1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This transformation implements the well known scalar replacement of 11 /// aggregates transformation. It tries to identify promotable elements of an 12 /// aggregate alloca, and promote them to registers. It will also try to 13 /// convert uses of an element (or set of elements) of an alloca into a vector 14 /// or bitfield-style integer scalar if appropriate. 15 /// 16 /// It works to do this with minimal slicing of the alloca so that regions 17 /// which are merely transferred in and out of external memory remain unchanged 18 /// and are not decomposed to scalar code. 19 /// 20 /// Because this also performs alloca promotion, it can be thought of as also 21 /// serving the purpose of SSA formation. The algorithm iterates on the 22 /// function until all opportunities for promotion have been realized. 23 /// 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/PtrUseVisitor.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DIBuilder.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DebugInfo.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstVisitor.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/TimeValue.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/Utils/Local.h" 56 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 57 #include "llvm/Transforms/Utils/SSAUpdater.h" 58 59 #if __cplusplus >= 201103L && !defined(NDEBUG) 60 // We only use this for a debug check in C++11 61 #include <random> 62 #endif 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "sroa" 67 68 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); 69 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); 70 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); 71 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); 72 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); 73 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); 74 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); 75 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); 76 STATISTIC(NumDeleted, "Number of instructions deleted"); 77 STATISTIC(NumVectorized, "Number of vectorized aggregates"); 78 79 /// Hidden option to force the pass to not use DomTree and mem2reg, instead 80 /// forming SSA values through the SSAUpdater infrastructure. 81 static cl::opt<bool> 82 ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden); 83 84 /// Hidden option to enable randomly shuffling the slices to help uncover 85 /// instability in their order. 86 static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices", 87 cl::init(false), cl::Hidden); 88 89 /// Hidden option to experiment with completely strict handling of inbounds 90 /// GEPs. 91 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", 92 cl::init(false), cl::Hidden); 93 94 namespace { 95 /// \brief A custom IRBuilder inserter which prefixes all names if they are 96 /// preserved. 97 template <bool preserveNames = true> 98 class IRBuilderPrefixedInserter : 99 public IRBuilderDefaultInserter<preserveNames> { 100 std::string Prefix; 101 102 public: 103 void SetNamePrefix(const Twine &P) { Prefix = P.str(); } 104 105 protected: 106 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, 107 BasicBlock::iterator InsertPt) const { 108 IRBuilderDefaultInserter<preserveNames>::InsertHelper( 109 I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt); 110 } 111 }; 112 113 // Specialization for not preserving the name is trivial. 114 template <> 115 class IRBuilderPrefixedInserter<false> : 116 public IRBuilderDefaultInserter<false> { 117 public: 118 void SetNamePrefix(const Twine &P) {} 119 }; 120 121 /// \brief Provide a typedef for IRBuilder that drops names in release builds. 122 #ifndef NDEBUG 123 typedef llvm::IRBuilder<true, ConstantFolder, 124 IRBuilderPrefixedInserter<true> > IRBuilderTy; 125 #else 126 typedef llvm::IRBuilder<false, ConstantFolder, 127 IRBuilderPrefixedInserter<false> > IRBuilderTy; 128 #endif 129 } 130 131 namespace { 132 /// \brief A used slice of an alloca. 133 /// 134 /// This structure represents a slice of an alloca used by some instruction. It 135 /// stores both the begin and end offsets of this use, a pointer to the use 136 /// itself, and a flag indicating whether we can classify the use as splittable 137 /// or not when forming partitions of the alloca. 138 class Slice { 139 /// \brief The beginning offset of the range. 140 uint64_t BeginOffset; 141 142 /// \brief The ending offset, not included in the range. 143 uint64_t EndOffset; 144 145 /// \brief Storage for both the use of this slice and whether it can be 146 /// split. 147 PointerIntPair<Use *, 1, bool> UseAndIsSplittable; 148 149 public: 150 Slice() : BeginOffset(), EndOffset() {} 151 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) 152 : BeginOffset(BeginOffset), EndOffset(EndOffset), 153 UseAndIsSplittable(U, IsSplittable) {} 154 155 uint64_t beginOffset() const { return BeginOffset; } 156 uint64_t endOffset() const { return EndOffset; } 157 158 bool isSplittable() const { return UseAndIsSplittable.getInt(); } 159 void makeUnsplittable() { UseAndIsSplittable.setInt(false); } 160 161 Use *getUse() const { return UseAndIsSplittable.getPointer(); } 162 163 bool isDead() const { return getUse() == nullptr; } 164 void kill() { UseAndIsSplittable.setPointer(nullptr); } 165 166 /// \brief Support for ordering ranges. 167 /// 168 /// This provides an ordering over ranges such that start offsets are 169 /// always increasing, and within equal start offsets, the end offsets are 170 /// decreasing. Thus the spanning range comes first in a cluster with the 171 /// same start position. 172 bool operator<(const Slice &RHS) const { 173 if (beginOffset() < RHS.beginOffset()) return true; 174 if (beginOffset() > RHS.beginOffset()) return false; 175 if (isSplittable() != RHS.isSplittable()) return !isSplittable(); 176 if (endOffset() > RHS.endOffset()) return true; 177 return false; 178 } 179 180 /// \brief Support comparison with a single offset to allow binary searches. 181 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, 182 uint64_t RHSOffset) { 183 return LHS.beginOffset() < RHSOffset; 184 } 185 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, 186 const Slice &RHS) { 187 return LHSOffset < RHS.beginOffset(); 188 } 189 190 bool operator==(const Slice &RHS) const { 191 return isSplittable() == RHS.isSplittable() && 192 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); 193 } 194 bool operator!