1 /* ------------------------------------------------------------------ 2 * Copyright (C) 1998-2009 PacketVideo 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 13 * express or implied. 14 * See the License for the specific language governing permissions 15 * and limitations under the License. 16 * ------------------------------------------------------------------- 17 */ 18 /**************************************************************************************** 19 Portions of this file are derived from the following 3GPP standard: 20 21 3GPP TS 26.173 22 ANSI-C code for the Adaptive Multi-Rate - Wideband (AMR-WB) speech codec 23 Available from http://www.3gpp.org 24 25 (C) 2007, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC) 26 Permission to distribute, modify and use this file under the standard license 27 terms listed above has been obtained from the copyright holder. 28 ****************************************************************************************/ 29 /*___________________________________________________________________________ 30 31 This file contains mathematic operations in fixed point. 32 33 mult_int16_r() : Same as mult_int16 with rounding 34 shr_rnd() : Same as shr(var1,var2) but with rounding 35 div_16by16() : fractional integer division 36 one_ov_sqrt() : Compute 1/sqrt(L_x) 37 one_ov_sqrt_norm() : Compute 1/sqrt(x) 38 power_of_2() : power of 2 39 Dot_product12() : Compute scalar product of <x[],y[]> using accumulator 40 Isqrt() : inverse square root (16 bits precision). 41 amrwb_log_2() : log2 (16 bits precision). 42 43 These operations are not standard double precision operations. 44 They are used where low complexity is important and the full 32 bits 45 precision is not necessary. For example, the function Div_32() has a 46 24 bits precision which is enough for our purposes. 47 48 In this file, the values use theses representations: 49 50 int32 L_32 : standard signed 32 bits format 51 int16 hi, lo : L_32 = hi<<16 + lo<<1 (DPF - Double Precision Format) 52 int32 frac, int16 exp : L_32 = frac << exp-31 (normalised format) 53 int16 int, frac : L_32 = int.frac (fractional format) 54 ----------------------------------------------------------------------------*/ 55 56 #include "pv_amr_wb_type_defs.h" 57 #include "pvamrwbdecoder_basic_op.h" 58 #include "pvamrwb_math_op.h" 59 60 61 /*---------------------------------------------------------------------------- 62 63 Function Name : mult_int16_r 64 65 Purpose : 66 67 Same as mult_int16 with rounding, i.e.: 68 mult_int16_r(var1,var2) = extract_l(L_shr(((var1 * var2) + 16384),15)) and 69 mult_int16_r(-32768,-32768) = 32767. 70 71 Complexity weight : 2 72 73 Inputs : 74 75 var1 76 16 bit short signed integer (int16) whose value falls in the 77 range : 0xffff 8000 <= var1 <= 0x0000 7fff. 78 79 var2 80 16 bit short signed integer (int16) whose value falls in the 81 range : 0xffff 8000 <= var1 <= 0x0000 7fff. 82 83 Outputs : 84 85 none 86 87 Return Value : 88 89 var_out 90 16 bit short signed integer (int16) whose value falls in the 91 range : 0xffff 8000 <= var_out <= 0x0000 7fff. 92 ----------------------------------------------------------------------------*/ 93 94 int16 mult_int16_r(int16 var1, int16 var2) 95 { 96 int32 L_product_arr; 97 98 L_product_arr = (int32) var1 * (int32) var2; /* product */ 99 L_product_arr += (int32) 0x00004000L; /* round */ 100 L_product_arr >>= 15; /* shift */ 101 if ((L_product_arr >> 15) != (L_product_arr >> 31)) 102 { 103 L_product_arr = (L_product_arr >> 31) ^ MAX_16; 104 } 105 106 return ((int16)L_product_arr); 107 } 108 109 110 111 /*---------------------------------------------------------------------------- 112 113 Function Name : shr_rnd 114 115 Purpose : 116 117 Same as shr(var1,var2) but with rounding. Saturate the result in case of| 118 underflows or overflows : 119 - If var2 is greater than zero : 120 if (sub(shl_int16(shr(var1,var2),1),shr(var1,sub(var2,1)))) 121 is equal to zero 122 then 123 shr_rnd(var1,var2) = shr(var1,var2) 124 else 125 shr_rnd(var1,var2) = add_int16(shr(var1,var2),1) 126 - If var2 is less than or equal to zero : 127 shr_rnd(var1,var2) = shr(var1,var2). 