Home | History | Annotate | Download | only in libsensors
      1 /*
      2  * Copyright (C) 2008-2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <ctype.h>
     18 #include <dirent.h>
     19 #include <errno.h>
     20 #include <fcntl.h>
     21 #include <inttypes.h>
     22 #include <math.h>
     23 #include <poll.h>
     24 #include <pthread.h>
     25 #include <stdlib.h>
     26 #include <sys/select.h>
     27 #include <unistd.h>
     28 
     29 #define LOG_TAG "CwMcuSensor"
     30 #include <cutils/log.h>
     31 #include <cutils/properties.h>
     32 
     33 #include "CwMcuSensor.h"
     34 
     35 
     36 #define REL_Significant_Motion REL_WHEEL
     37 #define LIGHTSENSOR_LEVEL 10
     38 #define DEBUG_DATA 0
     39 #define COMPASS_CALIBRATION_DATA_SIZE 26
     40 #define G_SENSOR_CALIBRATION_DATA_SIZE 3
     41 #define NS_PER_MS 1000000LL
     42 #define EXHAUSTED_MAGIC 0x77
     43 
     44 /*****************************************************************************/
     45 #define IIO_MAX_BUFF_SIZE 4096
     46 #define IIO_MAX_DATA_SIZE 24
     47 #define IIO_MAX_NAME_LENGTH 30
     48 #define IIO_BUF_SIZE_RETRY 8
     49 #define INT32_CHAR_LEN 12
     50 
     51 #define INIT_TRIGGER_RETRY 5
     52 
     53 static const char iio_dir[] = "/sys/bus/iio/devices/";
     54 
     55 static int min(int a, int b) {
     56     return (a < b) ? a : b;
     57 }
     58 
     59 static int chomp(char *buf, size_t len) {
     60     if (buf == NULL)
     61         return -1;
     62 
     63     while (len > 0 && isspace(buf[len-1])) {
     64         buf[len - 1] = '\0';
     65         len--;
     66     }
     67 
     68     return 0;
     69 }
     70 
     71 int CwMcuSensor::sysfs_set_input_attr(const char *attr, char *value, size_t len) {
     72     char fname[PATH_MAX];
     73     int fd;
     74     int rc;
     75 
     76     snprintf(fname, sizeof(fname), "%s/%s", mDevPath, attr);
     77     fname[sizeof(fname) - 1] = '\0';
     78 
     79     fd = open(fname, O_WRONLY);
     80     if (fd < 0) {
     81         ALOGE("%s: fname = %s, fd = %d, failed: %s\n", __func__, fname, fd, strerror(errno));
     82         return -EACCES;
     83     }
     84 
     85     rc = write(fd, value, (size_t)len);
     86     if (rc < 0) {
     87         ALOGE("%s: write failed: fd = %d, rc = %d, strerr = %s\n", __func__, fd, rc, strerror(errno));
     88         close(fd);
     89         return -EIO;
     90     }
     91 
     92     close(fd);
     93 
     94     return 0;
     95 }
     96 
     97 int CwMcuSensor::sysfs_set_input_attr_by_int(const char *attr, int value) {
     98     char buf[INT32_CHAR_LEN];
     99 
    100     size_t n = snprintf(buf, sizeof(buf), "%d", value);
    101     if (n > sizeof(buf)) {
    102         return -1;
    103     }
    104 
    105     return sysfs_set_input_attr(attr, buf, n);
    106 }
    107 
    108 static inline int find_type_by_name(const char *name, const char *type) {
    109     const struct dirent *ent;
    110     int number, numstrlen;
    111 
    112     DIR *dp;
    113     char thisname[IIO_MAX_NAME_LENGTH];
    114     char *filename;
    115     size_t size;
    116     size_t typeLen = strlen(type);
    117     size_t nameLen = strlen(name);
    118 
    119     if (nameLen >= sizeof(thisname) - 1) {
    120         return -ERANGE;
    121     }
    122 
    123     dp = opendir(iio_dir);
    124     if (dp == NULL) {
    125         return -ENODEV;
    126     }
    127 
    128     while (ent = readdir(dp), ent != NULL) {
    129         if (strcmp(ent->d_name, ".") != 0 &&
    130                 strcmp(ent->d_name, "..") != 0 &&
    131                 strlen(ent->d_name) > typeLen &&
    132                 strncmp(ent->d_name, type, typeLen) == 0) {
    133             numstrlen = sscanf(ent->d_name + typeLen,
    134                                "%d", &number);
    135 
    136             /* verify the next character is not a colon */
    137             if (ent->d_name[strlen(type) + numstrlen] != ':') {
    138                 size = sizeof(iio_dir) - 1 + typeLen + numstrlen + 6;
    139                 filename = (char *)malloc(size);
    140 
    141                 if (filename == NULL)
    142                     return -ENOMEM;
    143 
    144                 snprintf(filename, size,
    145                          "%s%s%d/name",
    146                          iio_dir, type, number);
    147 
    148                 int fd = open(filename, O_RDONLY);
    149                 free(filename);
    150                 if (fd < 0) {
    151                     continue;
    152                 }
    153                 size = read(fd, thisname, sizeof(thisname) - 1);
    154                 close(fd);
    155                 if (size < nameLen) {
    156                     continue;
    157                 }
    158                 thisname[size] = '\0';
    159                 if (strncmp(name, thisname, nameLen)) {
    160                     continue;
    161                 }
    162                 // check for termination or whitespace
    163                 if (!thisname[nameLen] || isspace(thisname[nameLen])) {
    164                     return number;
    165                 }
    166             }
    167         }
    168     }
    169     return -ENODEV;
    170 }
    171 
    172 int fill_block_debug = 0;
    173 
    174 pthread_mutex_t sys_fs_mutex = PTHREAD_MUTEX_INITIALIZER;
    175 pthread_mutex_t sync_timestamp_algo_mutex = PTHREAD_MUTEX_INITIALIZER;
    176 pthread_mutex_t last_timestamp_mutex = PTHREAD_MUTEX_INITIALIZER;
    177 
    178 void CwMcuSensor::sync_time_thread_in_class(void) {
    179     int fd;
    180     char buf[24];
    181     int err;
    182     uint64_t mcu_current_time;
    183     uint64_t cpu_current_time;
    184     int open_errno;
    185 
    186     ALOGV("sync_time_thread_in_class++:\n");
    187 
    188     pthread_mutex_lock(&sys_fs_mutex);
    189 
    190     strcpy(&fixed_sysfs_path[fixed_sysfs_path_len], "batch_enable");
    191 
    192     fd = open(fixed_sysfs_path, O_RDWR);
    193     open_errno = errno;
    194     pthread_mutex_unlock(&sys_fs_mutex);
    195     if (fd >= 0) {
    196         err = read(fd, buf, sizeof(buf) - 1);
    197         cpu_current_time = getTimestamp();
    198         if (err < 0) {
    199             ALOGE("sync_time_thread_in_class: read fail, err = %d\n", err);
    200         } else {
    201             buf[err] = '\0';
    202             mcu_current_time = strtoull(buf, NULL, 10) * NS_PER_US;
    203             if (errno == ERANGE) {
    204                 ALOGE("sync_time_thread_in_class: strtoll fails, strerr = %s, buf = %s\n",
    205                       strerror(errno), buf);
    206             } else {
    207                 pthread_mutex_lock(&sync_timestamp_algo_mutex);
    208 
    209                 if (mcu_current_time == 0) {
    210                     // Do a recovery mechanism of timestamp estimation when the sensor_hub reset happened