=(const Slice &RHS) const { return !operator==(RHS); } 195 }; 196 } // end anonymous namespace 197 198 namespace llvm { 199 template <typename T> struct isPodLike; 200 template <> struct isPodLike<Slice> { 201 static const bool value = true; 202 }; 203 } 204 205 namespace { 206 /// \brief Representation of the alloca slices. 207 /// 208 /// This class represents the slices of an alloca which are formed by its 209 /// various uses. If a pointer escapes, we can't fully build a representation 210 /// for the slices used and we reflect that in this structure. The uses are 211 /// stored, sorted by increasing beginning offset and with unsplittable slices 212 /// starting at a particular offset before splittable slices. 213 class AllocaSlices { 214 public: 215 /// \brief Construct the slices of a particular alloca. 216 AllocaSlices(const DataLayout &DL, AllocaInst &AI); 217 218 /// \brief Test whether a pointer to the allocation escapes our analysis. 219 /// 220 /// If this is true, the slices are never fully built and should be 221 /// ignored. 222 bool isEscaped() const { return PointerEscapingInstr; } 223 224 /// \brief Support for iterating over the slices. 225 /// @{ 226 typedef SmallVectorImpl<Slice>::iterator iterator; 227 iterator begin() { return Slices.begin(); } 228 iterator end() { return Slices.end(); } 229 230 typedef SmallVectorImpl<Slice>::const_iterator const_iterator; 231 const_iterator begin() const { return Slices.begin(); } 232 const_iterator end() const { return Slices.end(); } 233 /// @} 234 235 /// \brief Allow iterating the dead users for this alloca. 236 /// 237 /// These are instructions which will never actually use the alloca as they 238 /// are outside the allocated range. They are safe to replace with undef and 239 /// delete. 240 /// @{ 241 typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator; 242 dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); } 243 dead_user_iterator dead_user_end() const { return DeadUsers.end(); } 244 /// @} 245 246 /// \brief Allow iterating the dead expressions referring to this alloca. 247 /// 248 /// These are operands which have cannot actually be used to refer to the 249 /// alloca as they are outside its range and the user doesn't correct for 250 /// that. These mostly consist of PHI node inputs and the like which we just 251 /// need to replace with undef. 252 /// @{ 253 typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator; 254 dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); } 255 dead_op_iterator dead_op_end() const { return DeadOperands.end(); } 256 /// @} 257 258 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 259 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; 260 void printSlice(raw_ostream &OS, const_iterator I, 261 StringRef Indent = " ") const; 262 void printUse(raw_ostream &OS, const_iterator I, 263 StringRef Indent = " ") const; 264 void print(raw_ostream &OS) const; 265 void dump(const_iterator I) const; 266 void dump() const; 267 #endif 268 269 private: 270 template <typename DerivedT, typename RetT = void> class BuilderBase; 271 class SliceBuilder; 272 friend class AllocaSlices::SliceBuilder; 273 274 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 275 /// \brief Handle to alloca instruction to simplify method interfaces. 276 AllocaInst &AI; 277 #endif 278 279 /// \brief The instruction responsible for this alloca not having a known set 280 /// of slices. 281 /// 282 /// When an instruction (potentially) escapes the pointer to the alloca, we 283 /// store a pointer to that here and abort trying to form slices of the 284 /// alloca. This will be null if the alloca slices are analyzed successfully. 285 Instruction *PointerEscapingInstr; 286 287 /// \brief The slices of the alloca. 288 /// 289 /// We store a vector of the slices formed by uses of the alloca here. This 290 /// vector is sorted by increasing begin offset, and then the unsplittable 291 /// slices before the splittable ones. See the Slice inner class for more 292 /// details. 293 SmallVector<Slice, 8> Slices; 294 295 /// \brief Instructions which will become dead if we rewrite the alloca. 296 /// 297 /// Note that these are not separated by slice. This is because we expect an 298 /// alloca to be completely rewritten or not rewritten at all. If rewritten, 299 /// all these instructions can simply be removed and replaced with undef as 300 /// they come from outside of the allocated space. 301 SmallVector<Instruction *, 8> DeadUsers; 302 303 /// \brief Operands which will become dead if we rewrite the alloca. 304 /// 305 /// These are operands that in their particular use can be replaced with 306 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs 307 /// to PHI nodes and the like. They aren't entirely dead (there might be 308 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we 309 /// want to swap this particular input for undef to simplify the use lists of 310 /// the alloca. 311 SmallVector<Use *, 8> DeadOperands; 312 }; 313 } 314 315 static Value *foldSelectInst(SelectInst &SI) { 316 // If the condition being selected on is a constant or the same value is 317 // being selected between, fold the select. Yes this does (rarely) happen 318 // early on. 319 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) 320 return SI.getOperand(1+CI->isZero()); 321 if (SI.getOperand(1) == SI.getOperand(2)) 322 return SI.getOperand(1); 323 324 return nullptr; 325 } 326 327 /// \brief Builder for the alloca slices. 328 /// 329 /// This class builds a set of alloca slices by recursively visiting the uses 330 /// of an alloca and making a slice for each load and store at each offset. 331 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { 332 friend class PtrUseVisitor<SliceBuilder>; 333 friend class InstVisitor<SliceBuilder>; 334 typedef PtrUseVisitor<SliceBuilder> Base; 335 336 const uint64_t AllocSize; 337 AllocaSlices &S; 338 339 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; 340 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; 341 342 /// \brief Set to de-duplicate dead instructions found in the use walk. 343 SmallPtrSet<Instruction *, 4> VisitedDeadInsts; 344 345 public: 346 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &S) 347 : PtrUseVisitor<SliceBuilder>(DL), 348 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), S(S) {} 349 350 private: 351 void markAsDead(Instruction &I) { 352 if (VisitedDeadInsts.insert(&I)) 353 S.DeadUsers.push_back(&I); 354 } 355 356 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, 357 bool IsSplittable = false) { 358 // Completely skip uses which have a zero size or start either before or 359 // past the end of the allocation. 