128 129 Complexity weight : 2 130 131 Inputs : 132 133 var1 134 16 bit short signed integer (int16) whose value falls in the 135 range : 0xffff 8000 <= var1 <= 0x0000 7fff. 136 137 var2 138 16 bit short signed integer (int16) whose value falls in the 139 range : 0x0000 0000 <= var2 <= 0x0000 7fff. 140 141 Outputs : 142 143 none 144 145 Return Value : 146 147 var_out 148 16 bit short signed integer (int16) whose value falls in the 149 range : 0xffff 8000 <= var_out <= 0x0000 7fff. 150 ----------------------------------------------------------------------------*/ 151 152 int16 shr_rnd(int16 var1, int16 var2) 153 { 154 int16 var_out; 155 156 var_out = (int16)(var1 >> (var2 & 0xf)); 157 if (var2) 158 { 159 if ((var1 & ((int16) 1 << (var2 - 1))) != 0) 160 { 161 var_out++; 162 } 163 } 164 return (var_out); 165 } 166 167 168 /*---------------------------------------------------------------------------- 169 170 Function Name : div_16by16 171 172 Purpose : 173 174 Produces a result which is the fractional integer division of var1 by 175 var2; var1 and var2 must be positive and var2 must be greater or equal 176 to var1; the result is positive (leading bit equal to 0) and truncated 177 to 16 bits. 178 If var1 = var2 then div(var1,var2) = 32767. 179 180 Complexity weight : 18 181 182 Inputs : 183 184 var1 185 16 bit short signed integer (int16) whose value falls in the 186 range : 0x0000 0000 <= var1 <= var2 and var2 != 0. 187 188 var2 189 16 bit short signed integer (int16) whose value falls in the 190 range : var1 <= var2 <= 0x0000 7fff and var2 != 0. 191 192 Outputs : 193 194 none 195 196 Return Value : 197 198 var_out 199 16 bit short signed integer (int16) whose value falls in the 200 range : 0x0000 0000 <= var_out <= 0x0000 7fff. 201 It's a Q15 value (point between b15 and b14). 202 ----------------------------------------------------------------------------*/ 203 204 int16 div_16by16(int16 var1, int16 var2) 205 { 206 207 int16 var_out = 0; 208 register int16 iteration; 209 int32 L_num; 210 int32 L_denom; 211 int32 L_denom_by_2; 212 int32 L_denom_by_4; 213 214 if ((var1 > var2) || (var1 < 0)) 215 { 216 return 0; // used to exit(0); 217 } 218 if (var1) 219 { 220 if (var1 != var2) 221 { 222 223 L_num = (int32) var1; 224 L_denom = (int32) var2; 225 L_denom_by_2 = (L_denom << 1); 226 L_denom_by_4 = (L_denom << 2); 227 for (iteration = 5; iteration > 0; iteration--) 228 { 229 var_out <<= 3; 230 L_num <<= 3; 231 232 if (L_num >= L_denom_by_4) 233 { 234 L_num -= L_denom_by_4; 235 var_out |= 4; 236 } 237 238 if (L_num >= L_denom_by_2) 239 { 240 L_num -= L_denom_by_2; 241 var_out |= 2; 242 } 243 244 if (L_num >= (L_denom)) 245 { 246 L_num -= (L_denom); 247 var_out |= 1; 248 } 249 250 } 251 } 252 else 253 { 254 var_out = MAX_16; 255 } 256 } 257 258 return (var_out); 259 260 } 261 262 263 264 /*---------------------------------------------------------------------------- 265 266 Function Name : one_ov_sqrt 267 268 Compute 1/sqrt(L_x). 269 if L_x is negative or zero, result is 1 (7fffffff). 