1 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass deletes dead arguments from internal functions. Dead argument 11 // elimination removes arguments which are directly dead, as well as arguments 12 // only passed into function calls as dead arguments of other functions. This 13 // pass also deletes dead return values in a similar way. 14 // 15 // This pass is often useful as a cleanup pass to run after aggressive 16 // interprocedural passes, which add possibly-dead arguments or return values. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/CallingConv.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/DIBuilder.h" 29 #include "llvm/IR/DebugInfo.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <map> 39 #include <set> 40 #include <tuple> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "deadargelim" 44 45 STATISTIC(NumArgumentsEliminated, "Number of unread args removed"); 46 STATISTIC(NumRetValsEliminated , "Number of unused return values removed"); 47 STATISTIC(NumArgumentsReplacedWithUndef, 48 "Number of unread args replaced with undef"); 49 namespace { 50 /// DAE - The dead argument elimination pass. 51 /// 52 class DAE : public ModulePass { 53 public: 54 55 /// Struct that represents (part of) either a return value or a function 56 /// argument. Used so that arguments and return values can be used 57 /// interchangeably. 58 struct RetOrArg { 59 RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx), 60 IsArg(IsArg) {} 61 const Function *F; 62 unsigned Idx; 63 bool IsArg; 64 65 /// Make RetOrArg comparable, so we can put it into a map. 66 bool operator<(const RetOrArg &O) const { 67 return std::tie(F, Idx, IsArg) < std::tie(O.F, O.Idx, O.IsArg); 68 } 69 70 /// Make RetOrArg comparable, so we can easily iterate the multimap. 71 bool operator==(const RetOrArg &O) const { 72 return F == O.F && Idx == O.Idx && IsArg == O.IsArg; 73 } 74 75 std::string getDescription() const { 76 return std::string((IsArg ? "Argument #" : "Return value #")) 77 + utostr(Idx) + " of function " + F->getName().str(); 78 } 79 }; 80 81 /// Liveness enum - During our initial pass over the program, we determine 82 /// that things are either alive or maybe alive. We don't mark anything 83 /// explicitly dead (even if we know they are), since anything not alive 84 /// with no registered uses (in Uses) will never be marked alive and will 85 /// thus become dead in the end. 86 enum Liveness { Live, MaybeLive }; 87 88 /// Convenience wrapper 89 RetOrArg CreateRet(const Function *F, unsigned Idx) { 90 return RetOrArg(F, Idx, false); 91 } 92 /// Convenience wrapper 93 RetOrArg CreateArg(const Function *F, unsigned Idx) { 94 return RetOrArg(F, Idx, true); 95 } 96 97 typedef std::multimap<RetOrArg, RetOrArg> UseMap; 98 /// This maps a return value or argument to any MaybeLive return values or 99 /// arguments it uses. This allows the MaybeLive values to be marked live 100 /// when any of its users is marked live. 101 /// For example (indices are left out for clarity): 102 /// - Uses[ret F] = ret G 103 /// This means that F calls G, and F returns the value returned by G. 104 /// - Uses[arg F] = ret G 105 /// This means that some function calls G and passes its result as an 106 /// argument to F. 107 /// - Uses[ret F] = arg F 108 /// This means that F returns one of its own arguments. 109 /// - Uses[arg F] = arg G 110 /// This means that G calls F and passes one of its own (G's) arguments 111 /// directly to F. 112 UseMap Uses; 113 114 typedef std::set<RetOrArg> LiveSet; 115 typedef std::set<const Function*> LiveFuncSet; 116 117 /// This set contains all values that have been determined to be live. 118 LiveSet LiveValues; 119 /// This set contains all values that are cannot be changed in any way. 120 LiveFuncSet LiveFunctions; 121 122 typedef SmallVector<RetOrArg, 5> UseVector; 123 124 // Map each LLVM function to corresponding metadata with debug info. If 125 // the function is replaced with another one, we should patch the pointer 126 // to LLVM function in metadata. 127 // As the code generation for module is finished (and DIBuilder is 128 // finalized) we assume that subprogram descriptors won't be changed, and 129 // they are stored in map for short duration anyway. 130 DenseMap<const Function *, DISubprogram> FunctionDIs; 131 132 protected: 133 // DAH uses this to specify a different ID. 134 explicit DAE(char &ID) : ModulePass(ID) {} 135 136 public: 137 static char ID; // Pass identification, replacement for typeid 138 DAE() : ModulePass(ID) { 139 initializeDAEPass(*PassRegistry::getPassRegistry()); 140 } 141 142 bool runOnModule(Module &M) override; 143 144 virtual bool ShouldHackArguments() const { return false; } 145 146 private: 147 Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses); 148 Liveness SurveyUse(const Use *U, UseVector &MaybeLiveUses, 149 unsigned RetValNum = 0); 150 Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses); 151 152 void SurveyFunction(const Function &F); 153 void MarkValue(const RetOrArg &RA, Liveness L, 154 const UseVector &MaybeLiveUses); 155 void MarkLive(const RetOrArg &RA); 156 void MarkLive(const Function &F); 157 void PropagateLiveness(const RetOrArg &RA); 158 bool RemoveDeadStuffFromFunction(Function *F); 159 bool DeleteDeadVarargs(Function &Fn); 160 bool RemoveDeadArgumentsFromCallers(Function &Fn); 161 }; 162 } 163 164 165 char DAE::ID = 0; 166 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false) 167 168 namespace { 169 /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but 170 /// deletes arguments to functions which are external. This is only for use 171 /// by bugpoint. 