360 if (Size == 0 || Offset.uge(AllocSize)) { 361 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset 362 << " which has zero size or starts outside of the " 363 << AllocSize << " byte alloca:\n" 364 << " alloca: " << S.AI << "\n" 365 << " use: " << I << "\n"); 366 return markAsDead(I); 367 } 368 369 uint64_t BeginOffset = Offset.getZExtValue(); 370 uint64_t EndOffset = BeginOffset + Size; 371 372 // Clamp the end offset to the end of the allocation. Note that this is 373 // formulated to handle even the case where "BeginOffset + Size" overflows. 374 // This may appear superficially to be something we could ignore entirely, 375 // but that is not so! There may be widened loads or PHI-node uses where 376 // some instructions are dead but not others. We can't completely ignore 377 // them, and so have to record at least the information here. 378 assert(AllocSize >= BeginOffset); // Established above. 379 if (Size > AllocSize - BeginOffset) { 380 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset 381 << " to remain within the " << AllocSize << " byte alloca:\n" 382 << " alloca: " << S.AI << "\n" 383 << " use: " << I << "\n"); 384 EndOffset = AllocSize; 385 } 386 387 S.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); 388 } 389 390 void visitBitCastInst(BitCastInst &BC) { 391 if (BC.use_empty()) 392 return markAsDead(BC); 393 394 return Base::visitBitCastInst(BC); 395 } 396 397 void visitGetElementPtrInst(GetElementPtrInst &GEPI) { 398 if (GEPI.use_empty()) 399 return markAsDead(GEPI); 400 401 if (SROAStrictInbounds && GEPI.isInBounds()) { 402 // FIXME: This is a manually un-factored variant of the basic code inside 403 // of GEPs with checking of the inbounds invariant specified in the 404 // langref in a very strict sense. If we ever want to enable 405 // SROAStrictInbounds, this code should be factored cleanly into 406 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds 407 // by writing out the code here where we have tho underlying allocation 408 // size readily available. 409 APInt GEPOffset = Offset; 410 for (gep_type_iterator GTI = gep_type_begin(GEPI), 411 GTE = gep_type_end(GEPI); 412 GTI != GTE; ++GTI) { 413 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 414 if (!OpC) 415 break; 416 417 // Handle a struct index, which adds its field offset to the pointer. 418 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 419 unsigned ElementIdx = OpC->getZExtValue(); 420 const StructLayout *SL = DL.getStructLayout(STy); 421 GEPOffset += 422 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); 423 } else { 424 // For array or vector indices, scale the index by the size of the type. 425 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); 426 GEPOffset += Index * APInt(Offset.getBitWidth(), 427 DL.getTypeAllocSize(GTI.getIndexedType())); 428 } 429 430 // If this index has computed an intermediate pointer which is not 431 // inbounds, then the result of the GEP is a poison value and we can 432 // delete it and all uses. 433 if (GEPOffset.ugt(AllocSize)) 434 return markAsDead(GEPI); 435 } 436 } 437 438 return Base::visitGetElementPtrInst(GEPI); 439 } 440 441 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, 442 uint64_t Size, bool IsVolatile) { 443 // We allow splitting of loads and stores where the type is an integer type 444 // and cover the entire alloca. This prevents us from splitting over 445 // eagerly. 446 // FIXME: In the great blue eventually, we should eagerly split all integer 447 // loads and stores, and then have a separate step that merges adjacent 448 // alloca partitions into a single partition suitable for integer widening. 449 // Or we should skip the merge step and rely on GVN and other passes to 450 // merge adjacent loads and stores that survive mem2reg. 451 bool IsSplittable = 452 Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize; 453 454 insertUse(I, Offset, Size, IsSplittable); 455 } 456 457 void visitLoadInst(LoadInst &LI) { 458 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && 459 "All simple FCA loads should have been pre-split"); 460 461 if (!IsOffsetKnown) 462 return PI.setAborted(&LI); 463 464 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 465 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); 466 } 467 468 void visitStoreInst(StoreInst &SI) { 469 Value *ValOp = SI.getValueOperand(); 470 if (ValOp == *U) 471 return PI.setEscapedAndAborted(&SI); 472 if (!IsOffsetKnown) 473 return PI.setAborted(&SI); 474 475 uint64_t Size = DL.getTypeStoreSize(ValOp->getType()); 476 477 // If this memory access can be shown to *statically* extend outside the 478 // bounds of of the allocation, it's behavior is undefined, so simply 479 // ignore it. Note that this is more strict than the generic clamping 480 // behavior of insertUse. We also try to handle cases which might run the 481 // risk of overflow. 482 // FIXME: We should instead consider the pointer to have escaped if this 483 // function is being instrumented for addressing bugs or race conditions. 484 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { 485 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset 486 << " which extends past the end of the " << AllocSize 487 << " byte alloca:\n" 488 << " alloca: " << S.AI << "\n" 489 << " use: " << SI << "\n"); 490 return markAsDead(SI); 491 } 492 493 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && 494 "All simple FCA stores should have been pre-split"); 495 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); 496 } 497 498 499 void visitMemSetInst(MemSetInst &II) { 500 assert(II.getRawDest() == *U && "Pointer use is not the destination?"); 501 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 502 if ((Length && Length->getValue() == 0) || 503 (IsOffsetKnown && Offset.uge(AllocSize))) 504 // Zero-length mem transfer intrinsics can be ignored entirely. 505 return markAsDead(II); 506 507 if (!IsOffsetKnown) 508 return PI.setAborted(&II); 509 510 insertUse(II, Offset, 511 Length ? Length->getLimitedValue() 512 : AllocSize - Offset.getLimitedValue(), 513 (bool)Length); 514 } 515 516 void visitMemTransferInst(MemTransferInst &II) { 517 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 518 if (Length && Length->getValue() == 0) 519 // Zero-length mem transfer intrinsics can be ignored entirely. 