 struct OperandTraits<SelectConstantExpr> :
    271   public FixedNumOperandTraits<SelectConstantExpr, 3> {
    272 };
    273 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
    274 
    275 template <>
    276 struct OperandTraits<ExtractElementConstantExpr> :
    277   public FixedNumOperandTraits<ExtractElementConstantExpr, 2> {
    278 };
    279 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
    280 
    281 template <>
    282 struct OperandTraits<InsertElementConstantExpr> :
    283   public FixedNumOperandTraits<InsertElementConstantExpr, 3> {
    284 };
    285 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
    286 
    287 template <>
    288 struct OperandTraits<ShuffleVectorConstantExpr> :
    289     public FixedNumOperandTraits<ShuffleVectorConstantExpr, 3> {
    290 };
    291 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
    292 
    293 template <>
    294 struct OperandTraits<ExtractValueConstantExpr> :
    295   public FixedNumOperandTraits<ExtractValueConstantExpr, 1> {
    296 };
    297 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
    298 
    299 template <>
    300 struct OperandTraits<InsertValueConstantExpr> :
    301   public FixedNumOperandTraits<InsertValueConstantExpr, 2> {
    302 };
    303 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
    304 
    305 template <>
    306 struct OperandTraits<GetElementPtrConstantExpr> :
    307   public VariadicOperandTraits<GetElementPtrConstantExpr, 1> {
    308 };
    309 
    310 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
    311 
    312 
    313 template <>
    314 struct OperandTraits<CompareConstantExpr> :
    315   public FixedNumOperandTraits<CompareConstantExpr, 2> {
    316 };
    317 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
    318 
    319 struct ExprMapKeyType {
    320   ExprMapKeyType(unsigned opc,
    321       ArrayRef<Constant*> ops,
    322       unsigned short flags = 0,
    323       unsigned short optionalflags = 0,
    324       ArrayRef<unsigned> inds = None)
    325         : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
    326         operands(ops.begin(), ops.end()), indices(inds.begin(), inds.end()) {}
    327   uint8_t opcode;
    328   uint8_t subclassoptionaldata;
    329   uint16_t subclassdata;
    330   std::vector<Constant*> operands;
    331   SmallVector<unsigned, 4> indices;
    332   bool operator==(const ExprMapKeyType& that) const {
    333     return this->opcode == that.opcode &&
    334            this->subclassdata == that.subclassdata &&
    335            this->subclassoptionaldata == that.subclassoptionaldata &&
    336            this->operands == that.operands &&
    337            this->indices == that.indices;
    338   }
    339   bool operator<(const ExprMapKeyType & that) const {
    340     return std::tie(opcode, operands, subclassdata, subclassoptionaldata,
    341                     indices) <
    342            std::tie(that.opcode, that.operands, that.subclassdata,
    343                     that.subclassoptionaldata, that.indices);
    344   }
    345 
    346   bool operator!=(const ExprMapKeyType& that) const {
    347     return !(*this == that);
    348   }
    349 };
    350 
    351 struct InlineAsmKeyType {
    352   InlineAsmKeyType(StringRef AsmString,
    353                    StringRef Constraints, bool hasSideEffects,
    354                    bool isAlignStack, InlineAsm::AsmDialect asmDialect)
    355     : asm_string(AsmString), constraints(Constraints),
    356       has_side_effects(hasSideEffects), is_align_stack(isAlignStack),
    357       asm_dialect(asmDialect) {}
    358   std::string asm_string;
    359   std::string constraints;
    360   bool has_side_effects;
    361   bool is_align_stack;
    362   InlineAsm::AsmDialect asm_dialect;
    363   bool operator==(const InlineAsmKeyType& that) const {
    364     return this->asm_string == that.asm_string &&
    365            this->constraints == that.constraints &&
    366            this->has_side_effects == that.has_side_effects &&
    367            this->is_align_stack == that.is_align_stack &&
    368            this->asm_dialect == that.asm_dialect;
    369   }
    370   bool operator<(const InlineAsmKeyType& that) const {
    371     return std::tie(asm_string, constraints, has_side_effects, is_align_stack,
    372                     asm_dialect) <
    373            std::tie(that.asm_string, that.constraints, that.has_side_effects,
    374                     that.is_align_stack, that.asm_dialect);
    375   }
    376 
    377   bool operator!=(const InlineAsmKeyType& that) const {
    378     return !(*this == that);
    379   }
    380 };
    381 
    382 // The number of operands for each ConstantCreator::create method is
    383 // determined by the ConstantTraits template.
    384 // ConstantCreator - A class that is used to create constants by
    385 // ConstantUniqueMap*.  This class should be partially specialized if there is
    386 // something strange that needs to be done to interface to the ctor for the
    387 // constant.