172 struct DAH : public DAE { 173 static char ID; 174 DAH() : DAE(ID) {} 175 176 bool ShouldHackArguments() const override { return true; } 177 }; 178 } 179 180 char DAH::ID = 0; 181 INITIALIZE_PASS(DAH, "deadarghaX0r", 182 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", 183 false, false) 184 185 /// createDeadArgEliminationPass - This pass removes arguments from functions 186 /// which are not used by the body of the function. 187 /// 188 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); } 189 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); } 190 191 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if 192 /// llvm.vastart is never called, the varargs list is dead for the function. 193 bool DAE::DeleteDeadVarargs(Function &Fn) { 194 assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!"); 195 if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false; 196 197 // Ensure that the function is only directly called. 198 if (Fn.hasAddressTaken()) 199 return false; 200 201 // Okay, we know we can transform this function if safe. Scan its body 202 // looking for calls to llvm.vastart. 203 for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { 204 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 205 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 206 if (II->getIntrinsicID() == Intrinsic::vastart) 207 return false; 208 } 209 } 210 } 211 212 // If we get here, there are no calls to llvm.vastart in the function body, 213 // remove the "..." and adjust all the calls. 214 215 // Start by computing a new prototype for the function, which is the same as 216 // the old function, but doesn't have isVarArg set. 217 FunctionType *FTy = Fn.getFunctionType(); 218 219 std::vector<Type*> Params(FTy->param_begin(), FTy->param_end()); 220 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), 221 Params, false); 222 unsigned NumArgs = Params.size(); 223 224 // Create the new function body and insert it into the module... 225 Function *NF = Function::Create(NFTy, Fn.getLinkage()); 226 NF->copyAttributesFrom(&Fn); 227 Fn.getParent()->getFunctionList().insert(&Fn, NF); 228 NF->takeName(&Fn); 229 230 // Loop over all of the callers of the function, transforming the call sites 231 // to pass in a smaller number of arguments into the new function. 232 // 233 std::vector<Value*> Args; 234 for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) { 235 CallSite CS(*I++); 236 if (!CS) 237 continue; 238 Instruction *Call = CS.getInstruction(); 239 240 // Pass all the same arguments. 241 Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs); 242 243 // Drop any attributes that were on the vararg arguments. 244 AttributeSet PAL = CS.getAttributes(); 245 if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) { 246 SmallVector<AttributeSet, 8> AttributesVec; 247 for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i) 248 AttributesVec.push_back(PAL.getSlotAttributes(i)); 249 if (PAL.hasAttributes(AttributeSet::FunctionIndex)) 250 AttributesVec.push_back(AttributeSet::get(Fn.getContext(), 251 PAL.getFnAttributes())); 252 PAL = AttributeSet::get(Fn.getContext(), AttributesVec); 253 } 254 255 Instruction *New; 256 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 257 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 258 Args, "", Call); 259 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv()); 260 cast<InvokeInst>(New)->setAttributes(PAL); 261 } else { 262 New = CallInst::Create(NF, Args, "", Call); 263 cast<CallInst>(New)->setCallingConv(CS.getCallingConv()); 264 cast<CallInst>(New)->setAttributes(PAL); 265 if (cast<CallInst>(Call)->isTailCall()) 266 cast<CallInst>(New)->setTailCall(); 267 } 268 New->setDebugLoc(Call->getDebugLoc()); 269 270 Args.clear(); 271 272 if (!Call->use_empty()) 273 Call->replaceAllUsesWith(New); 274 275 New->takeName(Call); 276 277 // Finally, remove the old call from the program, reducing the use-count of 278 // F. 279 Call->eraseFromParent(); 280 } 281 282 // Since we have now created the new function, splice the body of the old 283 // function right into the new function, leaving the old rotting hulk of the 284 // function empty. 285 NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList()); 286 287 // Loop over the argument list, transferring uses of the old arguments over to 288 // the new arguments, also transferring over the names as well. While we're at 289 // it, remove the dead arguments from the DeadArguments list. 290 // 291 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(), 292 I2 = NF->arg_begin(); I != E; ++I, ++I2) { 293 // Move the name and users over to the new version. 294 I->replaceAllUsesWith(I2); 295 I2->takeName(I); 296 } 297 298 // Patch the pointer to LLVM function in debug info descriptor. 