520 return markAsDead(II); 521 522 // Because we can visit these intrinsics twice, also check to see if the 523 // first time marked this instruction as dead. If so, skip it. 524 if (VisitedDeadInsts.count(&II)) 525 return; 526 527 if (!IsOffsetKnown) 528 return PI.setAborted(&II); 529 530 // This side of the transfer is completely out-of-bounds, and so we can 531 // nuke the entire transfer. However, we also need to nuke the other side 532 // if already added to our partitions. 533 // FIXME: Yet another place we really should bypass this when 534 // instrumenting for ASan. 535 if (Offset.uge(AllocSize)) { 536 SmallDenseMap<Instruction *, unsigned>::iterator MTPI = MemTransferSliceMap.find(&II); 537 if (MTPI != MemTransferSliceMap.end()) 538 S.Slices[MTPI->second].kill(); 539 return markAsDead(II); 540 } 541 542 uint64_t RawOffset = Offset.getLimitedValue(); 543 uint64_t Size = Length ? Length->getLimitedValue() 544 : AllocSize - RawOffset; 545 546 // Check for the special case where the same exact value is used for both 547 // source and dest. 548 if (*U == II.getRawDest() && *U == II.getRawSource()) { 549 // For non-volatile transfers this is a no-op. 550 if (!II.isVolatile()) 551 return markAsDead(II); 552 553 return insertUse(II, Offset, Size, /*IsSplittable=*/false); 554 } 555 556 // If we have seen both source and destination for a mem transfer, then 557 // they both point to the same alloca. 558 bool Inserted; 559 SmallDenseMap<Instruction *, unsigned>::iterator MTPI; 560 std::tie(MTPI, Inserted) = 561 MemTransferSliceMap.insert(std::make_pair(&II, S.Slices.size())); 562 unsigned PrevIdx = MTPI->second; 563 if (!Inserted) { 564 Slice &PrevP = S.Slices[PrevIdx]; 565 566 // Check if the begin offsets match and this is a non-volatile transfer. 567 // In that case, we can completely elide the transfer. 568 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { 569 PrevP.kill(); 570 return markAsDead(II); 571 } 572 573 // Otherwise we have an offset transfer within the same alloca. We can't 574 // split those. 575 PrevP.makeUnsplittable(); 576 } 577 578 // Insert the use now that we've fixed up the splittable nature. 579 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); 580 581 // Check that we ended up with a valid index in the map. 582 assert(S.Slices[PrevIdx].getUse()->getUser() == &II && 583 "Map index doesn't point back to a slice with this user."); 584 } 585 586 // Disable SRoA for any intrinsics except for lifetime invariants. 587 // FIXME: What about debug intrinsics? This matches old behavior, but 588 // doesn't make sense. 589 void visitIntrinsicInst(IntrinsicInst &II) { 590 if (!IsOffsetKnown) 591 return PI.setAborted(&II); 592 593 if (II.getIntrinsicID() == Intrinsic::lifetime_start || 594 II.getIntrinsicID() == Intrinsic::lifetime_end) { 595 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); 596 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), 597 Length->getLimitedValue()); 598 insertUse(II, Offset, Size, true); 599 return; 600 } 601 602 Base::visitIntrinsicInst(II); 603 } 604 605 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { 606 // We consider any PHI or select that results in a direct load or store of 607 // the same offset to be a viable use for slicing purposes. These uses 608 // are considered unsplittable and the size is the maximum loaded or stored 609 // size. 610 SmallPtrSet<Instruction *, 4> Visited; 611 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; 612 Visited.insert(Root); 613 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); 614 // If there are no loads or stores, the access is dead. We mark that as 615 // a size zero access. 616 Size = 0; 617 do { 618 Instruction *I, *UsedI; 619 std::tie(UsedI, I) = Uses.pop_back_val(); 620 621 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 622 Size = std::max(Size, DL.getTypeStoreSize(LI->getType())); 623 continue; 624 } 625 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 626 Value *Op = SI->getOperand(0); 627 if (Op == UsedI) 628 return SI; 629 Size = std::max(Size, DL.getTypeStoreSize(Op->getType())); 630 continue; 631 } 632 633 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 634 if (!GEP->hasAllZeroIndices()) 635 return GEP; 636 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && 637 !isa<SelectInst>(I)) { 638 return I; 639 } 640 641 for (User *U : I->users()) 642 if (Visited.insert(cast<Instruction>(U))) 643 Uses.push_back(std::make_pair(I, cast<Instruction>(U))); 644 } while (!Uses.empty()); 645 646 return nullptr; 647 } 648 649 void visitPHINode(PHINode &PN) { 650 if (PN.use_empty()) 651 return markAsDead(PN); 652 if (!IsOffsetKnown) 653 return PI.setAborted(&PN); 654 655 // See if we already have computed info on this node. 656 uint64_t &PHISize = PHIOrSelectSizes[&PN]; 657 if (!PHISize) { 658 // This is a new PHI node, check for an unsafe use of the PHI node. 659 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHISize)) 660 return PI.setAborted(UnsafeI); 661 } 662 663 // For PHI and select operands outside the alloca, we can't nuke the entire 664 // phi or select -- the other side might still be relevant, so we special 665 // case them here and use a separate structure to track the operands 666 // themselves which should be replaced with undef. 667 // FIXME: This should instead be escaped in the event we're instrumenting 668 // for address sanitization. 669 if (Offset.uge(AllocSize)) { 670 S.DeadOperands.push_back(U); 671 return; 672 } 673 674 insertUse(PN, Offset, PHISize); 675 } 676 677 void visitSelectInst(SelectInst &SI) { 678 if (SI.use_empty()) 679 return markAsDead(SI); 680 if (Value *Result = foldSelectInst(SI)) { 681 if (Result == *U) 682 // If the result of the constant fold will be the pointer, recurse 683 // through the select as if we had RAUW'ed it. 684 enqueueUsers(SI); 685 else 686 // Otherwise the operand to the select is dead, and we can replace it 687 // with undef. 688 S.DeadOperands.push_back(U); 689 690 return; 691 } 692 if (!IsOffsetKnown) 693 return PI.setAborted(&SI); 694 695 // See if we already have computed info on this node. 696 uint64_t &SelectSize = PHIOrSelectSizes[&SI]; 697 if (!SelectSize) { 698 // This is a new Select, check for an unsafe use of it. 699 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectSize)) 700 return PI.setAborted(UnsafeI); 701 } 702 703 // For PHI and select operands outside the alloca, we can't nuke the entire 704 // phi or select -- the other side might still be relevant, so we special 705 // case them here and use a separate structure to track the operands 706 // themselves which should be replaced with undef. 707 // FIXME: This should instead be escaped in the event we're instrumenting 708 // for address sanitization. 