    211                     ALOGE("Sync: sensor hub is on reset\n");
    212                     time_slope = 1;
    213                     memset(last_mcu_timestamp, 0, sizeof(last_mcu_timestamp));
    214                     memset(last_cpu_timestamp, 0, sizeof(last_cpu_timestamp));
    215                     for (int i=0; i<numSensors; i++) {
    216                         offset_reset[i] = true;
    217                     }
    218                 } else if ((mcu_current_time <= last_mcu_sync_time) || (last_mcu_sync_time == 0)) {
    219                     ALOGV("Sync: time_slope was not estimated yet\n");
    220                     time_slope = 1;
    221                     time_offset = cpu_current_time - mcu_current_time;
    222                     for (int i=0; i<numSensors; i++) {
    223                         offset_reset[i] = true;
    224                     }
    225                 } else {
    226                     time_slope = (float)(cpu_current_time - last_cpu_sync_time) /
    227                                  (float)(mcu_current_time - last_mcu_sync_time);
    228                     time_offset = cpu_current_time - mcu_current_time;
    229                 }
    230                 ALOGV("Sync: time_offset = %" PRId64 ", time_slope = %f\n", time_offset, time_slope);
    231                 ALOGV("Sync: mcu_current_time = %" PRId64 ", last_mcu_sync_time = %" PRId64 "\n", mcu_current_time, last_mcu_sync_time);
    232                 ALOGV("Sync: cpu_current_time = %" PRId64 ", last_cpu_sync_time = %" PRId64 "\n", cpu_current_time, last_cpu_sync_time);
    233 
    234                 last_mcu_sync_time = mcu_current_time;
    235                 last_cpu_sync_time = cpu_current_time;
    236 
    237                 pthread_mutex_unlock(&sync_timestamp_algo_mutex);
    238             }
    239         }
    240         close(fd);
    241     } else {
    242         ALOGE("sync_time_thread_in_class: open failed, path = .../batch_enable, fd = %d,"
    243               " strerr = %s\n", fd, strerror(open_errno));
    244     }
    245 
    246     ALOGV("sync_time_thread_in_class--:\n");
    247 }
    248 
    249 void *sync_time_thread_run(void *context) {
    250     CwMcuSensor *myClass = (CwMcuSensor *)context;
    251 
    252     while (1) {
    253         ALOGV("sync_time_thread_run++:\n");
    254         myClass->sync_time_thread_in_class();
    255         sleep(PERIODIC_SYNC_TIME_SEC);
    256         ALOGV("sync_time_thread_run--:\n");
    257     }
    258     return NULL;
    259 }
    260 
    261 CwMcuSensor::CwMcuSensor()
    262     : SensorBase(NULL, "CwMcuSensor")
    263     , mEnabled(0)
    264     , mInputReader(IIO_MAX_BUFF_SIZE)
    265     , time_slope(1)
    266     , time_offset(0)
    267     , init_trigger_done(false) {
    268 
    269     int rc;
    270 
    271     memset(last_mcu_timestamp, 0, sizeof(last_mcu_timestamp));
    272     memset(last_cpu_timestamp, 0, sizeof(last_cpu_timestamp));
    273     for (int i=0; i<numSensors; i++) {
    274         offset_reset[i] = true;
    275     }
    276 
    277     mPendingEvents[CW_ACCELERATION].version = sizeof(sensors_event_t);
    278     mPendingEvents[CW_ACCELERATION].sensor = ID_A;
    279     mPendingEvents[CW_ACCELERATION].type = SENSOR_TYPE_ACCELEROMETER;
    280     mPendingEvents[CW_ACCELERATION].acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
    281 
    282     mPendingEvents[CW_MAGNETIC].version = sizeof(sensors_event_t);
    283     mPendingEvents[CW_MAGNETIC].sensor = ID_M;
    284     mPendingEvents[CW_MAGNETIC].type = SENSOR_TYPE_MAGNETIC_FIELD;
    285 
    286     mPendingEvents[CW_GYRO].version = sizeof(sensors_event_t);
    287     mPendingEvents[CW_GYRO].sensor = ID_GY;
    288     mPendingEvents[CW_GYRO].type = SENSOR_TYPE_GYROSCOPE;
    289     mPendingEvents[CW_GYRO].gyro.status = SENSOR_STATUS_ACCURACY_HIGH;
    290 
    291     mPendingEvents[CW_LIGHT].version = sizeof(sensors_event_t);
    292     mPendingEvents[CW_LIGHT].sensor = ID_L;
    293     mPendingEvents[CW_LIGHT].type = SENSOR_TYPE_LIGHT;
    294     memset(mPendingEvents[CW_LIGHT].data, 0, sizeof(mPendingEvents[CW_LIGHT].data));
    295 
    296     mPendingEvents[CW_PRESSURE].version = sizeof(sensors_event_t);
    297     mPendingEvents[CW_PRESSURE].sensor = ID_PS;
    298     mPendingEvents[CW_PRESSURE].type = SENSOR_TYPE_PRESSURE;
    299     memset(mPendingEvents[CW_PRESSURE].data, 0, sizeof(mPendingEvents[CW_PRESSURE].data));
    300 
    301     mPendingEvents[CW_ORIENTATION].version = sizeof(sensors_event_t);
    302     mPendingEvents[CW_ORIENTATION].sensor = ID_O;
    303     mPendingEvents[CW_ORIENTATION].type = SENSOR_TYPE_ORIENTATION;
    304     mPendingEvents[CW_ORIENTATION].orientation.status = SENSOR_STATUS_ACCURACY_HIGH;
    305 
    306     mPendingEvents[CW_ROTATIONVECTOR].version = sizeof(sensors_event_t);
    307     mPendingEvents[CW_ROTATIONVECTOR].sensor = ID_RV;
    308     mPendingEvents[CW_ROTATIONVECTOR].type = SENSOR_TYPE_ROTATION_VECTOR;
    309 
    310     mPendingEvents[CW_LINEARACCELERATION].version = sizeof(sensors_event_t);
    311     mPendingEvents[CW_LINEARACCELERATION].sensor = ID_LA;
    312     mPendingEvents[CW_LINEARACCELERATION].type = SENSOR_TYPE_LINEAR_ACCELERATION;
    313 
    314     mPendingEvents[CW_GRAVITY].version = sizeof(sensors_event_t);
    315     mPendingEvents[CW_GRAVITY].sensor = ID_G;
    316     mPendingEvents[CW_GRAVITY].type = SENSOR_TYPE_GRAVITY;
    317 
    318     mPendingEvents[CW_MAGNETIC_UNCALIBRATED].version = sizeof(sensors_event_t);
    319     mPendingEvents[CW_MAGNETIC_UNCALIBRATED].sensor = ID_CW_MAGNETIC_UNCALIBRATED;
    320     mPendingEvents[CW_MAGNETIC_UNCALIBRATED].type = SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED;
    321 
    322     mPendingEvents[CW_GYROSCOPE_UNCALIBRATED].version = sizeof(sensors_event_t);
    323     mPendingEvents[CW_GYROSCOPE_UNCALIBRATED].sensor = ID_CW_GYROSCOPE_UNCALIBRATED;
    324     mPendingEvents[CW_GYROSCOPE_UNCALIBRATED].type = SENSOR_TYPE_GYROSCOPE_UNCALIBRATED;
    325 
    326     mPendingEvents[CW_GAME_ROTATION_VECTOR].version = sizeof(sensors_event_t);
    327     mPendingEvents[CW_GAME_ROTATION_VECTOR].sensor = ID_CW_GAME_ROTATION_VECTOR;
    328     mPendingEvents[CW_GAME_ROTATION_VECTOR].type = SENSOR_TYPE_GAME_ROTATION_VECTOR;
    329 
    330     mPendingEvents[CW_GEOMAGNETIC_ROTATION_VECTOR].version = sizeof(sensors_event_t);
    331     mPendingEvents[CW_GEOMAGNETIC_ROTATION_VECTOR].sensor = ID_CW_GEOMAGNETIC_ROTATION_VECTOR;
    332     mPendingEvents[CW_GEOMAGNETIC_ROTATION_VECTOR].type = SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR;
    333 
    334     mPendingEvents[CW_SIGNIFICANT_MOTION].version = sizeof(sensors_event_t);
    335     mPendingEvents[CW_SIGNIFICANT_MOTION].sensor = ID_CW_SIGNIFICANT_MOTION;
    336     mPendingEvents[CW_SIGNIFICANT_MOTION].type = SENSOR_TYPE_SIGNIFICANT_MOTION;
    337 