299 auto DI = FunctionDIs.find(&Fn); 300 if (DI != FunctionDIs.end()) 301 DI->second.replaceFunction(NF); 302 303 // Fix up any BlockAddresses that refer to the function. 304 Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType())); 305 // Delete the bitcast that we just created, so that NF does not 306 // appear to be address-taken. 307 NF->removeDeadConstantUsers(); 308 // Finally, nuke the old function. 309 Fn.eraseFromParent(); 310 return true; 311 } 312 313 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any 314 /// arguments that are unused, and changes the caller parameters to be undefined 315 /// instead. 316 bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn) 317 { 318 if (Fn.isDeclaration() || Fn.mayBeOverridden()) 319 return false; 320 321 // Functions with local linkage should already have been handled, except the 322 // fragile (variadic) ones which we can improve here. 323 if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg()) 324 return false; 325 326 // If a function seen at compile time is not necessarily the one linked to 327 // the binary being built, it is illegal to change the actual arguments 328 // passed to it. These functions can be captured by isWeakForLinker(). 329 // *NOTE* that mayBeOverridden() is insufficient for this purpose as it 330 // doesn't include linkage types like AvailableExternallyLinkage and 331 // LinkOnceODRLinkage. Take link_odr* as an example, it indicates a set of 332 // *EQUIVALENT* globals that can be merged at link-time. However, the 333 // semantic of *EQUIVALENT*-functions includes parameters. Changing 334 // parameters breaks this assumption. 335 // 336 if (Fn.isWeakForLinker()) 337 return false; 338 339 if (Fn.use_empty()) 340 return false; 341 342 SmallVector<unsigned, 8> UnusedArgs; 343 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(); 344 I != E; ++I) { 345 Argument *Arg = I; 346 347 if (Arg->use_empty() && !Arg->hasByValOrInAllocaAttr()) 348 UnusedArgs.push_back(Arg->getArgNo()); 349 } 350 351 if (UnusedArgs.empty()) 352 return false; 353 354 bool Changed = false; 355 356 for (Use &U : Fn.uses()) { 357 CallSite CS(U.getUser()); 358 if (!CS || !CS.isCallee(&U)) 359 continue; 360 361 // Now go through all unused args and replace them with "undef". 362 for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) { 363 unsigned ArgNo = UnusedArgs[I]; 364 365 Value *Arg = CS.getArgument(ArgNo); 366 CS.setArgument(ArgNo, UndefValue::get(Arg->getType())); 367 ++NumArgumentsReplacedWithUndef; 368 Changed = true; 369 } 370 } 371 372 return Changed; 373 } 374 375 /// Convenience function that returns the number of return values. It returns 0 376 /// for void functions and 1 for functions not returning a struct. It returns 377 /// the number of struct elements for functions returning a struct. 378 static unsigned NumRetVals(const Function *F) { 379 if (F->getReturnType()->isVoidTy()) 380 return 0; 381 else if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) 382 return STy->getNumElements(); 383 else 384 return 1; 385 } 386 387 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not 388 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined 389 /// liveness of Use. 390 DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) { 391 // We're live if our use or its Function is already marked as live. 392 if (LiveFunctions.count(Use.F) || LiveValues.count(Use)) 393 return Live; 394 395 // We're maybe live otherwise, but remember that we must become live if 396 // Use becomes live. 397 MaybeLiveUses.push_back(Use); 398 return MaybeLive; 399 } 400 401 402 /// SurveyUse - This looks at a single use of an argument or return value 403 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses 404 /// if it causes the used value to become MaybeLive. 405 /// 406 /// RetValNum is the return value number to use when this use is used in a 407 /// return instruction. This is used in the recursion, you should always leave 408 /// it at 0. 409 DAE::Liveness DAE::SurveyUse(const Use *U, 410 UseVector &MaybeLiveUses, unsigned RetValNum) { 411 const User *V = U->getUser(); 412 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) { 413 // The value is returned from a function. It's only live when the 414 // function's return value is live. We use RetValNum here, for the case 415 // that U is really a use of an insertvalue instruction that uses the 416 // original Use. 417 RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum); 418 // We might be live, depending on the liveness of Use. 419 return MarkIfNotLive(Use, MaybeLiveUses); 420 } 421 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) { 422 if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() 423 && IV->hasIndices()) 424 // The use we are examining is inserted into an aggregate. Our liveness 425 // depends on all uses of that aggregate, but if it is used as a return 426 // value, only index at which we were inserted counts. 