    388 //
    389 template<typename T, typename Alloc>
    390 struct ConstantTraits< std::vector<T, Alloc> > {
    391   static unsigned uses(const std::vector<T, Alloc>& v) {
    392     return v.size();
    393   }
    394 };
    395 
    396 template<>
    397 struct ConstantTraits<Constant *> {
    398   static unsigned uses(Constant * const & v) {
    399     return 1;
    400   }
    401 };
    402 
    403 template<class ConstantClass, class TypeClass, class ValType>
    404 struct ConstantCreator {
    405   static ConstantClass *create(TypeClass *Ty, const ValType &V) {
    406     return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
    407   }
    408 };
    409 
    410 template<class ConstantClass, class TypeClass>
    411 struct ConstantArrayCreator {
    412   static ConstantClass *create(TypeClass *Ty, ArrayRef<Constant*> V) {
    413     return new(V.size()) ConstantClass(Ty, V);
    414   }
    415 };
    416 
    417 template<class ConstantClass>
    418 struct ConstantKeyData {
    419   typedef void ValType;
    420   static ValType getValType(ConstantClass *C) {
    421     llvm_unreachable("Unknown Constant type!");
    422   }
    423 };
    424 
    425 template<>
    426 struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
    427   static ConstantExpr *create(Type *Ty, const ExprMapKeyType &V,
    428       unsigned short pred = 0) {
    429     if (Instruction::isCast(V.opcode))
    430       return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
    431     if ((V.opcode >= Instruction::BinaryOpsBegin &&
    432          V.opcode < Instruction::BinaryOpsEnd))
    433       return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
    434                                     V.subclassoptionaldata);
    435     if (V.opcode == Instruction::Select)
    436       return new SelectConstantExpr(V.operands[0], V.operands[1],
    437                                     V.operands[2]);
    438     if (V.opcode == Instruction::ExtractElement)
    439       return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
    440     if (V.opcode == Instruction::InsertElement)
    441       return new InsertElementConstantExpr(V.operands[0], V.operands[1],
    442                                            V.operands[2]);
    443     if (V.opcode == Instruction::ShuffleVector)
    444       return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
    445                                            V.operands[2]);
    446     if (V.opcode == Instruction::InsertValue)
    447       return new InsertValueConstantExpr(V.operands[0], V.operands[1],
    448                                          V.indices, Ty);
    449     if (V.opcode == Instruction::ExtractValue)
    450       return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
    451     if (V.opcode == Instruction::GetElementPtr) {
    452       std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
    453       return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
    454                                                V.subclassoptionaldata);
    455     }
    456 
    457     // The compare instructions are weird. We have to encode the predicate
    458     // value and it is combined with the instruction opcode by multiplying
    459     // the opcode by one hundred. We must decode this to get the predicate.
    460     if (V.opcode == Instruction::ICmp)
    461       return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
    462                                      V.operands[0], V.operands[1]);
    463     if (V.opcode == Instruction::FCmp)
    464       return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
    465                                      V.operands[0], V.operands[1]);
    466     llvm_unreachable("Invalid ConstantExpr!");
    467   }
    468 };
    469 
    470 template<>
    471 struct ConstantKeyData<ConstantExpr> {
    472   typedef ExprMapKeyType ValType;
    473   static ValType getValType(ConstantExpr *CE) {
    474     std::vector<Constant*> Operands;
    475     Operands.reserve(CE->getNumOperands());
    476     for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
    477       Operands.push_back(cast<Constant>(CE->getOperand(i)));
    478     return ExprMapKeyType(CE->getOpcode(), Operands,
    479         CE->isCompare() ? CE->getPredicate() : 0,
    480         CE->getRawSubclassOptionalData(),
    481         CE->hasIndices() ?
    482           CE->getIndices() : ArrayRef<unsigned>());
    483   }
    484 };
    485 
    486 template<>
    487 struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
    488   static InlineAsm *create(PointerType *Ty, const InlineAsmKeyType &Key) {
    489     return new InlineAsm(Ty, Key.asm_string, Key.constraints,
    490                          Key.has_side_effects, Key.is_align_stack,
    491                          Key.asm_dialect);
    492   }
    493 };
    494 
    495 template<>
    496 struct ConstantKeyData<InlineAsm> {
    497   typedef InlineAsmKeyType ValType;
    498   static ValType getValType(InlineAsm *Asm) {
    499     return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
    500                             Asm->hasSideEffects(), Asm->isAlignStack(),
    501                             Asm->getDialect());
    502   }
    503 };
    504 
    505 template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
    506          bool HasLargeKey = false /*true for arrays and structs*/ >
    507 class ConstantUniqueMap {
    508 public:
    509   typedef std::pair<TypeClass*, ValType> MapKey;
    510   typedef std::map<MapKey, ConstantClass *> MapTy;
    511   typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
    512 private:
    513   /// Map - This is the main map from the element descriptor to the Constants.