270 271 Algorithm: 272 273 1- Normalization of L_x. 274 2- call Isqrt_n(L_x, exponant) 275 3- L_y = L_x << exponant 276 ----------------------------------------------------------------------------*/ 277 int32 one_ov_sqrt( /* (o) Q31 : output value (range: 0<=val<1) */ 278 int32 L_x /* (i) Q0 : input value (range: 0<=val<=7fffffff) */ 279 ) 280 { 281 int16 exp; 282 int32 L_y; 283 284 exp = normalize_amr_wb(L_x); 285 L_x <<= exp; /* L_x is normalized */ 286 exp = 31 - exp; 287 288 one_ov_sqrt_norm(&L_x, &exp); 289 290 L_y = shl_int32(L_x, exp); /* denormalization */ 291 292 return (L_y); 293 } 294 295 /*---------------------------------------------------------------------------- 296 297 Function Name : one_ov_sqrt_norm 298 299 Compute 1/sqrt(value). 300 if value is negative or zero, result is 1 (frac=7fffffff, exp=0). 301 302 Algorithm: 303 304 The function 1/sqrt(value) is approximated by a table and linear 305 interpolation. 306 307 1- If exponant is odd then shift fraction right once. 308 2- exponant = -((exponant-1)>>1) 309 3- i = bit25-b30 of fraction, 16 <= i <= 63 ->because of normalization. 310 4- a = bit10-b24 311 5- i -=16 312 6- fraction = table[i]<<16 - (table[i] - table[i+1]) * a * 2 313 ----------------------------------------------------------------------------*/ 314 static const int16 table_isqrt[49] = 315 { 316 32767, 31790, 30894, 30070, 29309, 28602, 27945, 27330, 26755, 26214, 317 25705, 25225, 24770, 24339, 23930, 23541, 23170, 22817, 22479, 22155, 318 21845, 21548, 21263, 20988, 20724, 20470, 20225, 19988, 19760, 19539, 319 19326, 19119, 18919, 18725, 18536, 18354, 18176, 18004, 17837, 17674, 320 17515, 17361, 17211, 17064, 16921, 16782, 16646, 16514, 16384 321 }; 322 323 void one_ov_sqrt_norm( 324 int32 * frac, /* (i/o) Q31: normalized value (1.0 < frac <= 0.5) */ 325 int16 * exp /* (i/o) : exponent (value = frac x 2^exponent) */ 326 ) 327 { 328 int16 i, a, tmp; 329 330 331 if (*frac <= (int32) 0) 332 { 333 *exp = 0; 334 *frac = 0x7fffffffL; 335 return; 336 } 337 338 if ((*exp & 1) == 1) /* If exponant odd -> shift right */ 339 *frac >>= 1; 340 341 *exp = negate_int16((*exp - 1) >> 1); 342 343 *frac >>= 9; 344 i = extract_h(*frac); /* Extract b25-b31 */ 345 *frac >>= 1; 346 a = (int16)(*frac); /* Extract b10-b24 */ 347 a = (int16)(a & (int16) 0x7fff); 348 349 i -= 16; 350 351 *frac = L_deposit_h(table_isqrt[i]); /* table[i] << 16 */ 352 tmp = table_isqrt[i] - table_isqrt[i + 1]; /* table[i] - table[i+1]) */ 353 354 *frac = msu_16by16_from_int32(*frac, tmp, a); /* frac -= tmp*a*2 */ 355 356 return; 357 } 358 359 /*---------------------------------------------------------------------------- 360 361 Function Name : power_2() 362 363 L_x = pow(2.0, exponant.fraction) (exponant = interger part) 364 = pow(2.0, 0.fraction) << exponant 365 366 Algorithm: 367 368 The function power_2(L_x) is approximated by a table and linear 369 interpolation. 370 371 1- i = bit10-b15 of fraction, 0 <= i <= 31 372 2- a = bit0-b9 of fraction 373 3- L_x = table[i]<<16 - (table[i] - table[i+1]) * a * 2 374 4- L_x = L_x >> (30-exponant) (with rounding) 375 ----------------------------------------------------------------------------*/ 376 const int16 table_pow2[33] = 377 { 378 16384, 16743, 17109, 17484, 17867, 18258, 18658, 19066, 19484, 19911, 379 20347, 20792, 21247, 21713, 22188, 22674, 23170, 23678, 24196, 24726, 380 25268, 25821, 26386, 26964, 27554, 28158, 28774, 29405, 30048, 30706, 381 31379, 32066, 32767 382 }; 383 384 int32 power_of_2( /* (o) Q0 : result (range: 0<=val<=0x7fffffff) */ 385 int16 exponant, /* (i) Q0 : Integer part. (range: 0<=val<=30) */ 386 int16 fraction /* (i) Q15 : Fractionnal part. (range: 0.0<=val<1.0) */ 387 ) 388 { 389 int16 