427 RetValNum = *IV->idx_begin(); 428 429 // Note that if we are used as the aggregate operand to the insertvalue, 430 // we don't change RetValNum, but do survey all our uses. 431 432 Liveness Result = MaybeLive; 433 for (const Use &UU : IV->uses()) { 434 Result = SurveyUse(&UU, MaybeLiveUses, RetValNum); 435 if (Result == Live) 436 break; 437 } 438 return Result; 439 } 440 441 if (ImmutableCallSite CS = V) { 442 const Function *F = CS.getCalledFunction(); 443 if (F) { 444 // Used in a direct call. 445 446 // Find the argument number. We know for sure that this use is an 447 // argument, since if it was the function argument this would be an 448 // indirect call and the we know can't be looking at a value of the 449 // label type (for the invoke instruction). 450 unsigned ArgNo = CS.getArgumentNo(U); 451 452 if (ArgNo >= F->getFunctionType()->getNumParams()) 453 // The value is passed in through a vararg! Must be live. 454 return Live; 455 456 assert(CS.getArgument(ArgNo) 457 == CS->getOperand(U->getOperandNo()) 458 && "Argument is not where we expected it"); 459 460 // Value passed to a normal call. It's only live when the corresponding 461 // argument to the called function turns out live. 462 RetOrArg Use = CreateArg(F, ArgNo); 463 return MarkIfNotLive(Use, MaybeLiveUses); 464 } 465 } 466 // Used in any other way? Value must be live. 467 return Live; 468 } 469 470 /// SurveyUses - This looks at all the uses of the given value 471 /// Returns the Liveness deduced from the uses of this value. 472 /// 473 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If 474 /// the result is Live, MaybeLiveUses might be modified but its content should 475 /// be ignored (since it might not be complete). 476 DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) { 477 // Assume it's dead (which will only hold if there are no uses at all..). 478 Liveness Result = MaybeLive; 479 // Check each use. 480 for (const Use &U : V->uses()) { 481 Result = SurveyUse(&U, MaybeLiveUses); 482 if (Result == Live) 483 break; 484 } 485 return Result; 486 } 487 488 // SurveyFunction - This performs the initial survey of the specified function, 489 // checking out whether or not it uses any of its incoming arguments or whether 490 // any callers use the return value. This fills in the LiveValues set and Uses 491 // map. 492 // 493 // We consider arguments of non-internal functions to be intrinsically alive as 494 // well as arguments to functions which have their "address taken". 495 // 496 void DAE::SurveyFunction(const Function &F) { 497 // Functions with inalloca parameters are expecting args in a particular 498 // register and memory layout. 499 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) { 500 MarkLive(F); 501 return; 502 } 503 504 unsigned RetCount = NumRetVals(&F); 505 // Assume all return values are dead 506 typedef SmallVector<Liveness, 5> RetVals; 507 RetVals RetValLiveness(RetCount, MaybeLive); 508 509 typedef SmallVector<UseVector, 5> RetUses; 510 // These vectors map each return value to the uses that make it MaybeLive, so 511 // we can add those to the Uses map if the return value really turns out to be 512 // MaybeLive. Initialized to a list of RetCount empty lists. 513 RetUses MaybeLiveRetUses(RetCount); 514 515 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 516 if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 517 if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType() 518 != F.getFunctionType()->getReturnType()) { 519 // We don't support old style multiple return values. 520 MarkLive(F); 521 return; 522 } 523 524 if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) { 525 MarkLive(F); 526 return; 527 } 528 529 DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n"); 530 // Keep track of the number of live retvals, so we can skip checks once all 531 // of them turn out to be live. 532 unsigned NumLiveRetVals = 0; 533 Type *STy = dyn_cast<StructType>(F.getReturnType()); 534 // Loop all uses of the function. 535 for (const Use &U : F.uses()) { 536 // If the function is PASSED IN as an argument, its address has been 537 // taken. 538 ImmutableCallSite CS(U.getUser()); 539 if (!CS || !CS.isCallee(&U)) { 540 MarkLive(F); 541 return; 542 } 543 544 // If this use is anything other than a call site, the function is alive. 545 const Instruction *TheCall = CS.getInstruction(); 546 if (!TheCall) { // Not a direct call site? 547 MarkLive(F); 548 return; 549 } 550 551 // If we end up here, we are looking at a direct call to our function. 552 553 // Now, check how our return value(s) is/are used in this caller. Don't 554 // bother checking return values if all of them are live already. 555 if (NumLiveRetVals != RetCount) { 556 if (STy) { 557 // Check all uses of the return value. 558 for (const User *U : TheCall->users()) { 559 const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U); 560 if (Ext && Ext->hasIndices()) { 561 // This use uses a part of our return value, survey the uses of 562 // that part and store the results for this index only. 563 unsigned Idx = *Ext->idx_begin(); 564 if (RetValLiveness[Idx] != Live) { 565 RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]); 566 if (RetValLiveness[Idx] == Live) 567 NumLiveRetVals++; 568 } 569 } else { 570 // Used by something else than extractvalue. Mark all return 571 // values as live. 572 for (unsigned i = 0; i != RetCount; ++i ) 573 RetValLiveness[i] = Live; 574 NumLiveRetVals = RetCount; 575 break; 576 } 577 } 578 } else { 579 // Single return value 580 RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]); 581 if (RetValLiveness[0] == Live) 582 NumLiveRetVals = RetCount; 583 } 584 } 585 } 586 587 // Now we've inspected all callers, record the liveness of our return values. 