    338     mPendingEvents[CW_STEP_DETECTOR].version = sizeof(sensors_event_t);
    339     mPendingEvents[CW_STEP_DETECTOR].sensor = ID_CW_STEP_DETECTOR;
    340     mPendingEvents[CW_STEP_DETECTOR].type = SENSOR_TYPE_STEP_DETECTOR;
    341 
    342     mPendingEvents[CW_STEP_COUNTER].version = sizeof(sensors_event_t);
    343     mPendingEvents[CW_STEP_COUNTER].sensor = ID_CW_STEP_COUNTER;
    344     mPendingEvents[CW_STEP_COUNTER].type = SENSOR_TYPE_STEP_COUNTER;
    345 
    346 
    347     mPendingEvents[CW_ACCELERATION_W].version = sizeof(sensors_event_t);
    348     mPendingEvents[CW_ACCELERATION_W].sensor = ID_A_W;
    349     mPendingEvents[CW_ACCELERATION_W].type = SENSOR_TYPE_ACCELEROMETER;
    350     mPendingEvents[CW_ACCELERATION_W].acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
    351 
    352     mPendingEvents[CW_MAGNETIC_W].version = sizeof(sensors_event_t);
    353     mPendingEvents[CW_MAGNETIC_W].sensor = ID_M_W;
    354     mPendingEvents[CW_MAGNETIC_W].type = SENSOR_TYPE_MAGNETIC_FIELD;
    355 
    356     mPendingEvents[CW_GYRO_W].version = sizeof(sensors_event_t);
    357     mPendingEvents[CW_GYRO_W].sensor = ID_GY_W;
    358     mPendingEvents[CW_GYRO_W].type = SENSOR_TYPE_GYROSCOPE;
    359     mPendingEvents[CW_GYRO_W].gyro.status = SENSOR_STATUS_ACCURACY_HIGH;
    360 
    361     mPendingEvents[CW_PRESSURE_W].version = sizeof(sensors_event_t);
    362     mPendingEvents[CW_PRESSURE_W].sensor = ID_PS_W;
    363     mPendingEvents[CW_PRESSURE_W].type = SENSOR_TYPE_PRESSURE;
    364     memset(mPendingEvents[CW_PRESSURE_W].data, 0, sizeof(mPendingEvents[CW_PRESSURE_W].data));
    365 
    366     mPendingEvents[CW_ORIENTATION_W].version = sizeof(sensors_event_t);
    367     mPendingEvents[CW_ORIENTATION_W].sensor = ID_O_W;
    368     mPendingEvents[CW_ORIENTATION_W].type = SENSOR_TYPE_ORIENTATION;
    369     mPendingEvents[CW_ORIENTATION_W].orientation.status = SENSOR_STATUS_ACCURACY_HIGH;
    370 
    371     mPendingEvents[CW_ROTATIONVECTOR_W].version = sizeof(sensors_event_t);
    372     mPendingEvents[CW_ROTATIONVECTOR_W].sensor = ID_RV_W;
    373     mPendingEvents[CW_ROTATIONVECTOR_W].type = SENSOR_TYPE_ROTATION_VECTOR;
    374 
    375     mPendingEvents[CW_LINEARACCELERATION_W].version = sizeof(sensors_event_t);
    376     mPendingEvents[CW_LINEARACCELERATION_W].sensor = ID_LA_W;
    377     mPendingEvents[CW_LINEARACCELERATION_W].type = SENSOR_TYPE_LINEAR_ACCELERATION;
    378 
    379     mPendingEvents[CW_GRAVITY_W].version = sizeof(sensors_event_t);
    380     mPendingEvents[CW_GRAVITY_W].sensor = ID_G_W;
    381     mPendingEvents[CW_GRAVITY_W].type = SENSOR_TYPE_GRAVITY;
    382 
    383     mPendingEvents[CW_MAGNETIC_UNCALIBRATED_W].version = sizeof(sensors_event_t);
    384     mPendingEvents[CW_MAGNETIC_UNCALIBRATED_W].sensor = ID_CW_MAGNETIC_UNCALIBRATED_W;
    385     mPendingEvents[CW_MAGNETIC_UNCALIBRATED_W].type = SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED;
    386 
    387     mPendingEvents[CW_GYROSCOPE_UNCALIBRATED_W].version = sizeof(sensors_event_t);
    388     mPendingEvents[CW_GYROSCOPE_UNCALIBRATED_W].sensor = ID_CW_GYROSCOPE_UNCALIBRATED_W;
    389     mPendingEvents[CW_GYROSCOPE_UNCALIBRATED_W].type = SENSOR_TYPE_GYROSCOPE_UNCALIBRATED;
    390 
    391     mPendingEvents[CW_GAME_ROTATION_VECTOR_W].version = sizeof(sensors_event_t);
    392     mPendingEvents[CW_GAME_ROTATION_VECTOR_W].sensor = ID_CW_GAME_ROTATION_VECTOR_W;
    393     mPendingEvents[CW_GAME_ROTATION_VECTOR_W].type = SENSOR_TYPE_GAME_ROTATION_VECTOR;
    394 
    395     mPendingEvents[CW_GEOMAGNETIC_ROTATION_VECTOR_W].version = sizeof(sensors_event_t);
    396     mPendingEvents[CW_GEOMAGNETIC_ROTATION_VECTOR_W].sensor = ID_CW_GEOMAGNETIC_ROTATION_VECTOR_W;
    397     mPendingEvents[CW_GEOMAGNETIC_ROTATION_VECTOR_W].type = SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR;
    398 
    399     mPendingEvents[CW_STEP_DETECTOR_W].version = sizeof(sensors_event_t);
    400     mPendingEvents[CW_STEP_DETECTOR_W].sensor = ID_CW_STEP_DETECTOR_W;
    401     mPendingEvents[CW_STEP_DETECTOR_W].type = SENSOR_TYPE_STEP_DETECTOR;
    402 
    403     mPendingEvents[CW_STEP_COUNTER_W].version = sizeof(sensors_event_t);
    404     mPendingEvents[CW_STEP_COUNTER_W].sensor = ID_CW_STEP_COUNTER_W;
    405     mPendingEvents[CW_STEP_COUNTER_W].type = SENSOR_TYPE_STEP_COUNTER;
    406 
    407 
    408     mPendingEventsFlush.version = META_DATA_VERSION;
    409     mPendingEventsFlush.sensor = 0;
    410     mPendingEventsFlush.type = SENSOR_TYPE_META_DATA;
    411 
    412     char buffer_access[PATH_MAX];
    413     const char *device_name = "CwMcuSensor";
    414     int rate = 20, dev_num, enabled = 0, i;
    415 
    416     dev_num = find_type_by_name(device_name, "iio:device");
    417     if (dev_num < 0)
    418         dev_num = 0;
    419 
    420     snprintf(buffer_access, sizeof(buffer_access),
    421             "/dev/iio:device%d", dev_num);
    422 
    423     data_fd = open(buffer_access, O_RDWR);
    424     if (data_fd < 0) {
    425         ALOGE("CwMcuSensor::CwMcuSensor: open file '%s' failed: %s\n",
    426               buffer_access, strerror(errno));
    427     }
    428 
    429     if (data_fd >= 0) {
    430         int i;
    431         int fd;
    432         int iio_buf_size;
    433 
    434         ALOGV("%s: 11 Before pthread_mutex_lock()\n", __func__);
    435         pthread_mutex_lock(&sys_fs_mutex);
    436         ALOGV("%s: 11 Acquired pthread_mutex_lock()\n", __func__);
    437 
    438         strcpy(fixed_sysfs_path,"/sys/class/htc_sensorhub/sensor_hub/");
    439         fixed_sysfs_path_len = strlen(fixed_sysfs_path);
    440 
    441         snprintf(mDevPath, sizeof(mDevPath), "%s%s", fixed_sysfs_path, "iio");
    442 
    443         snprintf(mTriggerName, sizeof(mTriggerName), "%s-dev%d",
    444                  device_name, dev_num);
    445         ALOGV("CwMcuSensor::CwMcuSensor: mTriggerName = %s\n", mTriggerName);
    446 
    447         if (sysfs_set_input_attr_by_int("buffer/enable", 0) < 0) {
    448             ALOGE("CwMcuSensor::CwMcuSensor: set IIO buffer enable failed00: %s\n",
    449                   strerror(errno));
    450         }
    451 
    452         // This is a piece of paranoia that retry for current_trigger
    453         for (i = 0; i < INIT_TRIGGER_RETRY; i++) {
    454             rc = sysfs_set_input_attr("trigger/current_trigger",
    455                                       mTriggerName, strlen(mTriggerName));
    456             if (rc < 0) {
    457                 if (sysfs_set_input_attr_by_int("buffer/enable", 0) < 0) {
    458                     ALOGE("CwMcuSensor::CwMcuSensor: set IIO buffer enable failed11: %s\n",
    459                           strerror(errno));
    460                 }
    461                 ALOGE("CwMcuSensor::CwMcuSensor: set current trigger failed: rc = %d, strerr() = %s"
    462                       ", i = %d\n",
    463                       rc, strerror(errno), i);