exp, i, a, tmp; 390 int32 L_x; 391 392 L_x = fraction << 5; /* L_x = fraction<<6 */ 393 i = (fraction >> 10); /* Extract b10-b16 of fraction */ 394 a = (int16)(L_x); /* Extract b0-b9 of fraction */ 395 a = (int16)(a & (int16) 0x7fff); 396 397 L_x = ((int32)table_pow2[i]) << 15; /* table[i] << 16 */ 398 tmp = table_pow2[i] - table_pow2[i + 1]; /* table[i] - table[i+1] */ 399 L_x -= ((int32)tmp * a); /* L_x -= tmp*a*2 */ 400 401 exp = 29 - exponant ; 402 403 if (exp) 404 { 405 L_x = ((L_x >> exp) + ((L_x >> (exp - 1)) & 1)); 406 } 407 408 return (L_x); 409 } 410 411 /*---------------------------------------------------------------------------- 412 * 413 * Function Name : Dot_product12() 414 * 415 * Compute scalar product of <x[],y[]> using accumulator. 416 * 417 * The result is normalized (in Q31) with exponent (0..30). 418 * 419 * Algorithm: 420 * 421 * dot_product = sum(x[i]*y[i]) i=0..N-1 422 ----------------------------------------------------------------------------*/ 423 424 int32 Dot_product12( /* (o) Q31: normalized result (1 < val <= -1) */ 425 int16 x[], /* (i) 12bits: x vector */ 426 int16 y[], /* (i) 12bits: y vector */ 427 int16 lg, /* (i) : vector length */ 428 int16 * exp /* (o) : exponent of result (0..+30) */ 429 ) 430 { 431 int16 i, sft; 432 int32 L_sum; 433 int16 *pt_x = x; 434 int16 *pt_y = y; 435 436 L_sum = 1L; 437 438 439 for (i = lg >> 3; i != 0; i--) 440 { 441 L_sum = mac_16by16_to_int32(L_sum, *(pt_x++), *(pt_y++)); 442 L_sum = mac_16by16_to_int32(L_sum, *(pt_x++), *(pt_y++)); 443 L_sum = mac_16by16_to_int32(L_sum, *(pt_x++), *(pt_y++)); 444 L_sum = mac_16by16_to_int32(L_sum, *(pt_x++), *(pt_y++)); 445 L_sum = mac_16by16_to_int32(L_sum, *(pt_x++), *(pt_y++)); 446 L_sum = mac_16by16_to_int32(L_sum, *(pt_x++), *(pt_y++)); 447 L_sum = mac_16by16_to_int32(L_sum, *(pt_x++), *(pt_y++)); 448 L_sum = mac_16by16_to_int32(L_sum, *(pt_x++), *(pt_y++)); 449 } 450 451 /* Normalize acc in Q31 */ 452 453 sft = normalize_amr_wb(L_sum); 454 L_sum <<= sft; 455 456 *exp = 30 - sft; /* exponent = 0..30 */ 457 458 return (L_sum); 459 } 460 461 /* Table for Log2() */ 462 const int16 Log2_norm_table[33] = 463 { 464 0, 1455, 2866, 4236, 5568, 6863, 8124, 9352, 10549, 11716, 465 12855, 13967, 15054, 16117, 17156, 18172, 19167, 20142, 21097, 22033, 466 22951, 23852, 24735, 25603, 26455, 27291, 28113, 28922, 29716, 30497, 467 31266, 32023, 32767 468 }; 469 470 /*---------------------------------------------------------------------------- 471 * 472 * FUNCTION: Lg2_normalized() 473 * 474 * PURPOSE: Computes log2(L_x, exp), where L_x is positive and 475 * normalized, and exp is the normalisation exponent 476 * If L_x is negative or zero, the result is 0. 477 * 478 * DESCRIPTION: 479 * The function Log2(L_x) is approximated by a table and linear 480 * interpolation. The following steps are used to compute Log2(L_x) 481 * 482 * 1- exponent = 30-norm_exponent 483 * 2- i = bit25-b31 of L_x; 32<=i<=63 (because of normalization). 484 * 3- a = bit10-b24 485 * 4- i -=32 486 * 5- fraction = table[i]<<16 - (table[i] - table[i+1]) * a * 2 487 * 488 ----------------------------------------------------------------------------*/ 489 void Lg2_normalized( 490 int32 L_x, /* (i) : input value (normalized) */ 491 int16 exp, /* (i) : norm_l (L_x) */ 492 int16 *exponent, /* (o) : Integer part of Log2. (range: 0<=val<=30) */ 493 int16 *fraction /* (o) : Fractional part of Log2. (range: 0<=val<1) */ 494 ) 495 { 496 int16 i, a, tmp; 497 int32 L_y; 498 499 if (L_x <= (int32) 0) 500 { 501 *exponent = 0; 502 *fraction = 0;; 503 return; 504 } 505 506 *exponent = 30 - exp; 507 508 L_x >>= 9; 509 i = extract_h(L_x); /* Extract b25-b31 */ 510 L_x >>= 1; 511 a = (int16)(L_x); /* Extract b10-b24 of fraction */ 512 a &= 0x7fff; 513 514 i -= 32; 515 516 L_y = L_deposit_h(Log2_norm_table[i]); /* table[i] << 16 */ 517 tmp = Log2_norm_table[i] - Log2_norm_table[i + 1]; /* table[i] - table[i+1] */ 518 L_y = msu_16by16_from_int32(L_y, tmp, a); /* L_y -= tmp*a*2 */ 519 520 *fraction = extract_h(L_y); 521 522 return; 523 } 524 525 526 527 /*---------------------------------------------------------------------------- 528 * 529 * FUNCTION: amrwb_log_2() 530 * 531 * PURPOSE: Computes log2(L_x), where L_x is positive. 532 * If L_x is negative or zero, the result is 0. 533 * 534 * DESCRIPTION: 535 * normalizes L_x and then calls Lg2_normalized(). 536 * 537 ----------------------------------------------------------------------------*/ 538 void amrwb_log_2( 539 int32 L_x, /* (i) : input value */ 540 int16 *exponent, /* (o) : Integer part of Log2. (range: 0<=val<=30) */ 541 int16 *fraction /* (o) : Fractional part of Log2. (range: 0<=val<1) */ 542 ) 543 { 544 int16 exp; 545 546 exp = normalize_amr_wb(L_x); 547 Lg2_normalized(shl_int32(L_x, exp), exp, exponent, fraction); 548 } 549 550 551 /***************************************************************************** 552 * 553 * These operations are not standard double precision operations. * 554 * They are used where single precision is not enough but the full 32 bits * 555 * precision is not necessary. For example, the function Div_32() has a * 556 * 24 bits precision which is enough for our purposes. * 557 * * 558 * The double precision numbers use a special representation: * 559 * * 560 * L_32 = hi<<16 + lo<<1 * 561 * * 562 * L_32 is a 32 bit integer. * 563 * hi and lo are 16 bit signed integers. * 564 * As the low part also contains the sign, this allows fast multiplication. * 565 * * 566 * 0x8000 0000 <= L_32 <= 0x7fff fffe. * 567 * * 568 * We will use DPF (Double Precision Format )in this file to specify * 569 * this special format. * 570 ***************************************************************************** 571 */ 572 573 574 /*---------------------------------------------------------------------------- 575 * 576 * Function int32_to_dpf() 577 * 578 * Extract from a 32 bit integer two 16 bit DPF. 579 * 580 * Arguments: 581 * 582 * L_32 : 32 bit integer. 583 * 0x8000 0000 <= L_32 <= 0x7fff ffff. 584 * hi : b16 to b31 of L_32 585 * lo : (L_32 - hi<<16)>>1 586 * 587 ----------------------------------------------------------------------------*/ 588 589 void int32_to_dpf(int32 L_32, int16 *hi, int16 *lo) 590 { 591 *hi = (int16)(L_32 >> 16); 592 *lo = (int16)((L_32 - (*hi << 16)) >> 1); 593 return; 594 } 595 596 597 /*---------------------------------------------------------------------------- 598 * Function mpy_dpf_32() 599 * 600 * Multiply two 32 bit integers (DPF). The result is divided by 2**31 601 * 602 * L_32 = (hi1*hi2)<<1 + ( (hi1*lo2)>>15 + (lo1*hi2)>>15 )<<1 603 * 604 * This operation can also be viewed as the multiplication of two Q31 605 * number and the result is also in Q31. 606 * 607 * Arguments: 608 * 609 * hi1 hi part of first number 610 * lo1 lo part of first number 611 * hi2 hi part of second number 612 * lo2 lo part of second number 613 * 614 ----------------------------------------------------------------------------*/ 615 616 int32 mpy_dpf_32(int16 hi1, int16 lo1, int16 hi2, int16 lo2) 617 { 618 int32 L_32; 619 620 L_32 = mul_16by16_to_int32(hi1, hi2); 621 L_32 = mac_16by16_to_int32(L_32, mult_int16(hi1, lo2), 1); 622 L_32 = mac_16by16_to_int32(L_32, mult_int16(lo1, hi2), 1); 623 624 return (L_32); 625 } 626 627 628