588 for (unsigned i = 0; i != RetCount; ++i) 589 MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]); 590 591 DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n"); 592 593 // Now, check all of our arguments. 594 unsigned i = 0; 595 UseVector MaybeLiveArgUses; 596 for (Function::const_arg_iterator AI = F.arg_begin(), 597 E = F.arg_end(); AI != E; ++AI, ++i) { 598 Liveness Result; 599 if (F.getFunctionType()->isVarArg()) { 600 // Variadic functions will already have a va_arg function expanded inside 601 // them, making them potentially very sensitive to ABI changes resulting 602 // from removing arguments entirely, so don't. For example AArch64 handles 603 // register and stack HFAs very differently, and this is reflected in the 604 // IR which has already been generated. 605 Result = Live; 606 } else { 607 // See what the effect of this use is (recording any uses that cause 608 // MaybeLive in MaybeLiveArgUses). 609 Result = SurveyUses(AI, MaybeLiveArgUses); 610 } 611 612 // Mark the result. 613 MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses); 614 // Clear the vector again for the next iteration. 615 MaybeLiveArgUses.clear(); 616 } 617 } 618 619 /// MarkValue - This function marks the liveness of RA depending on L. If L is 620 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses, 621 /// such that RA will be marked live if any use in MaybeLiveUses gets marked 622 /// live later on. 623 void DAE::MarkValue(const RetOrArg &RA, Liveness L, 624 const UseVector &MaybeLiveUses) { 625 switch (L) { 626 case Live: MarkLive(RA); break; 627 case MaybeLive: 628 { 629 // Note any uses of this value, so this return value can be 630 // marked live whenever one of the uses becomes live. 631 for (UseVector::const_iterator UI = MaybeLiveUses.begin(), 632 UE = MaybeLiveUses.end(); UI != UE; ++UI) 633 Uses.insert(std::make_pair(*UI, RA)); 634 break; 635 } 636 } 637 } 638 639 /// MarkLive - Mark the given Function as alive, meaning that it cannot be 640 /// changed in any way. Additionally, 641 /// mark any values that are used as this function's parameters or by its return 642 /// values (according to Uses) live as well. 643 void DAE::MarkLive(const Function &F) { 644 DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n"); 645 // Mark the function as live. 646 LiveFunctions.insert(&F); 647 // Mark all arguments as live. 648 for (unsigned i = 0, e = F.arg_size(); i != e; ++i) 649 PropagateLiveness(CreateArg(&F, i)); 650 // Mark all return values as live. 651 for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i) 652 PropagateLiveness(CreateRet(&F, i)); 653 } 654 655 /// MarkLive - Mark the given return value or argument as live. Additionally, 656 /// mark any values that are used by this value (according to Uses) live as 657 /// well. 658 void DAE::MarkLive(const RetOrArg &RA) { 659 if (LiveFunctions.count(RA.F)) 660 return; // Function was already marked Live. 661 662 if (!LiveValues.insert(RA).second) 663 return; // We were already marked Live. 664 665 DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n"); 666 PropagateLiveness(RA); 667 } 668 669 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness 670 /// to any other values it uses (according to Uses). 671 void DAE::PropagateLiveness(const RetOrArg &RA) { 672 // We don't use upper_bound (or equal_range) here, because our recursive call 673 // to ourselves is likely to cause the upper_bound (which is the first value 674 // not belonging to RA) to become erased and the iterator invalidated. 675 UseMap::iterator Begin = Uses.lower_bound(RA); 676 UseMap::iterator E = Uses.end(); 677 UseMap::iterator I; 678 for (I = Begin; I != E && I->first == RA; ++I) 679 MarkLive(I->second); 680 681 // Erase RA from the Uses map (from the lower bound to wherever we ended up 682 // after the loop). 683 Uses.erase(Begin, I); 684 } 685 686 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F 687 // that are not in LiveValues. Transform the function and all of the callees of 688 // the function to not have these arguments and return values. 689 // 690 bool DAE::RemoveDeadStuffFromFunction(Function *F) { 691 // Don't modify fully live functions 692 if (LiveFunctions.count(F)) 693 return false; 694 695 // Start by computing a new prototype for the function, which is the same as 696 // the old function, but has fewer arguments and a different return type. 697 FunctionType *FTy = F->getFunctionType(); 698 std::vector<Type*> Params; 699 700 // Keep track of if we have a live 'returned' argument 701 bool HasLiveReturnedArg = false; 702 703 // Set up to build a new list of parameter attributes. 704 SmallVector<AttributeSet, 8> AttributesVec; 705 const AttributeSet &PAL = F->getAttributes(); 706 707 // Remember which arguments are still alive. 708 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false); 709 // Construct the new parameter list from non-dead arguments. Also construct 710 // a new set of parameter attributes to correspond. Skip the first parameter 711 // attribute, since that belongs to the return value. 