    464             } else {
    465                 init_trigger_done = true;
    466                 break;
    467             }
    468         }
    469 
    470         iio_buf_size = IIO_MAX_BUFF_SIZE;
    471         for (i = 0; i < IIO_BUF_SIZE_RETRY; i++) {
    472             if (sysfs_set_input_attr_by_int("buffer/length", iio_buf_size) < 0) {
    473                 ALOGE("CwMcuSensor::CwMcuSensor: set IIO buffer length (%d) failed: %s\n",
    474                       iio_buf_size, strerror(errno));
    475             } else {
    476                 if (sysfs_set_input_attr_by_int("buffer/enable", 1) < 0) {
    477                     ALOGE("CwMcuSensor::CwMcuSensor: set IIO buffer enable failed22: %s, "
    478                           "i = %d, iio_buf_size = %d\n", strerror(errno), i, iio_buf_size);
    479                 } else {
    480                     ALOGI("CwMcuSensor::CwMcuSensor: set IIO buffer length success: %d\n", iio_buf_size);
    481                     break;
    482                 }
    483             }
    484             iio_buf_size /= 2;
    485         }
    486 
    487         strcpy(&fixed_sysfs_path[fixed_sysfs_path_len], "calibrator_en");
    488         fd = open(fixed_sysfs_path, O_RDWR);
    489         if (fd >= 0) {
    490             static const char buf[] = "12";
    491 
    492             rc = write(fd, buf, sizeof(buf) - 1);
    493             if (rc < 0) {
    494                 ALOGE("%s: write buf = %s, failed: %s", __func__, buf, strerror(errno));
    495             }
    496 
    497             close(fd);
    498         } else {
    499             ALOGE("%s open %s failed: %s", __func__, fixed_sysfs_path, strerror(errno));
    500         }
    501 
    502         pthread_mutex_unlock(&sys_fs_mutex);
    503 
    504         ALOGV("%s: data_fd = %d", __func__, data_fd);
    505         ALOGV("%s: iio_device_path = %s", __func__, buffer_access);
    506         ALOGV("%s: ctrl sysfs_path = %s", __func__, fixed_sysfs_path);
    507 
    508         setEnable(0, 1); // Inside this function call, we use sys_fs_mutex
    509     }
    510 
    511     int gs_temp_data[G_SENSOR_CALIBRATION_DATA_SIZE] = {0};
    512     int compass_temp_data[COMPASS_CALIBRATION_DATA_SIZE] = {0};
    513 
    514 
    515     ALOGV("%s: 22 Before pthread_mutex_lock()\n", __func__);
    516     pthread_mutex_lock(&sys_fs_mutex);
    517     ALOGV("%s: 22 Acquired pthread_mutex_lock()\n", __func__);
    518 
    519     //Sensor Calibration init . Waiting for firmware ready
    520     rc = cw_read_calibrator_file(CW_MAGNETIC, SAVE_PATH_MAG, compass_temp_data);
    521     if (rc == 0) {
    522         ALOGD("Get compass calibration data from data/misc/ x is %d ,y is %d ,z is %d\n",
    523               compass_temp_data[0], compass_temp_data[1], compass_temp_data[2]);
    524         strcpy(&fixed_sysfs_path[fixed_sysfs_path_len], "calibrator_data_mag");
    525         cw_save_calibrator_file(CW_MAGNETIC, fixed_sysfs_path, compass_temp_data);
    526     } else {
    527         ALOGI("Compass calibration data does not exist\n");
    528     }
    529 
    530     rc = cw_read_calibrator_file(CW_ACCELERATION, SAVE_PATH_ACC, gs_temp_data);
    531     if (rc == 0) {
    532         ALOGD("Get g-sensor user calibration data from data/misc/ x is %d ,y is %d ,z is %d\n",
    533               gs_temp_data[0],gs_temp_data[1],gs_temp_data[2]);
    534         strcpy(&fixed_sysfs_path[fixed_sysfs_path_len], "calibrator_data_acc");
    535         if(!(gs_temp_data[0] == 0 && gs_temp_data[1] == 0 && gs_temp_data[2] == 0 )) {
    536             cw_save_calibrator_file(CW_ACCELERATION, fixed_sysfs_path, gs_temp_data);
    537         }
    538     } else {
    539         ALOGI("G-Sensor user calibration data does not exist\n");
    540     }
    541 
    542     pthread_mutex_unlock(&sys_fs_mutex);
    543 
    544     pthread_create(&sync_time_thread, (const pthread_attr_t *) NULL,
    545                     sync_time_thread_run, (void *)this);
    546 
    547 }
    548 
    549 CwMcuSensor::~CwMcuSensor() {
    550     if (!mEnabled.isEmpty()) {
    551         setEnable(0, 0);
    552     }
    553 }
    554 
    555 float CwMcuSensor::indexToValue(size_t index) const {
    556     static const float luxValues[LIGHTSENSOR_LEVEL] = {
    557         0.0, 10.0, 40.0, 90.0, 160.0,
    558         225.0, 320.0, 640.0, 1280.0,
    559         2600.0
    560     };
    561 
    562     const size_t maxIndex = (LIGHTSENSOR_LEVEL - 1);
    563     if (index > maxIndex) {
    564         index = maxIndex;
    565     }
    566     return luxValues[index];
    567 }
    568 
    569 int CwMcuSensor::find_handle(int32_t sensors_id) {
    570     switch (sensors_id) {
    571     case CW_ACCELERATION:
    572         return ID_A;
    573     case CW_MAGNETIC:
    574         return ID_M;
    575     case CW_GYRO:
    576         return ID_GY;
    577     case CW_PRESSURE:
    578         return ID_PS;
    579     case CW_ORIENTATION:
    580         return ID_O;
    581     case CW_ROTATIONVECTOR:
    582         return ID_RV;
    583     case CW_LINEARACCELERATION:
    584         return ID_LA;
    585     case CW_GRAVITY:
    586         return ID_G;
    587     case CW_MAGNETIC_UNCALIBRATED:
    588         return ID_CW_MAGNETIC_UNCALIBRATED;
    589     case CW_GYROSCOPE_UNCALIBRATED:
    590         return ID_CW_GYROSCOPE_UNCALIBRATED;
    591     case CW_GAME_ROTATION_VECTOR:
    592         return ID_CW_GAME_ROTATION_VECTOR;
    593     case CW_GEOMAGNETIC_ROTATION_VECTOR:
    594         return ID_CW_GEOMAGNETIC_ROTATION_VECTOR;
    595     case CW_LIGHT:
    596         return ID_L;
    597     case CW_SIGNIFICANT_MOTION:
    598         return ID_CW_SIGNIFICANT_MOTION;
    599     case CW_STEP_DETECTOR:
    600         return ID_CW_STEP_DETECTOR;
    601     case CW_STEP_COUNTER:
    602         return ID_CW_STEP_COUNTER;
    603     case CW_ACCELERATION_W:
    604         return ID_A_W;
    605     case CW_MAGNETIC_W:
    606         return ID_M_W;
    607     case CW_GYRO_W:
    608         return ID_GY_W;
    609     case CW_PRESSURE_W:
    610         return ID_PS_W;
    611     case CW_ORIENTATION_W:
    612         return ID_O_W;
    613     case CW_ROTATIONVECTOR_W:
    614         return ID_RV_W;
    615     case CW_LINEARACCELERATION_W:
    616         return ID_LA_W;
    617     case CW_GRAVITY_W:
    618         return ID_G_W;
    619     case CW_MAGNETIC_UNCALIBRATED_W:
    620         return ID_CW_MAGNETIC_UNCALIBRATED_W;
    621     case CW_GYROSCOPE_UNCALIBRATED_W:
    622         return ID_CW_GYROSCOPE_UNCALIBRATED_W;
    623     case CW_GAME_ROTATION_VECTOR_W:
    624         return ID_CW_GAME_ROTATION_VECTOR_W;
    625     case CW_GEOMAGNETIC_ROTATION_VECTOR_W:
    626         return ID_CW_GEOMAGNETIC_ROTATION_VECTOR_W;
    627     case CW_STEP_DETECTOR_W:
    628         return ID_CW_STEP_DETECTOR_W;
    629     case CW_STEP_COUNTER_W:
    630         return ID_CW_STEP_COUNTER_W;