709 if (Offset.uge(AllocSize)) { 710 S.DeadOperands.push_back(U); 711 return; 712 } 713 714 insertUse(SI, Offset, SelectSize); 715 } 716 717 /// \brief Disable SROA entirely if there are unhandled users of the alloca. 718 void visitInstruction(Instruction &I) { 719 PI.setAborted(&I); 720 } 721 }; 722 723 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) 724 : 725 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 726 AI(AI), 727 #endif 728 PointerEscapingInstr(nullptr) { 729 SliceBuilder PB(DL, AI, *this); 730 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); 731 if (PtrI.isEscaped() || PtrI.isAborted()) { 732 // FIXME: We should sink the escape vs. abort info into the caller nicely, 733 // possibly by just storing the PtrInfo in the AllocaSlices. 734 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() 735 : PtrI.getAbortingInst(); 736 assert(PointerEscapingInstr && "Did not track a bad instruction"); 737 return; 738 } 739 740 Slices.erase(std::remove_if(Slices.begin(), Slices.end(), 741 std::mem_fun_ref(&Slice::isDead)), 742 Slices.end()); 743 744 #if __cplusplus >= 201103L && !defined(NDEBUG) 745 if (SROARandomShuffleSlices) { 746 std::mt19937 MT(static_cast<unsigned>(sys::TimeValue::now().msec())); 747 std::shuffle(Slices.begin(), Slices.end(), MT); 748 } 749 #endif 750 751 // Sort the uses. This arranges for the offsets to be in ascending order, 752 // and the sizes to be in descending order. 753 std::sort(Slices.begin(), Slices.end()); 754 } 755 756 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 757 758 void AllocaSlices::print(raw_ostream &OS, const_iterator I, 759 StringRef Indent) const { 760 printSlice(OS, I, Indent); 761 printUse(OS, I, Indent); 762 } 763 764 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, 765 StringRef Indent) const { 766 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" 767 << " slice #" << (I - begin()) 768 << (I->isSplittable() ? " (splittable)" : "") << "\n"; 769 } 770 771 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, 772 StringRef Indent) const { 773 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; 774 } 775 776 void AllocaSlices::print(raw_ostream &OS) const { 777 if (PointerEscapingInstr) { 778 OS << "Can't analyze slices for alloca: " << AI << "\n" 779 << " A pointer to this alloca escaped by:\n" 780 << " " << *PointerEscapingInstr << "\n"; 781 return; 782 } 783 784 OS << "Slices of alloca: " << AI << "\n"; 785 for (const_iterator I = begin(), E = end(); I != E; ++I) 786 print(OS, I); 787 } 788 789 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { 790 print(dbgs(), I); 791 } 792 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } 793 794 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 795 796 namespace { 797 /// \brief Implementation of LoadAndStorePromoter for promoting allocas. 798 /// 799 /// This subclass of LoadAndStorePromoter adds overrides to handle promoting 800 /// the loads and stores of an alloca instruction, as well as updating its 801 /// debug information. This is used when a domtree is unavailable and thus 802 /// mem2reg in its full form can't be used to handle promotion of allocas to 803 /// scalar values. 804 class AllocaPromoter : public LoadAndStorePromoter { 805 AllocaInst &AI; 806 DIBuilder &DIB; 807 808 SmallVector<DbgDeclareInst *, 4> DDIs; 809 SmallVector<DbgValueInst *, 4> DVIs; 810 811 public: 812 AllocaPromoter(const SmallVectorImpl<Instruction *> &Insts, SSAUpdater &S, 813 AllocaInst &AI, DIBuilder &DIB) 814 : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {} 815 816 void run(const SmallVectorImpl<Instruction*> &Insts) { 817 // Retain the debug information attached to the alloca for use when 818 // rewriting loads and stores. 819 if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) { 820 for (User *U : DebugNode->users()) 821 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 822 DDIs.push_back(DDI); 823 else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 824 DVIs.push_back(DVI); 825 } 826 827 LoadAndStorePromoter::run(Insts); 828 829 // While we have the debug information, clear it off of the alloca. The 830 // caller takes care of deleting the alloca. 831 while (!DDIs.empty()) 832 DDIs.pop_back_val()->eraseFromParent(); 833 while (!DVIs.empty()) 834 DVIs.pop_back_val()->eraseFromParent(); 835 } 836 837 bool isInstInList(Instruction *I, 838 const SmallVectorImpl<Instruction*> &Insts) const override { 839 Value *Ptr; 840 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 841 Ptr = LI->getOperand(0); 842 else 843 Ptr = cast<StoreInst>(I)->getPointerOperand(); 844 845 // Only used to detect cycles, which will be rare and quickly found as 846 // we're walking up a chain of defs rather than down through uses. 847 SmallPtrSet<Value *, 4> Visited; 848 849 do { 850 if (Ptr == &AI) 851 return true; 852 853 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr)) 854 Ptr = BCI->getOperand(0); 855 else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 856 Ptr = GEPI->getPointerOperand(); 857 else 858 return false; 859 860 } while (Visited.insert(Ptr)); 861 862 return false; 863 } 864 865 void updateDebugInfo(Instruction *Inst) const override { 866 for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(), 867 E = DDIs.end(); I != E; ++I) { 868 DbgDeclareInst *DDI = *I; 869 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 870 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 871 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 872 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 873 } 874 for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(), 875 E = DVIs.end(); I != E; ++I) { 876 DbgValueInst *DVI = *I; 877 Value *Arg = nullptr; 878 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 879 // If an argument is zero extended then use argument directly. The ZExt 880 // may be zapped by an optimization pass in future. 881 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 882 Arg = dyn_cast<Argument>(ZExt->getOperand(0)); 883 else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 884 Arg = dyn_cast<Argument>(SExt->getOperand(0)); 885 if (!Arg) 886 Arg = SI->getValueOperand(); 887 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 888 Arg = LI->getPointerOperand(); 889 } else { 890 continue; 891 } 892 Instruction *DbgVal = 893 DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()), 894 Inst); 895 DbgVal->setDebugLoc(DVI->getDebugLoc()); 896 } 897 } 898 }; 899 } // end anon namespace 900 901 902 namespace { 903 /// \brief An optimization pass providing Scalar Replacement of Aggregates. 