712 unsigned i = 0; 713 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 714 I != E; ++I, ++i) { 715 RetOrArg Arg = CreateArg(F, i); 716 if (LiveValues.erase(Arg)) { 717 Params.push_back(I->getType()); 718 ArgAlive[i] = true; 719 720 // Get the original parameter attributes (skipping the first one, that is 721 // for the return value. 722 if (PAL.hasAttributes(i + 1)) { 723 AttrBuilder B(PAL, i + 1); 724 if (B.contains(Attribute::Returned)) 725 HasLiveReturnedArg = true; 726 AttributesVec. 727 push_back(AttributeSet::get(F->getContext(), Params.size(), B)); 728 } 729 } else { 730 ++NumArgumentsEliminated; 731 DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName() 732 << ") from " << F->getName() << "\n"); 733 } 734 } 735 736 // Find out the new return value. 737 Type *RetTy = FTy->getReturnType(); 738 Type *NRetTy = nullptr; 739 unsigned RetCount = NumRetVals(F); 740 741 // -1 means unused, other numbers are the new index 742 SmallVector<int, 5> NewRetIdxs(RetCount, -1); 743 std::vector<Type*> RetTypes; 744 745 // If there is a function with a live 'returned' argument but a dead return 746 // value, then there are two possible actions: 747 // 1) Eliminate the return value and take off the 'returned' attribute on the 748 // argument. 749 // 2) Retain the 'returned' attribute and treat the return value (but not the 750 // entire function) as live so that it is not eliminated. 751 // 752 // It's not clear in the general case which option is more profitable because, 753 // even in the absence of explicit uses of the return value, code generation 754 // is free to use the 'returned' attribute to do things like eliding 755 // save/restores of registers across calls. Whether or not this happens is 756 // target and ABI-specific as well as depending on the amount of register 757 // pressure, so there's no good way for an IR-level pass to figure this out. 758 // 759 // Fortunately, the only places where 'returned' is currently generated by 760 // the FE are places where 'returned' is basically free and almost always a 761 // performance win, so the second option can just be used always for now. 762 // 763 // This should be revisited if 'returned' is ever applied more liberally. 764 if (RetTy->isVoidTy() || HasLiveReturnedArg) { 765 NRetTy = RetTy; 766 } else { 767 StructType *STy = dyn_cast<StructType>(RetTy); 768 if (STy) 769 // Look at each of the original return values individually. 770 for (unsigned i = 0; i != RetCount; ++i) { 771 RetOrArg Ret = CreateRet(F, i); 772 if (LiveValues.erase(Ret)) { 773 RetTypes.push_back(STy->getElementType(i)); 774 NewRetIdxs[i] = RetTypes.size() - 1; 775 } else { 776 ++NumRetValsEliminated; 777 DEBUG(dbgs() << "DAE - Removing return value " << i << " from " 778 << F->getName() << "\n"); 779 } 780 } 781 else 782 // We used to return a single value. 783 if (LiveValues.erase(CreateRet(F, 0))) { 784 RetTypes.push_back(RetTy); 785 NewRetIdxs[0] = 0; 786 } else { 787 DEBUG(dbgs() << "DAE - Removing return value from " << F->getName() 788 << "\n"); 789 ++NumRetValsEliminated; 790 } 791 if (RetTypes.size() > 1) 792 // More than one return type? Return a struct with them. Also, if we used 793 // to return a struct and didn't change the number of return values, 794 // return a struct again. This prevents changing {something} into 795 // something and {} into void. 796 // Make the new struct packed if we used to return a packed struct 797 // already. 798 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked()); 799 else if (RetTypes.size() == 1) 800 // One return type? Just a simple value then, but only if we didn't use to 801 // return a struct with that simple value before. 802 NRetTy = RetTypes.front(); 803 else if (RetTypes.size() == 0) 804 // No return types? Make it void, but only if we didn't use to return {}. 805 NRetTy = Type::getVoidTy(F->getContext()); 806 } 807 808 assert(NRetTy && "No new return type found?"); 809 810 // The existing function return attributes. 811 AttributeSet RAttrs = PAL.getRetAttributes(); 812 813 // Remove any incompatible attributes, but only if we removed all return 814 // values. Otherwise, ensure that we don't have any conflicting attributes 815 // here. Currently, this should not be possible, but special handling might be 816 // required when new return value attributes are added. 817 if (NRetTy->isVoidTy()) 818 RAttrs = 819 AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex, 820 AttrBuilder(RAttrs, AttributeSet::ReturnIndex). 821 removeAttributes(AttributeFuncs:: 822 typeIncompatible(NRetTy, AttributeSet::ReturnIndex), 823 AttributeSet::ReturnIndex)); 824 else 825 assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex). 826 hasAttributes(AttributeFuncs:: 827 typeIncompatible(NRetTy, AttributeSet::ReturnIndex), 828 AttributeSet::ReturnIndex) && 829 "Return attributes no longer compatible?"); 830 831 if (RAttrs.hasAttributes(AttributeSet::ReturnIndex)) 832 AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs)); 833 834 if (PAL.hasAttributes(AttributeSet::FunctionIndex)) 835 AttributesVec.push_back(AttributeSet::get(F->getContext(), 836 PAL.getFnAttributes())); 837 838 // Reconstruct the AttributesList based on the vector we constructed. 