    514   /// This is the primary way we avoid creating two of the same shape
    515   /// constant.
    516   MapTy Map;
    517 
    518   /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
    519   /// from the constants to their element in Map.  This is important for
    520   /// removal of constants from the array, which would otherwise have to scan
    521   /// through the map with very large keys.
    522   InverseMapTy InverseMap;
    523 
    524 public:
    525   typename MapTy::iterator map_begin() { return Map.begin(); }
    526   typename MapTy::iterator map_end() { return Map.end(); }
    527 
    528   void freeConstants() {
    529     for (typename MapTy::iterator I=Map.begin(), E=Map.end();
    530          I != E; ++I) {
    531       // Asserts that use_empty().
    532       delete I->second;
    533     }
    534   }
    535 
    536   /// InsertOrGetItem - Return an iterator for the specified element.
    537   /// If the element exists in the map, the returned iterator points to the
    538   /// entry and Exists=true.  If not, the iterator points to the newly
    539   /// inserted entry and returns Exists=false.  Newly inserted entries have
    540   /// I->second == 0, and should be filled in.
    541   typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
    542                                  &InsertVal,
    543                                  bool &Exists) {
    544     std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
    545     Exists = !IP.second;
    546     return IP.first;
    547   }
    548 
    549 private:
    550   typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
    551     if (HasLargeKey) {
    552       typename InverseMapTy::iterator IMI = InverseMap.find(CP);
    553       assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
    554              IMI->second->second == CP &&
    555              "InverseMap corrupt!");
    556       return IMI->second;
    557     }
    558 
    559     typename MapTy::iterator I =
    560       Map.find(MapKey(static_cast<TypeClass*>(CP->getType()),
    561                       ConstantKeyData<ConstantClass>::getValType(CP)));
    562     if (I == Map.end() || I->second != CP) {
    563       // FIXME: This should not use a linear scan.  If this gets to be a
    564       // performance problem, someone should look at this.
    565       for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
    566         /* empty */;
    567     }
    568     return I;
    569   }
    570 
    571   ConstantClass *Create(TypeClass *Ty, ValRefType V,
    572                         typename MapTy::iterator I) {
    573     ConstantClass* Result =
    574       ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
    575 
    576     assert(Result->getType() == Ty && "Type specified is not correct!");
    577     I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
    578 
    579     if (HasLargeKey)  // Remember the reverse mapping if needed.
    580       InverseMap.insert(std::make_pair(Result, I));
    581 
    582     return Result;
    583   }
    584 public:
    585 
    586   /// getOrCreate - Return the specified constant from the map, creating it if
    587   /// necessary.
    588   ConstantClass *getOrCreate(TypeClass *Ty, ValRefType V) {
    589     MapKey Lookup(Ty, V);
    590     ConstantClass* Result = nullptr;
    591 
    592     typename MapTy::iterator I = Map.find(Lookup);
    593     // Is it in the map?
    594     if (I != Map.end())
    595       Result = I->second;
    596 
    597     if (!Result) {
    598       // If no preexisting value, create one now...
    599       Result = Create(Ty, V, I);
    600     }
    601 
    602     return Result;
    603   }
    604 
    605   void remove(ConstantClass *CP) {
    606     typename MapTy::iterator I = FindExistingElement(CP);
    607     assert(I != Map.end() && "Constant not found in constant table!");
    608     assert(I->second == CP && "Didn't find correct element?");
    609 
    610     if (HasLargeKey)  // Remember the reverse mapping if needed.
    611       InverseMap.erase(CP);
    612 
    613     Map.erase(I);
    614   }
    615 
    616   /// MoveConstantToNewSlot - If we are about to change C to be the element
    617   /// specified by I, update our internal data structures to reflect this
    618   /// fact.
    619   void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
    620     // First, remove the old location of the specified constant in the map.
    621     typename MapTy::iterator OldI = FindExistingElement(C);
    622     assert(OldI != Map.end() && "Constant not found in constant table!");
    623     assert(OldI->second == C && "Didn't find correct element?");
    624 
    625      // Remove the old entry from the map.
    626     Map.erase(OldI);
    627 
    628     // Update the inverse map so that we know that this constant is now
    629     // located at descriptor I.