904 /// 905 /// This pass takes allocations which can be completely analyzed (that is, they 906 /// don't escape) and tries to turn them into scalar SSA values. There are 907 /// a few steps to this process. 908 /// 909 /// 1) It takes allocations of aggregates and analyzes the ways in which they 910 /// are used to try to split them into smaller allocations, ideally of 911 /// a single scalar data type. It will split up memcpy and memset accesses 912 /// as necessary and try to isolate individual scalar accesses. 913 /// 2) It will transform accesses into forms which are suitable for SSA value 914 /// promotion. This can be replacing a memset with a scalar store of an 915 /// integer value, or it can involve speculating operations on a PHI or 916 /// select to be a PHI or select of the results. 917 /// 3) Finally, this will try to detect a pattern of accesses which map cleanly 918 /// onto insert and extract operations on a vector value, and convert them to 919 /// this form. By doing so, it will enable promotion of vector aggregates to 920 /// SSA vector values. 921 class SROA : public FunctionPass { 922 const bool RequiresDomTree; 923 924 LLVMContext *C; 925 const DataLayout *DL; 926 DominatorTree *DT; 927 928 /// \brief Worklist of alloca instructions to simplify. 929 /// 930 /// Each alloca in the function is added to this. Each new alloca formed gets 931 /// added to it as well to recursively simplify unless that alloca can be 932 /// directly promoted. Finally, each time we rewrite a use of an alloca other 933 /// the one being actively rewritten, we add it back onto the list if not 934 /// already present to ensure it is re-visited. 935 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist; 936 937 /// \brief A collection of instructions to delete. 938 /// We try to batch deletions to simplify code and make things a bit more 939 /// efficient. 940 SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts; 941 942 /// \brief Post-promotion worklist. 943 /// 944 /// Sometimes we discover an alloca which has a high probability of becoming 945 /// viable for SROA after a round of promotion takes place. In those cases, 946 /// the alloca is enqueued here for re-processing. 947 /// 948 /// Note that we have to be very careful to clear allocas out of this list in 949 /// the event they are deleted. 950 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist; 951 952 /// \brief A collection of alloca instructions we can directly promote. 953 std::vector<AllocaInst *> PromotableAllocas; 954 955 /// \brief A worklist of PHIs to speculate prior to promoting allocas. 956 /// 957 /// All of these PHIs have been checked for the safety of speculation and by 958 /// being speculated will allow promoting allocas currently in the promotable 959 /// queue. 960 SetVector<PHINode *, SmallVector<PHINode *, 2> > SpeculatablePHIs; 961 962 /// \brief A worklist of select instructions to speculate prior to promoting 963 /// allocas. 964 /// 965 /// All of these select instructions have been checked for the safety of 966 /// speculation and by being speculated will allow promoting allocas 967 /// currently in the promotable queue. 968 SetVector<SelectInst *, SmallVector<SelectInst *, 2> > SpeculatableSelects; 969 970 public: 971 SROA(bool RequiresDomTree = true) 972 : FunctionPass(ID), RequiresDomTree(RequiresDomTree), 973 C(nullptr), DL(nullptr), DT(nullptr) { 974 initializeSROAPass(*PassRegistry::getPassRegistry()); 975 } 976 bool runOnFunction(Function &F) override; 977 void getAnalysisUsage(AnalysisUsage &AU) const override; 978 979 const char *getPassName() const override { return "SROA"; } 980 static char ID; 981 982 private: 983 friend class PHIOrSelectSpeculator; 984 friend class AllocaSliceRewriter; 985 986 bool rewritePartition(AllocaInst &AI, AllocaSlices &S, 987 AllocaSlices::iterator B, AllocaSlices::iterator E, 988 int64_t BeginOffset, int64_t EndOffset, 989 ArrayRef<AllocaSlices::iterator> SplitUses); 990 bool splitAlloca(AllocaInst &AI, AllocaSlices &S); 991 bool runOnAlloca(AllocaInst &AI); 992 void clobberUse(Use &U); 993 void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas); 994 bool promoteAllocas(Function &F); 995 }; 996 } 997 998 char SROA::ID = 0; 999 1000 FunctionPass *llvm::createSROAPass(bool RequiresDomTree) { 1001 return new SROA(RequiresDomTree); 1002 } 1003 1004 INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates", 1005 false, false) 1006 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1007 INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", 1008 false, false) 1009 1010 /// Walk the range of a partitioning looking for a common type to cover this 1011 /// sequence of slices. 1012 static Type *findCommonType(AllocaSlices::const_iterator B, 1013 AllocaSlices::const_iterator E, 1014 uint64_t EndOffset) { 1015 Type *Ty = nullptr; 1016 bool TyIsCommon = true; 1017 IntegerType *ITy = nullptr; 1018 1019 // Note that we need to look at *every* alloca slice's Use to ensure we 1020 // always get consistent results regardless of the order of slices. 1021 for (AllocaSlices::const_iterator I = B; I != E; ++I) { 1022 Use *U = I->getUse(); 1023 if (isa<IntrinsicInst>(*U->getUser())) 1024 continue; 1025 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) 1026 continue; 1027 1028 Type *UserTy = nullptr; 1029 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1030 UserTy = LI->getType(); 1031 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1032 UserTy = SI->getValueOperand()->getType(); 1033 } 1034 1035 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) { 1036 // If the type is larger than the partition, skip it. We only encounter 1037 // this for split integer operations where we want to use the type of the 1038 // entity causing the split. Also skip if the type is not a byte width 1039 // multiple. 1040 if (UserITy->getBitWidth() % 8 != 0 || 1041 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) 1042 continue; 1043 1044 // Track the largest bitwidth integer type used in this way in case there 1045 // is no common type. 1046 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) 1047 ITy = UserITy; 1048 } 1049 1050 // To avoid depending on the order of slices, Ty and TyIsCommon must not 1051 // depend on types skipped above. 1052 if (!UserTy || (Ty && Ty != UserTy)) 1053 TyIsCommon = false; // Give up on anything but an iN type. 1054 else 1055 Ty = UserTy; 1056 } 1057 1058 return TyIsCommon ? Ty : ITy; 1059 } 1060 1061 /// PHI instructions that use an alloca and are subsequently loaded can be 1062 /// rewritten to load both input pointers in the pred blocks and then PHI the 1063 /// results, allowing the load of the alloca to be promoted. 