839 AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec); 840 841 // Create the new function type based on the recomputed parameters. 842 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg()); 843 844 // No change? 845 if (NFTy == FTy) 846 return false; 847 848 // Create the new function body and insert it into the module... 849 Function *NF = Function::Create(NFTy, F->getLinkage()); 850 NF->copyAttributesFrom(F); 851 NF->setAttributes(NewPAL); 852 // Insert the new function before the old function, so we won't be processing 853 // it again. 854 F->getParent()->getFunctionList().insert(F, NF); 855 NF->takeName(F); 856 857 // Loop over all of the callers of the function, transforming the call sites 858 // to pass in a smaller number of arguments into the new function. 859 // 860 std::vector<Value*> Args; 861 while (!F->use_empty()) { 862 CallSite CS(F->user_back()); 863 Instruction *Call = CS.getInstruction(); 864 865 AttributesVec.clear(); 866 const AttributeSet &CallPAL = CS.getAttributes(); 867 868 // The call return attributes. 869 AttributeSet RAttrs = CallPAL.getRetAttributes(); 870 871 // Adjust in case the function was changed to return void. 872 RAttrs = 873 AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex, 874 AttrBuilder(RAttrs, AttributeSet::ReturnIndex). 875 removeAttributes(AttributeFuncs:: 876 typeIncompatible(NF->getReturnType(), 877 AttributeSet::ReturnIndex), 878 AttributeSet::ReturnIndex)); 879 if (RAttrs.hasAttributes(AttributeSet::ReturnIndex)) 880 AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs)); 881 882 // Declare these outside of the loops, so we can reuse them for the second 883 // loop, which loops the varargs. 884 CallSite::arg_iterator I = CS.arg_begin(); 885 unsigned i = 0; 886 // Loop over those operands, corresponding to the normal arguments to the 887 // original function, and add those that are still alive. 888 for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i) 889 if (ArgAlive[i]) { 890 Args.push_back(*I); 891 // Get original parameter attributes, but skip return attributes. 892 if (CallPAL.hasAttributes(i + 1)) { 893 AttrBuilder B(CallPAL, i + 1); 894 // If the return type has changed, then get rid of 'returned' on the 895 // call site. The alternative is to make all 'returned' attributes on 896 // call sites keep the return value alive just like 'returned' 897 // attributes on function declaration but it's less clearly a win 898 // and this is not an expected case anyway 899 if (NRetTy != RetTy && B.contains(Attribute::Returned)) 900 B.removeAttribute(Attribute::Returned); 901 AttributesVec. 902 push_back(AttributeSet::get(F->getContext(), Args.size(), B)); 903 } 904 } 905 906 // Push any varargs arguments on the list. Don't forget their attributes. 907 for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) { 908 Args.push_back(*I); 909 if (CallPAL.hasAttributes(i + 1)) { 910 AttrBuilder B(CallPAL, i + 1); 911 AttributesVec. 912 push_back(AttributeSet::get(F->getContext(), Args.size(), B)); 913 } 914 } 915 916 if (CallPAL.hasAttributes(AttributeSet::FunctionIndex)) 917 AttributesVec.push_back(AttributeSet::get(Call->getContext(), 918 CallPAL.getFnAttributes())); 919 920 // Reconstruct the AttributesList based on the vector we constructed. 921 AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec); 922 923 Instruction *New; 924 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 925 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 926 Args, "", Call); 927 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv()); 928 cast<InvokeInst>(New)->setAttributes(NewCallPAL); 929 } else { 930 New = CallInst::Create(NF, Args, "", Call); 931 cast<CallInst>(New)->setCallingConv(CS.getCallingConv()); 932 cast<CallInst>(New)->setAttributes(NewCallPAL); 933 if (cast<CallInst>(Call)->isTailCall()) 934 cast<CallInst>(New)->setTailCall(); 935 } 936 New->setDebugLoc(Call->getDebugLoc()); 937 938 Args.clear(); 939 940 if (!Call->use_empty()) { 941 if (New->getType() == Call->getType()) { 942 // Return type not changed? Just replace users then. 943 Call->replaceAllUsesWith(New); 944 New->takeName(Call); 945 } else if (New->getType()->isVoidTy()) { 946 // Our return value has uses, but they will get removed later on. 947 // Replace by null for now. 948 if (!Call->getType()->isX86_MMXTy()) 949 Call->replaceAllUsesWith(Constant::getNullValue(Call->getType())); 950 } else { 951 assert(RetTy->isStructTy() && 952 "Return type changed, but not into a void. The old return type" 953 " must have been a struct!"); 954 Instruction *InsertPt = Call; 955 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 956 BasicBlock::iterator IP = II->getNormalDest()->begin(); 957 while (isa<PHINode>(IP)) ++IP; 958 InsertPt = IP; 959 } 960 961 // We used to return a struct. Instead of doing smart stuff with all the 962 // uses of this struct, we will just rebuild it using 963 // extract/insertvalue chaining and let instcombine clean that up. 964 // 965 // Start out building up our return value from undef 966 Value *RetVal = UndefValue::get(RetTy); 967 for (unsigned i = 0; i != RetCount; ++i) 968 if (NewRetIdxs[i] != -1) { 969 Value *V; 970 if (RetTypes.size() > 1) 971 // We are still returning a struct, so extract the value from our 972 // return value 973 V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret", 974 InsertPt); 975 else 976 // We are now returning a single element, so just insert that 977 V = New; 978 // Insert the value at the old position 979 RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt); 980 } 981 // Now, replace all uses of the old call instruction with the return 982 // struct we built 983 Call->replaceAllUsesWith(RetVal); 984 New->takeName(Call); 985 } 986 } 987 988 // Finally, remove the old call from the program, reducing the use-count of 989 // F. 990 Call->eraseFromParent(); 991 } 992 993 // Since we have now created the new function, splice the body of the old 994 // function right into the new function, leaving the old rotting hulk of the 995 // function empty. 