    631     default:
    632         return 0xFF;
    633     }
    634 }
    635 
    636 bool CwMcuSensor::is_batch_wake_sensor(int32_t handle) {
    637     switch (handle) {
    638     case ID_A_W:
    639     case ID_M_W:
    640     case ID_GY_W:
    641     case ID_PS_W:
    642     case ID_O_W:
    643     case ID_RV_W:
    644     case ID_LA_W:
    645     case ID_G_W:
    646     case ID_CW_MAGNETIC_UNCALIBRATED_W:
    647     case ID_CW_GYROSCOPE_UNCALIBRATED_W:
    648     case ID_CW_GAME_ROTATION_VECTOR_W:
    649     case ID_CW_GEOMAGNETIC_ROTATION_VECTOR_W:
    650     case ID_CW_STEP_DETECTOR_W:
    651     case ID_CW_STEP_COUNTER_W:
    652         return true;
    653     default:
    654         return false;
    655     }
    656 }
    657 
    658 int CwMcuSensor::find_sensor(int32_t handle) {
    659     int what = -1;
    660 
    661     switch (handle) {
    662     case ID_A:
    663         what = CW_ACCELERATION;
    664         break;
    665     case ID_A_W:
    666         what = CW_ACCELERATION_W;
    667         break;
    668     case ID_M:
    669         what = CW_MAGNETIC;
    670         break;
    671     case ID_M_W:
    672         what = CW_MAGNETIC_W;
    673         break;
    674     case ID_GY:
    675         what = CW_GYRO;
    676         break;
    677     case ID_GY_W:
    678         what = CW_GYRO_W;
    679         break;
    680     case ID_PS:
    681         what = CW_PRESSURE;
    682         break;
    683     case ID_PS_W:
    684         what = CW_PRESSURE_W;
    685         break;
    686     case ID_O:
    687         what = CW_ORIENTATION;
    688         break;
    689     case ID_O_W:
    690         what = CW_ORIENTATION_W;
    691         break;
    692     case ID_RV:
    693         what = CW_ROTATIONVECTOR;
    694         break;
    695     case ID_RV_W:
    696         what = CW_ROTATIONVECTOR_W;
    697         break;
    698     case ID_LA:
    699         what = CW_LINEARACCELERATION;
    700         break;
    701     case ID_LA_W:
    702         what = CW_LINEARACCELERATION_W;
    703         break;
    704     case ID_G:
    705         what = CW_GRAVITY;
    706         break;
    707     case ID_G_W:
    708         what = CW_GRAVITY_W;
    709         break;
    710     case ID_CW_MAGNETIC_UNCALIBRATED:
    711         what = CW_MAGNETIC_UNCALIBRATED;
    712         break;
    713     case ID_CW_MAGNETIC_UNCALIBRATED_W:
    714         what = CW_MAGNETIC_UNCALIBRATED_W;
    715         break;
    716     case ID_CW_GYROSCOPE_UNCALIBRATED:
    717         what = CW_GYROSCOPE_UNCALIBRATED;
    718         break;
    719     case ID_CW_GYROSCOPE_UNCALIBRATED_W:
    720         what = CW_GYROSCOPE_UNCALIBRATED_W;
    721         break;
    722     case ID_CW_GAME_ROTATION_VECTOR:
    723         what = CW_GAME_ROTATION_VECTOR;
    724         break;
    725     case ID_CW_GAME_ROTATION_VECTOR_W:
    726         what = CW_GAME_ROTATION_VECTOR_W;
    727         break;
    728     case ID_CW_GEOMAGNETIC_ROTATION_VECTOR:
    729         what = CW_GEOMAGNETIC_ROTATION_VECTOR;
    730         break;
    731     case ID_CW_GEOMAGNETIC_ROTATION_VECTOR_W:
    732         what = CW_GEOMAGNETIC_ROTATION_VECTOR_W;
    733         break;
    734     case ID_CW_SIGNIFICANT_MOTION:
    735         what = CW_SIGNIFICANT_MOTION;
    736         break;
    737     case ID_CW_STEP_DETECTOR:
    738         what = CW_STEP_DETECTOR;
    739         break;
    740     case ID_CW_STEP_DETECTOR_W:
    741         what = CW_STEP_DETECTOR_W;
    742         break;
    743     case ID_CW_STEP_COUNTER:
    744         what = CW_STEP_COUNTER;
    745         break;
    746     case ID_CW_STEP_COUNTER_W:
    747         what = CW_STEP_COUNTER_W;
    748         break;
    749     case ID_L:
    750         what = CW_LIGHT;
    751         break;
    752     }
    753 
    754     return what;
    755 }
    756 
    757 int CwMcuSensor::getEnable(int32_t handle) {
    758     ALOGV("CwMcuSensor::getEnable: handle = %d\n", handle);
    759     return  0;
    760 }
    761 
    762 int CwMcuSensor::setEnable(int32_t handle, int en) {
    763 
    764     int what;
    765     int err = 0;
    766     int flags = !!en;
    767     int fd;
    768     char buf[10];
    769     int temp_data[COMPASS_CALIBRATION_DATA_SIZE];
    770     char value[PROPERTY_VALUE_MAX] = {0};
    771     int rc;
    772 
    773     ALOGV("%s: Before pthread_mutex_lock()\n", __func__);
    774     pthread_mutex_lock(&sys_fs_mutex);
    775     ALOGV("%s: Acquired pthread_mutex_lock()\n", __func__);
    776 
    777     property_get("debug.sensorhal.fill.block", value, "0");
    778     ALOGV("CwMcuSensor::setEnable: debug.sensorhal.fill.block= %s", value);
    779     fill_block_debug = atoi(value) == 1;
    780 
    781     what = find_sensor(handle);
    782 
    783     ALOGV("CwMcuSensor::setEnable: "
    784           "[v13-Dynamic adjust the IIO buffer], handle = %d, en = %d, what = %d\n",
    785           handle, en, what);
    786 
    787     if (uint32_t(what) >= numSensors) {
    788         pthread_mutex_unlock(&sys_fs_mutex);
    789         return -EINVAL;
    790     }
    791 
    792     offset_reset[what] = !!flags;
    793 
    794     strcpy(&fixed_sysfs_path[fixed_sysfs_path_len], "enable");
    795     fd = open(fixed_sysfs_path, O_RDWR);
    796     if (fd >= 0) {
    797         int n = snprintf(buf, sizeof(buf), "%d %d\n", what, flags);
    798         err = write(fd, buf, min(n, sizeof(buf)));
    799         if (err < 0) {
    800             ALOGE("%s: write failed: %s", __func__, strerror(errno));
    801         }
    802 
    803         close(fd);
    804 
    805         if (flags) {
    806             mEnabled.markBit(what);
    807         } else {
    808             mEnabled.clearBit(what);
    809         }
    810 
    811         if (mEnabled.isEmpty()) {
    812             if (sysfs_set_input_attr_by_int("buffer/enable", 0) < 0) {
    813                 ALOGE("CwMcuSensor::setEnable: set buffer disable failed: %s\n", strerror(errno));
    814             } else {
    815                 ALOGV("CwMcuSensor::setEnable: set IIO buffer enable = 0\n");
    816             }
    817         }
    818     } else {
    819         ALOGE("%s open failed: %s", __func__, strerror(errno));
    820     }
    821 
    822 
    823     // Sensor Calibration init. Waiting for firmware ready
    824     if (!flags &&
    825             ((what == CW_MAGNETIC) ||
    826              (what == CW_ORIENTATION) ||
    827              (what == CW_ROTATIONVECTOR))) {
    828         ALOGV("Save Compass calibration data");
    829         strcpy(&fixed_sysfs_path[fixed_sysfs_path_len], "calibrator_data_mag");
    830         rc = cw_read_calibrator_file(CW_MAGNETIC, fixed_sysfs_path, temp_data);
    831         if (rc== 0) {
    832             cw_save_calibrator_file(CW_MAGNETIC, SAVE_PATH_MAG, temp_data);
    833         } else {