1064 /// From this: 1065 /// %P2 = phi [i32* %Alloca, i32* %Other] 1066 /// %V = load i32* %P2 1067 /// to: 1068 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1069 /// ... 1070 /// %V2 = load i32* %Other 1071 /// ... 1072 /// %V = phi [i32 %V1, i32 %V2] 1073 /// 1074 /// We can do this to a select if its only uses are loads and if the operands 1075 /// to the select can be loaded unconditionally. 1076 /// 1077 /// FIXME: This should be hoisted into a generic utility, likely in 1078 /// Transforms/Util/Local.h 1079 static bool isSafePHIToSpeculate(PHINode &PN, 1080 const DataLayout *DL = nullptr) { 1081 // For now, we can only do this promotion if the load is in the same block 1082 // as the PHI, and if there are no stores between the phi and load. 1083 // TODO: Allow recursive phi users. 1084 // TODO: Allow stores. 1085 BasicBlock *BB = PN.getParent(); 1086 unsigned MaxAlign = 0; 1087 bool HaveLoad = false; 1088 for (User *U : PN.users()) { 1089 LoadInst *LI = dyn_cast<LoadInst>(U); 1090 if (!LI || !LI->isSimple()) 1091 return false; 1092 1093 // For now we only allow loads in the same block as the PHI. This is 1094 // a common case that happens when instcombine merges two loads through 1095 // a PHI. 1096 if (LI->getParent() != BB) 1097 return false; 1098 1099 // Ensure that there are no instructions between the PHI and the load that 1100 // could store. 1101 for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI) 1102 if (BBI->mayWriteToMemory()) 1103 return false; 1104 1105 MaxAlign = std::max(MaxAlign, LI->getAlignment()); 1106 HaveLoad = true; 1107 } 1108 1109 if (!HaveLoad) 1110 return false; 1111 1112 // We can only transform this if it is safe to push the loads into the 1113 // predecessor blocks. The only thing to watch out for is that we can't put 1114 // a possibly trapping load in the predecessor if it is a critical edge. 1115 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1116 TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator(); 1117 Value *InVal = PN.getIncomingValue(Idx); 1118 1119 // If the value is produced by the terminator of the predecessor (an 1120 // invoke) or it has side-effects, there is no valid place to put a load 1121 // in the predecessor. 1122 if (TI == InVal || TI->mayHaveSideEffects()) 1123 return false; 1124 1125 // If the predecessor has a single successor, then the edge isn't 1126 // critical. 1127 if (TI->getNumSuccessors() == 1) 1128 continue; 1129 1130 // If this pointer is always safe to load, or if we can prove that there 1131 // is already a load in the block, then we can move the load to the pred 1132 // block. 1133 if (InVal->isDereferenceablePointer(DL) || 1134 isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL)) 1135 continue; 1136 1137 return false; 1138 } 1139 1140 return true; 1141 } 1142 1143 static void speculatePHINodeLoads(PHINode &PN) { 1144 DEBUG(dbgs() << " original: " << PN << "\n"); 1145 1146 Type *LoadTy = cast<PointerType>(PN.getType())->getElementType(); 1147 IRBuilderTy PHIBuilder(&PN); 1148 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), 1149 PN.getName() + ".sroa.speculated"); 1150 1151 // Get the TBAA tag and alignment to use from one of the loads. It doesn't 1152 // matter which one we get and if any differ. 1153 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back()); 1154 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa); 1155 unsigned Align = SomeLoad->getAlignment(); 1156 1157 // Rewrite all loads of the PN to use the new PHI. 1158 while (!PN.use_empty()) { 1159 LoadInst *LI = cast<LoadInst>(PN.user_back()); 1160 LI->replaceAllUsesWith(NewPN); 1161 LI->eraseFromParent(); 1162 } 1163 1164 // Inject loads into all of the pred blocks. 1165 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1166 BasicBlock *Pred = PN.getIncomingBlock(Idx); 1167 TerminatorInst *TI = Pred->getTerminator(); 1168 Value *InVal = PN.getIncomingValue(Idx); 1169 IRBuilderTy PredBuilder(TI); 1170 1171 LoadInst *Load = PredBuilder.CreateLoad( 1172 InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName())); 1173 ++NumLoadsSpeculated; 1174 Load->setAlignment(Align); 1175 if (TBAATag) 1176 Load->setMetadata(LLVMContext::MD_tbaa, TBAATag); 1177 NewPN->addIncoming(Load, Pred); 1178 } 1179 1180 DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); 1181 PN.eraseFromParent(); 1182 } 1183 1184 /// Select instructions that use an alloca and are subsequently loaded can be 1185 /// rewritten to load both input pointers and then select between the result, 1186 /// allowing the load of the alloca to be promoted. 1187 /// From this: 1188 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other 1189 /// %V = load i32* %P2 1190 /// to: 1191 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1192 /// %V2 = load i32* %Other 1193 /// %V = select i1 %cond, i32 %V1, i32 %V2 1194 /// 1195 /// We can do this to a select if its only uses are loads and if the operand 1196 /// to the select can be loaded unconditionally. 1197 static bool isSafeSelectToSpeculate(SelectInst &SI, 1198 const DataLayout *DL = nullptr) { 1199 Value *TValue = SI.getTrueValue(); 1200 Value *FValue = SI.getFalseValue(); 1201 bool TDerefable = TValue->isDereferenceablePointer(DL); 1202 bool FDerefable = FValue->isDereferenceablePointer(DL); 1203 1204 for (User *U : SI.users()) { 1205 LoadInst *LI = dyn_cast<LoadInst>(U); 1206 if (!LI || !LI->isSimple()) 1207 return false; 1208 1209 // Both operands to the select need to be dereferencable, either 1210 // absolutely (e.g. allocas) or at this point because we can see other 1211 // accesses to it. 1212 if (!TDerefable && 1213 !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL)) 1214 return false; 1215 if (!FDerefable && 1216 !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL)) 1217 return false; 1218 } 1219 1220 return true; 1221 } 1222 1223 static void speculateSelectInstLoads(SelectInst &SI) { 1224 DEBUG(dbgs() << " original: " << SI << "\n"); 1225 1226 IRBuilderTy IRB(&SI); 1227 Value *TV = SI.getTrueValue(); 1228 Value *FV = SI.getFalseValue(); 1229 // Replace the loads of the select with a select of two loads. 1230 while (!SI.use_empty()) { 1231 LoadInst *LI = cast<LoadInst>(SI.user_back()); 1232 assert(LI->isSimple() && "We only speculate simple loads"); 1233 1234 IRB.SetInsertPoint(LI); 1235 LoadInst *TL = 1236 IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true"); 1237 LoadInst *FL = 1238 IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false"); 1239 NumLoadsSpeculated += 2; 1240 1241 // Transfer alignment and TBAA info if present. 