996 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 997 998 // Loop over the argument list, transferring uses of the old arguments over to 999 // the new arguments, also transferring over the names as well. 1000 i = 0; 1001 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 1002 I2 = NF->arg_begin(); I != E; ++I, ++i) 1003 if (ArgAlive[i]) { 1004 // If this is a live argument, move the name and users over to the new 1005 // version. 1006 I->replaceAllUsesWith(I2); 1007 I2->takeName(I); 1008 ++I2; 1009 } else { 1010 // If this argument is dead, replace any uses of it with null constants 1011 // (these are guaranteed to become unused later on). 1012 if (!I->getType()->isX86_MMXTy()) 1013 I->replaceAllUsesWith(Constant::getNullValue(I->getType())); 1014 } 1015 1016 // If we change the return value of the function we must rewrite any return 1017 // instructions. Check this now. 1018 if (F->getReturnType() != NF->getReturnType()) 1019 for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB) 1020 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 1021 Value *RetVal; 1022 1023 if (NFTy->getReturnType()->isVoidTy()) { 1024 RetVal = nullptr; 1025 } else { 1026 assert (RetTy->isStructTy()); 1027 // The original return value was a struct, insert 1028 // extractvalue/insertvalue chains to extract only the values we need 1029 // to return and insert them into our new result. 1030 // This does generate messy code, but we'll let it to instcombine to 1031 // clean that up. 1032 Value *OldRet = RI->getOperand(0); 1033 // Start out building up our return value from undef 1034 RetVal = UndefValue::get(NRetTy); 1035 for (unsigned i = 0; i != RetCount; ++i) 1036 if (NewRetIdxs[i] != -1) { 1037 ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i, 1038 "oldret", RI); 1039 if (RetTypes.size() > 1) { 1040 // We're still returning a struct, so reinsert the value into 1041 // our new return value at the new index 1042 1043 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i], 1044 "newret", RI); 1045 } else { 1046 // We are now only returning a simple value, so just return the 1047 // extracted value. 1048 RetVal = EV; 1049 } 1050 } 1051 } 1052 // Replace the return instruction with one returning the new return 1053 // value (possibly 0 if we became void). 1054 ReturnInst::Create(F->getContext(), RetVal, RI); 1055 BB->getInstList().erase(RI); 1056 } 1057 1058 // Patch the pointer to LLVM function in debug info descriptor. 1059 auto DI = FunctionDIs.find(F); 1060 if (DI != FunctionDIs.end()) 1061 DI->second.replaceFunction(NF); 1062 1063 // Now that the old function is dead, delete it. 1064 F->eraseFromParent(); 1065 1066 return true; 1067 } 1068 1069 bool DAE::runOnModule(Module &M) { 1070 bool Changed = false; 1071 1072 // Collect debug info descriptors for functions. 1073 FunctionDIs = makeSubprogramMap(M); 1074 1075 // First pass: Do a simple check to see if any functions can have their "..." 1076 // removed. We can do this if they never call va_start. This loop cannot be 1077 // fused with the next loop, because deleting a function invalidates 1078 // information computed while surveying other functions. 1079 DEBUG(dbgs() << "DAE - Deleting dead varargs\n"); 1080 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { 1081 Function &F = *I++; 1082 if (F.getFunctionType()->isVarArg()) 1083 Changed |= DeleteDeadVarargs(F); 1084 } 1085 1086 // Second phase:loop through the module, determining which arguments are live. 1087 // We assume all arguments are dead unless proven otherwise (allowing us to 1088 // determine that dead arguments passed into recursive functions are dead). 1089 // 1090 DEBUG(dbgs() << "DAE - Determining liveness\n"); 1091 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) 1092 SurveyFunction(*I); 1093 1094 // Now, remove all dead arguments and return values from each function in 1095 // turn. 1096 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { 1097 // Increment now, because the function will probably get removed (ie. 1098 // replaced by a new one). 1099 Function *F = I++; 1100 Changed |= RemoveDeadStuffFromFunction(F); 1101 } 1102 1103 // Finally, look for any unused parameters in functions with non-local 1104 // linkage and replace the passed in parameters with undef. 1105 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { 1106 Function& F = *I; 1107 1108 Changed |= RemoveDeadArgumentsFromCallers(F); 1109 } 1110 1111 return Changed; 1112 } 1113