    834             ALOGI("Compass calibration data from driver fails\n");
    835         }
    836     }
    837 
    838     pthread_mutex_unlock(&sys_fs_mutex);
    839     return 0;
    840 }
    841 
    842 int CwMcuSensor::batch(int handle, int flags, int64_t period_ns, int64_t timeout)
    843 {
    844     int what;
    845     int fd;
    846     char buf[32] = {0};
    847     int err;
    848     int delay_ms;
    849     int timeout_ms;
    850     bool dryRun = false;
    851 
    852     ALOGV("CwMcuSensor::batch++: handle = %d, flags = %d, period_ns = %" PRId64 ", timeout = %" PRId64 "\n",
    853         handle, flags, period_ns, timeout);
    854 
    855     what = find_sensor(handle);
    856     delay_ms = period_ns/NS_PER_MS; // int64_t is being dropped to an int type
    857     timeout_ms = timeout/NS_PER_MS; // int64_t is being dropped to an int type
    858 
    859     if(flags & SENSORS_BATCH_DRY_RUN) {
    860         dryRun = true;
    861     }
    862 
    863     if (uint32_t(what) >= CW_SENSORS_ID_END) {
    864         return -EINVAL;
    865     }
    866 
    867     if(is_batch_wake_sensor(handle)) {
    868         flags |= SENSORS_BATCH_WAKE_UPON_FIFO_FULL;
    869         ALOGV("CwMcuSensor::batch: SENSORS_BATCH_WAKE_UPON_FIFO_FULL~!!\n");
    870     } else
    871         flags &= ~SENSORS_BATCH_WAKE_UPON_FIFO_FULL;
    872 
    873     switch (what) {
    874     case CW_LIGHT:
    875     case CW_SIGNIFICANT_MOTION:
    876         if (timeout > 0) {
    877             ALOGI("CwMcuSensor::batch: handle = %d, not support batch mode", handle);
    878             return -EINVAL;
    879         }
    880         break;
    881     default:
    882         break;
    883     }
    884 
    885     if (dryRun == true) {
    886         ALOGV("CwMcuSensor::batch: SENSORS_BATCH_DRY_RUN is set\n");
    887         return 0;
    888     }
    889 
    890     ALOGV("%s: Before pthread_mutex_lock()\n", __func__);
    891     pthread_mutex_lock(&sys_fs_mutex);
    892     ALOGV("%s: Acquired pthread_mutex_lock()\n", __func__);
    893 
    894     if (mEnabled.isEmpty()) {
    895         int i;
    896         int iio_buf_size;
    897 
    898         if (!init_trigger_done) {
    899             err = sysfs_set_input_attr("trigger/current_trigger",
    900                                       mTriggerName, strlen(mTriggerName));
    901             if (err < 0) {
    902                 ALOGE("CwMcuSensor::batch: set current trigger failed: err = %d, strerr() = %s\n",
    903                       err, strerror(errno));
    904             } else {
    905                 init_trigger_done = true;
    906             }
    907         }
    908 
    909         iio_buf_size = IIO_MAX_BUFF_SIZE;
    910         for (i = 0; i < IIO_BUF_SIZE_RETRY; i++) {
    911             if (sysfs_set_input_attr_by_int("buffer/length", iio_buf_size) < 0) {
    912                 ALOGE("CwMcuSensor::batch: set IIO buffer length (%d) failed: %s\n",
    913                       iio_buf_size, strerror(errno));
    914             } else {
    915                 if (sysfs_set_input_attr_by_int("buffer/enable", 1) < 0) {
    916                     ALOGE("CwMcuSensor::batch: set IIO buffer enable failed: %s, i = %d, "
    917                           "iio_buf_size = %d\n", strerror(errno), i , iio_buf_size);
    918                 } else {
    919                     ALOGI("CwMcuSensor::batch: set IIO buffer length = %d, success\n", iio_buf_size);
    920                     break;
    921                 }
    922             }
    923             iio_buf_size /= 2;
    924         }
    925     }
    926 
    927     strcpy(&fixed_sysfs_path[fixed_sysfs_path_len], "batch_enable");
    928 
    929     fd = open(fixed_sysfs_path, O_RDWR);
    930     if (fd < 0) {
    931         err = -errno;
    932     } else {
    933         int n = snprintf(buf, sizeof(buf), "%d %d %d %d\n", what, flags, delay_ms, timeout_ms);
    934         err = write(fd, buf, min(n, sizeof(buf)));
    935         if (err < 0) {
    936             err = -errno;
    937         } else {
    938             err = 0;
    939         }
    940         close(fd);
    941     }
    942     pthread_mutex_unlock(&sys_fs_mutex);
    943 
    944     ALOGV("CwMcuSensor::batch: fd = %d, sensors_id = %d, flags = %d, delay_ms= %d,"
    945           " timeout_ms = %d, path = %s, err = %d\n",
    946           fd , what, flags, delay_ms, timeout_ms, fixed_sysfs_path, err);
    947 
    948     return err;
    949 }
    950 
    951 
    952 int CwMcuSensor::flush(int handle)
    953 {
    954     int what;
    955     int fd;
    956     char buf[10] = {0};
    957     int err;
    958 
    959     what = find_sensor(handle);
    960 
    961     if (uint32_t(what) >= CW_SENSORS_ID_END) {
    962         return -EINVAL;
    963     }
    964 
    965     ALOGV("%s: Before pthread_mutex_lock()\n", __func__);
    966     pthread_mutex_lock(&sys_fs_mutex);
    967     ALOGV("%s: Acquired pthread_mutex_lock()\n", __func__);
    968 
    969     strcpy(&fixed_sysfs_path[fixed_sysfs_path_len], "flush");
    970 
    971     fd = open(fixed_sysfs_path, O_RDWR);
    972     if (fd >= 0) {
    973         int n = snprintf(buf, sizeof(buf), "%d\n", what);
    974         err = write(fd, buf, min(n, sizeof(buf)));
    975         if (err < 0) {
    976             err = -errno;
    977         } else {
    978             err = 0;
    979         }
    980         close(fd);
    981     } else {
    982         ALOGI("CwMcuSensor::flush: flush not supported\n");
    983         err = -EINVAL;
    984     }
    985 
    986     pthread_mutex_unlock(&sys_fs_mutex);
    987     ALOGI("CwMcuSensor::flush: fd = %d, sensors_id = %d, path = %s, err = %d\n",
    988           fd, what, fixed_sysfs_path, err);
    989     return err;
    990 }
    991 
    992 
    993 bool CwMcuSensor::hasPendingEvents() const {
    994     return !mPendingMask.isEmpty();
    995 }
    996 
    997 int CwMcuSensor::setDelay(int32_t handle, int64_t delay_ns) {
    998     char buf[80];
    999     int fd;
   1000     int what;
   1001     int rc;
   1002 
   1003     ALOGV("%s: Before pthread_mutex_lock()\n", __func__);
   1004     pthread_mutex_lock(&sys_fs_mutex);
   1005     ALOGV("%s: Acquired pthread_mutex_lock()\n", __func__);
   1006 
   1007     ALOGV("CwMcuSensor::setDelay: handle = %" PRId32 ", delay_ns = %" PRId64 "\n",
   1008             handle, delay_ns);
   1009 
   1010     what = find_sensor(handle);
   1011     if (uint32_t(what) >= numSensors) {
   1012         pthread_mutex_unlock(&sys_fs_mutex);
   1013         return -EINVAL;
   1014     }
   1015     strcpy(&fixed_sysfs_path[fixed_sysfs_path_len], "delay_ms");
   1016     fd = open(fixed_sysfs_path, O_RDWR);
   1017     if (fd >= 0) {
   1018         size_t n = snprintf(buf, sizeof(buf), "%d %lld\n", what, (delay_ns/NS_PER_MS));
   1019         write(fd, buf, min(n, sizeof(buf)));
   1020         close(fd);
   1021     }
   1022 