    630     if (HasLargeKey) {
    631       assert(I->second == C && "Bad inversemap entry!");
    632       InverseMap[C] = I;
    633     }
    634   }
    635 
    636   void dump() const {
    637     DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
    638   }
    639 };
    640 
    641 // Unique map for aggregate constants
    642 template<class TypeClass, class ConstantClass>
    643 class ConstantAggrUniqueMap {
    644 public:
    645   typedef ArrayRef<Constant*> Operands;
    646   typedef std::pair<TypeClass*, Operands> LookupKey;
    647 private:
    648   struct MapInfo {
    649     typedef DenseMapInfo<ConstantClass*> ConstantClassInfo;
    650     typedef DenseMapInfo<Constant*> ConstantInfo;
    651     typedef DenseMapInfo<TypeClass*> TypeClassInfo;
    652     static inline ConstantClass* getEmptyKey() {
    653       return ConstantClassInfo::getEmptyKey();
    654     }
    655     static inline ConstantClass* getTombstoneKey() {
    656       return ConstantClassInfo::getTombstoneKey();
    657     }
    658     static unsigned getHashValue(const ConstantClass *CP) {
    659       SmallVector<Constant*, 8> CPOperands;
    660       CPOperands.reserve(CP->getNumOperands());
    661       for (unsigned I = 0, E = CP->getNumOperands(); I < E; ++I)
    662         CPOperands.push_back(CP->getOperand(I));
    663       return getHashValue(LookupKey(CP->getType(), CPOperands));
    664     }
    665     static bool isEqual(const ConstantClass *LHS, const ConstantClass *RHS) {
    666       return LHS == RHS;
    667     }
    668     static unsigned getHashValue(const LookupKey &Val) {
    669       return hash_combine(Val.first, hash_combine_range(Val.second.begin(),
    670                                                         Val.second.end()));
    671     }
    672     static bool isEqual(const LookupKey &LHS, const ConstantClass *RHS) {
    673       if (RHS == getEmptyKey() || RHS == getTombstoneKey())
    674         return false;
    675       if (LHS.first != RHS->getType()
    676           || LHS.second.size() != RHS->getNumOperands())
    677         return false;
    678       for (unsigned I = 0, E = RHS->getNumOperands(); I < E; ++I) {
    679         if (LHS.second[I] != RHS->getOperand(I))
    680           return false;
    681       }
    682       return true;
    683     }
    684   };
    685 public:
    686   typedef DenseMap<ConstantClass *, char, MapInfo> MapTy;
    687 
    688 private:
    689   /// Map - This is the main map from the element descriptor to the Constants.
    690   /// This is the primary way we avoid creating two of the same shape
    691   /// constant.
    692   MapTy Map;
    693 
    694 public:
    695   typename MapTy::iterator map_begin() { return Map.begin(); }
    696   typename MapTy::iterator map_end() { return Map.end(); }
    697 
    698   void freeConstants() {
    699     for (typename MapTy::iterator I=Map.begin(), E=Map.end();
    700          I != E; ++I) {
    701       // Asserts that use_empty().
    702       delete I->first;
    703     }
    704   }
    705 
    706 private:
    707   typename MapTy::iterator findExistingElement(ConstantClass *CP) {
    708     return Map.find(CP);
    709   }
    710 
    711   ConstantClass *Create(TypeClass *Ty, Operands V, typename MapTy::iterator I) {
    712     ConstantClass* Result =
    713       ConstantArrayCreator<ConstantClass,TypeClass>::create(Ty, V);
    714 
    715     assert(Result->getType() == Ty && "Type specified is not correct!");
    716     Map[Result] = '\0';
    717 
    718     return Result;
    719   }
    720 public:
    721 
    722   /// getOrCreate - Return the specified constant from the map, creating it if
    723   /// necessary.
    724   ConstantClass *getOrCreate(TypeClass *Ty, Operands V) {
    725     LookupKey Lookup(Ty, V);
    726     ConstantClass* Result = nullptr;
    727 
    728     typename MapTy::iterator I = Map.find_as(Lookup);
    729     // Is it in the map?
    730     if (I != Map.end())
    731       Result = I->first;
    732 
    733     if (!Result) {
    734       // If no preexisting value, create one now...
    735       Result = Create(Ty, V, I);
    736     }
    737 
    738     return Result;
    739   }
    740 
    741   /// Find the constant by lookup key.
    742   typename MapTy::iterator find(LookupKey Lookup) {
    743     return Map.find_as(Lookup);
    744   }
    745 
    746   /// Insert the constant into its proper slot.
    747   void insert(ConstantClass *CP) {
    748     Map[CP] = '\0';
    749   }
    750 
    751   /// Remove this constant from the map
    752   void remove(ConstantClass *CP) {
    753     typename MapTy::iterator I = findExistingElement(CP);
    754     assert(I != Map.end() && "Constant not found in constant table!");
    755     assert(I->first == CP && "Didn't find correct element?");
    756     Map.erase(I);
    757   }
    758 
    759   void dump() const {
    760     DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
    761   }
    762 };
    763 
    764 }
    765 
    766 #endif
    767