   1023     pthread_mutex_unlock(&sys_fs_mutex);
   1024     return 0;
   1025 
   1026 }
   1027 
   1028 void CwMcuSensor::calculate_rv_4th_element(int sensors_id) {
   1029     switch (sensors_id) {
   1030     case CW_ROTATIONVECTOR:
   1031     case CW_GAME_ROTATION_VECTOR:
   1032     case CW_GEOMAGNETIC_ROTATION_VECTOR:
   1033     case CW_ROTATIONVECTOR_W:
   1034     case CW_GAME_ROTATION_VECTOR_W:
   1035     case CW_GEOMAGNETIC_ROTATION_VECTOR_W:
   1036         float q0, q1, q2, q3;
   1037 
   1038         q1 = mPendingEvents[sensors_id].data[0];
   1039         q2 = mPendingEvents[sensors_id].data[1];
   1040         q3 = mPendingEvents[sensors_id].data[2];
   1041 
   1042         q0 = 1 - q1*q1 - q2*q2 - q3*q3;
   1043         q0 = (q0 > 0) ? (float)sqrt(q0) : 0;
   1044 
   1045         mPendingEvents[sensors_id].data[3] = q0;
   1046         break;
   1047     default:
   1048         break;
   1049     }
   1050 }
   1051 
   1052 int CwMcuSensor::readEvents(sensors_event_t* data, int count) {
   1053     uint64_t mtimestamp;
   1054 
   1055     if (count < 1) {
   1056         return -EINVAL;
   1057     }
   1058 
   1059     ALOGD_IF(fill_block_debug == 1, "CwMcuSensor::readEvents: Before fill\n");
   1060     ssize_t n = mInputReader.fill(data_fd);
   1061     ALOGD_IF(fill_block_debug == 1, "CwMcuSensor::readEvents: After fill, n = %zd\n", n);
   1062     if (n < 0) {
   1063         return n;
   1064     }
   1065 
   1066     cw_event const* event;
   1067     uint8_t data_temp[24];
   1068     int id;
   1069     int numEventReceived = 0;
   1070 
   1071     while (count && mInputReader.readEvent(&event)) {
   1072 
   1073         memcpy(data_temp, event->data, sizeof(data_temp));
   1074 
   1075         id = processEvent(data_temp);
   1076         if (id == CW_META_DATA) {
   1077             *data++ = mPendingEventsFlush;
   1078             count--;
   1079             numEventReceived++;
   1080             ALOGV("CwMcuSensor::readEvents: metadata = %d\n", mPendingEventsFlush.meta_data.sensor);
   1081         } else if ((id == TIME_DIFF_EXHAUSTED) || (id == CW_TIME_BASE)) {
   1082             ALOGV("readEvents: id = %d\n", id);
   1083         } else {
   1084             /*** The algorithm which parsed mcu_time into cpu_time for each event ***/
   1085             uint64_t event_mcu_time = mPendingEvents[id].timestamp;
   1086             uint64_t event_cpu_time;
   1087 
   1088             if (event_mcu_time < last_mcu_timestamp[id]) {
   1089                 ALOGE("Do syncronization due to wrong delta mcu_timestamp\n");
   1090                 ALOGE("curr_ts = %" PRIu64 " ns, last_ts = %" PRIu64 " ns",
   1091                     event_mcu_time, last_mcu_timestamp[id]);
   1092                 sync_time_thread_in_class();
   1093             }
   1094 
   1095             pthread_mutex_lock(&sync_timestamp_algo_mutex);
   1096 
   1097             if (offset_reset[id]) {
   1098                 ALOGV("offset changed, id = %d, offset = %" PRId64 "\n", id, time_offset);
   1099                 offset_reset[id] = false;
   1100                 event_cpu_time = event_mcu_time + time_offset;
   1101             } else {
   1102                 int64_t event_mcu_diff = (event_mcu_time - last_mcu_timestamp[id]);
   1103                 int64_t event_cpu_diff = event_mcu_diff * time_slope;
   1104                 event_cpu_time = last_cpu_timestamp[id] + event_cpu_diff;
   1105             }
   1106             pthread_mutex_unlock(&sync_timestamp_algo_mutex);
   1107 
   1108             pthread_mutex_lock(&last_timestamp_mutex);
   1109 
   1110             mtimestamp = getTimestamp();
   1111             ALOGV("readEvents: id = %d, accuracy = %d\n"
   1112                   , id
   1113                   , mPendingEvents[id].acceleration.status);
   1114             ALOGV("readEvents: id = %d,"
   1115                   " mcu_time = %" PRId64 " ms,"
   1116                   " cpu_time = %" PRId64 " ns,"
   1117                   " delta = %" PRId64 " us,"
   1118                   " HALtime = %" PRId64 " ns\n",
   1119                   id,
   1120                   event_mcu_time / NS_PER_MS,
   1121                   event_cpu_time,
   1122                   (event_cpu_time - last_cpu_timestamp[id]) / NS_PER_US,
   1123                   mtimestamp);
   1124             event_cpu_time = (mtimestamp > event_cpu_time) ? event_cpu_time : mtimestamp;
   1125             last_mcu_timestamp[id] = event_mcu_time;
   1126             last_cpu_timestamp[id] = event_cpu_time;
   1127             pthread_mutex_unlock(&last_timestamp_mutex);
   1128             /*** The algorithm which parsed mcu_time into cpu_time for each event ***/
   1129 
   1130             mPendingEvents[id].timestamp = event_cpu_time;
   1131 
   1132             if (mEnabled.hasBit(id)) {
   1133                 if (id == CW_SIGNIFICANT_MOTION) {
   1134                     setEnable(ID_CW_SIGNIFICANT_MOTION, 0);
   1135                 }
   1136                 calculate_rv_4th_element(id);
   1137                 *data++ = mPendingEvents[id];
   1138                 count--;
   1139                 numEventReceived++;
   1140             }
   1141         }
   1142 
   1143         mInputReader.next();
   1144     }
   1145     return numEventReceived;
   1146 }
   1147 
   1148 
   1149 int CwMcuSensor::processEvent(uint8_t *event) {
   1150     int sensorsid = 0;
   1151     int16_t data[3];
   1152     int16_t bias[3];
   1153     int64_t time;
   1154 
   1155     sensorsid = (int)event[0];
   1156     memcpy(data, &event[1], 6);
   1157     memcpy(bias, &event[7], 6);
   1158     memcpy(&time, &event[13], 8);
   1159 
   1160     mPendingEvents[sensorsid].timestamp = time * NS_PER_MS;
   1161 
   1162     switch (sensorsid) {
   1163     case CW_ORIENTATION:
   1164     case CW_ORIENTATION_W:
   1165         mPendingMask.markBit(sensorsid);
   1166         if ((sensorsid == CW_ORIENTATION) || (sensorsid == CW_ORIENTATION_W)) {
   1167             mPendingEvents[sensorsid].orientation.status = bias[0];
   1168         }
   1169         mPendingEvents[sensorsid].data[0] = (float)data[0] * CONVERT_10;
   1170         mPendingEvents[sensorsid].data[1] = (float)data[1] * CONVERT_10;
   1171         mPendingEvents[sensorsid].data[2] = (float)data[2] * CONVERT_10;
   1172         break;
   1173     case CW_ACCELERATION:
   1174     case CW_MAGNETIC:
   1175     case CW_GYRO:
   1176     case CW_LINEARACCELERATION:
   1177     case CW_GRAVITY:
   1178     case CW_ACCELERATION_W:
   1179     case CW_MAGNETIC_W:
   1180     case CW_GYRO_W:
   1181     case CW_LINEARACCELERATION_W:
   1182     case CW_GRAVITY_W:
   1183         mPendingMask.markBit(sensorsid);
   1184         if ((sensorsid == CW_MAGNETIC) || (sensorsid == CW_MAGNETIC_W)) {
   1185             mPendingEvents[sensorsid].magnetic.status = bias[0];
   1186             ALOGV("CwMcuSensor::processEvent: magnetic accuracy = %d\n",
   1187                   mPendingEvents[sensorsid].magnetic.status);
   1188         }
   1189         mPendingEvents[sensorsid].data[0] = (float)data[0] * CONVERT_100;
   1190         mPendingEvents[sensorsid].data[1] = (float)data[1] * CONVERT_100;
   1191         mPendingEvents[sensorsid].data[2] = (float)data[2] * CONVERT_100;
   1192         break;
   1193     case CW_PRESSURE:
   1194     case CW_PRESSURE_W:
   1195         mPendingMask.markBit(sensorsid);
   1196         // .pressure is data[0] and the unit is hectopascal (hPa)
   1197         mPendingEvents[sensorsid].pressure = ((float)*(int32_t *)(&data[0])) * CONVERT_100;
   1198         // data[1] is not used, and data[2] is the temperature
   1199         mPendingEvents[sensorsid].data[2] = ((float)data[2]) * CONVERT_100;
   1200         break;
   1201     case CW_ROTATIONVECTOR:
   1202     case CW_GAME_ROTATION_VECTOR:
   1203     case CW_GEOMAGNETIC_ROTATION_VECTOR:
   1204     case CW_ROTATIONVECTOR_W:
   1205     case CW_GAME_ROTATION_VECTOR_W:
   1206     case CW_GEOMAGNETIC_ROTATION_VECTOR_W:
   1207         mPendingMask.markBit(sensorsid);
   1208         mPendingEvents[sensorsid].data[0] = (float)data[0] * CONVERT_10000;
   1209         mPendingEvents[sensorsid].data[1] = (float)data[1] * CONVERT_10000;
   1210         mPendingEvents[sensorsid].data[2] = (float)data[2] * CONVERT_10000;
   1211         break;
   1212     case CW_MAGNETIC_UNCALIBRATED:
   1213     case CW_GYROSCOPE_UNCALIBRATED:
   1214     case CW_MAGNETIC_UNCALIBRATED_W:
   1215     case CW_GYROSCOPE_UNCALIBRATED_W:
   1216         mPendingMask.markBit(sensorsid);
   1217         mPendingEvents[sensorsid].data[0] = (float)data[0] * CONVERT_100;
   1218         mPendingEvents[sensorsid].data[1] = (float)data[1] * CONVERT_100;
   1219         mPendingEvents[sensorsid].data[2] = (float)data[2] * CONVERT_100;
   1220         mPendingEvents[sensorsid].data[3] = (float)bias[0] * CONVERT_100;
   1221         mPendingEvents[sensorsid].data[4] = (float)bias[1] * CONVERT_100;
   1222         mPendingEvents[sensorsid].data[5] = (float)bias[2] * CONVERT_100;
   1223         break;
   1224     case CW_SIGNIFICANT_MOTION:
   1225         mPendingMask.markBit(sensorsid);
   1226         mPendingEvents[sensorsid].data[0] = 1.0;
   1227         ALOGV("SIGNIFICANT timestamp = %" PRIu64 "\n", mPendingEvents[sensorsid].timestamp);
   1228         break;
   1229     case CW_LIGHT:
   1230         mPendingMask.markBit(sensorsid);
   1231         mPendingEvents[sensorsid].light = indexToValue(data[0]);
   1232         break;
   1233     case CW_STEP_DETECTOR:
   1234     case CW_STEP_DETECTOR_W:
   1235         mPendingMask.markBit(sensorsid);
   1236         mPendingEvents[sensorsid].data[0] = data[0];
   1237         ALOGV("STEP_DETECTOR, timestamp = %" PRIu64 "\n", mPendingEvents[sensorsid].timestamp);
   1238         break;
   1239     case CW_STEP_COUNTER:
   1240     case CW_STEP_COUNTER_W:
   1241         mPendingMask.markBit(sensorsid);
   1242         // We use 4 bytes in SensorHUB
   1243         mPendingEvents[sensorsid].u64.step_counter = *(uint32_t *)&data[0];
   1244         mPendingEvents[sensorsid].u64.step_counter += 0x100000000LL * (*(uint32_t *)&bias[0]);
   1245         ALOGV("processEvent: step counter = %" PRId64 "\n",
   1246               mPendingEvents[sensorsid].u64.step_counter);
   1247         break;
   1248     case CW_META_DATA:
   1249         mPendingEventsFlush.meta_data.what = META_DATA_FLUSH_COMPLETE;
   1250         mPendingEventsFlush.meta_data.sensor = find_handle(data[0]);
   1251         ALOGV("CW_META_DATA: meta_data.sensor = %d, data[0] = %d\n",
   1252               mPendingEventsFlush.meta_data.sensor, data[0]);
   1253         break;
   1254     default:
   1255         ALOGW("%s: Unknown sensorsid = %d\n", __func__, sensorsid);
   1256         break;
   1257     }
   1258 
   1259     return sensorsid;
   1260 }
   1261 
   1262 
   1263 void CwMcuSensor::cw_save_calibrator_file(int type, const char * path, int* str) {
   1264     FILE *fp_file;
   1265     int i;
   1266     int rc;
   1267 
   1268     ALOGV("CwMcuSensor::cw_save_calibrator_file: path = %s\n", path);
   1269 
   1270     fp_file = fopen(path, "w+");
   1271     if (!fp_file) {
   1272         ALOGE("CwMcuSensor::cw_save_calibrator_file: open file '%s' failed: %s\n",
   1273               path, strerror(errno));
   1274         return;
   1275     }
   1276 
   1277     if ((type == CW_GYRO) || (type == CW_ACCELERATION)) {
   1278         fprintf(fp_file, "%d %d %d\n", str[0], str[1], str[2]);
   1279     } else if(type == CW_MAGNETIC) {
   1280         for (i = 0; i < COMPASS_CALIBRATION_DATA_SIZE; i++) {
   1281             ALOGV("CwMcuSensor::cw_save_calibrator_file: str[%d] = %d\n", i, str[i]);
   1282             rc = fprintf(fp_file, "%d%c", str[i], (i == (COMPASS_CALIBRATION_DATA_SIZE-1)) ? '\n' : ' ');
   1283             if (rc < 0) {
   1284                 ALOGE("CwMcuSensor::cw_save_calibrator_file: fprintf fails, rc = %d\n", rc);
   1285             }
   1286         }
   1287     }
   1288 
   1289     fclose(fp_file);
   1290     return;
   1291 }
   1292 
   1293 int CwMcuSensor::cw_read_calibrator_file(int type, const char * path, int* str) {
   1294     FILE *fp;
   1295     int readBytes;
   1296     int data[COMPASS_CALIBRATION_DATA_SIZE] = {0};
   1297     unsigned int i;
   1298     int my_errno;
   1299 
   1300     ALOGV("CwMcuSensor::cw_read_calibrator_file: path = %s\n", path);
   1301 
   1302     fp = fopen(path, "r");
   1303     if (!fp) {
   1304         ALOGE("CwMcuSensor::cw_read_calibrator_file: open file '%s' failed: %s\n",
   1305               path, strerror(errno));
   1306         // errno is reset to 0 before return
   1307         return -1;
   1308     }
   1309 
   1310     if (type == CW_GYRO || type == CW_ACCELERATION) {
   1311         readBytes = fscanf(fp, "%d %d %d\n", &str[0], &str[1], &str[2]);
   1312         my_errno = errno;
   1313         if (readBytes != 3) {
   1314             ALOGE("CwMcuSensor::cw_read_calibrator_file: fscanf3, readBytes = %d, strerror = %s\n", readBytes, strerror(my_errno));
   1315         }
   1316 
   1317     } else if (type == CW_MAGNETIC) {
   1318         ALOGV("CwMcuSensor::cw_read_calibrator_file: COMPASS_CALIBRATION_DATA_SIZE = %d\n", COMPASS_CALIBRATION_DATA_SIZE);
   1319         // COMPASS_CALIBRATION_DATA_SIZE is 26
   1320         for (i = 0; i < COMPASS_CALIBRATION_DATA_SIZE; i++) {
   1321             readBytes = fscanf(fp, "%d ", &str[i]);
   1322             my_errno = errno;
   1323             ALOGV("CwMcuSensor::cw_read_calibrator_file: str[%d] = %d\n", i, str[i]);
   1324             if (readBytes < 1) {
   1325                 ALOGE("CwMcuSensor::cw_read_calibrator_file: fscanf26, readBytes = %d, strerror = %s\n", readBytes, strerror(my_errno));
   1326                 fclose(fp);
   1327                 return readBytes;
   1328             }
   1329         }
   1330     }
   1331     fclose(fp);
   1332     return 0;
   1333 }
   1334