1242 TL->setAlignment(LI->getAlignment()); 1243 FL->setAlignment(LI->getAlignment()); 1244 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) { 1245 TL->setMetadata(LLVMContext::MD_tbaa, Tag); 1246 FL->setMetadata(LLVMContext::MD_tbaa, Tag); 1247 } 1248 1249 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, 1250 LI->getName() + ".sroa.speculated"); 1251 1252 DEBUG(dbgs() << " speculated to: " << *V << "\n"); 1253 LI->replaceAllUsesWith(V); 1254 LI->eraseFromParent(); 1255 } 1256 SI.eraseFromParent(); 1257 } 1258 1259 /// \brief Build a GEP out of a base pointer and indices. 1260 /// 1261 /// This will return the BasePtr if that is valid, or build a new GEP 1262 /// instruction using the IRBuilder if GEP-ing is needed. 1263 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, 1264 SmallVectorImpl<Value *> &Indices, Twine NamePrefix) { 1265 if (Indices.empty()) 1266 return BasePtr; 1267 1268 // A single zero index is a no-op, so check for this and avoid building a GEP 1269 // in that case. 1270 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) 1271 return BasePtr; 1272 1273 return IRB.CreateInBoundsGEP(BasePtr, Indices, NamePrefix + "sroa_idx"); 1274 } 1275 1276 /// \brief Get a natural GEP off of the BasePtr walking through Ty toward 1277 /// TargetTy without changing the offset of the pointer. 1278 /// 1279 /// This routine assumes we've already established a properly offset GEP with 1280 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with 1281 /// zero-indices down through type layers until we find one the same as 1282 /// TargetTy. If we can't find one with the same type, we at least try to use 1283 /// one with the same size. If none of that works, we just produce the GEP as 1284 /// indicated by Indices to have the correct offset. 1285 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, 1286 Value *BasePtr, Type *Ty, Type *TargetTy, 1287 SmallVectorImpl<Value *> &Indices, 1288 Twine NamePrefix) { 1289 if (Ty == TargetTy) 1290 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1291 1292 // Pointer size to use for the indices. 1293 unsigned PtrSize = DL.getPointerTypeSizeInBits(BasePtr->getType()); 1294 1295 // See if we can descend into a struct and locate a field with the correct 1296 // type. 1297 unsigned NumLayers = 0; 1298 Type *ElementTy = Ty; 1299 do { 1300 if (ElementTy->isPointerTy()) 1301 break; 1302 1303 if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) { 1304 ElementTy = ArrayTy->getElementType(); 1305 Indices.push_back(IRB.getIntN(PtrSize, 0)); 1306 } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) { 1307 ElementTy = VectorTy->getElementType(); 1308 Indices.push_back(IRB.getInt32(0)); 1309 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { 1310 if (STy->element_begin() == STy->element_end()) 1311 break; // Nothing left to descend into. 1312 ElementTy = *STy->element_begin(); 1313 Indices.push_back(IRB.getInt32(0)); 1314 } else { 1315 break; 1316 } 1317 ++NumLayers; 1318 } while (ElementTy != TargetTy); 1319 if (ElementTy != TargetTy) 1320 Indices.erase(Indices.end() - NumLayers, Indices.end()); 1321 1322 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1323 } 1324 1325 /// \brief Recursively compute indices for a natural GEP. 1326 /// 1327 /// This is the recursive step for getNaturalGEPWithOffset that walks down the 1328 /// element types adding appropriate indices for the GEP. 1329 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL, 1330 Value *Ptr, Type *Ty, APInt &Offset, 1331 Type *TargetTy, 1332 SmallVectorImpl<Value *> &Indices, 1333 Twine NamePrefix) { 1334 if (Offset == 0) 1335 return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices, NamePrefix); 1336 1337 // We can't recurse through pointer types. 1338 if (Ty->isPointerTy()) 1339 return nullptr; 1340 1341 // We try to analyze GEPs over vectors here, but note that these GEPs are 1342 // extremely poorly defined currently. The long-term goal is to remove GEPing 1343 // over a vector from the IR completely. 1344 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) { 1345 unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType()); 1346 if (ElementSizeInBits % 8 != 0) { 1347 // GEPs over non-multiple of 8 size vector elements are invalid. 1348 return nullptr; 1349 } 1350 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); 1351 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1352 if (NumSkippedElements.ugt(VecTy->getNumElements())) 1353 return nullptr; 1354 Offset -= NumSkippedElements * ElementSize; 1355 Indices.push_back(IRB.getInt(NumSkippedElements)); 1356 return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(), 1357 Offset, TargetTy, Indices, NamePrefix); 1358 } 1359 1360 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 1361 Type *ElementTy = ArrTy->getElementType(); 1362 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); 1363 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1364 if (NumSkippedElements.ugt(ArrTy->getNumElements())) 1365 return nullptr; 1366 1367 Offset -= NumSkippedElements * ElementSize; 1368 Indices.push_back(IRB.getInt(NumSkippedElements)); 1369 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1370 Indices, NamePrefix); 1371 } 1372 1373 StructType *STy = dyn_cast<StructType>(Ty); 1374 if (!STy) 1375 return nullptr; 1376 1377 const StructLayout *SL = DL.getStructLayout(STy); 1378 uint64_t StructOffset = Offset.getZExtValue(); 1379 if (StructOffset >= SL->getSizeInBytes()) 1380 return nullptr; 1381 unsigned Index = SL->getElementContainingOffset(StructOffset); 1382 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); 1383 Type *ElementTy = STy->getElementType(Index); 1384 if (Offset.uge(DL.getTypeAllocSize(ElementTy))) 1385 return nullptr; // The offset points into alignment padding. 1386 1387 Indices.push_back(IRB.getInt32(Index)); 1388 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1389 Indices, NamePrefix); 1390 } 1391 1392 /// \brief Get a natural GEP from a base pointer to a particular offset and 1393 /// resulting in a particular type. 1394 /// 1395 /// The goal is to produce a "natural" looking GEP that works with the existing 1396 /// composite types to arrive at the appropriate offset and element type for 1397 /// a pointer. TargetTy is the element type the returned GEP should point-to if 1398 /// possible. We recurse by decreasing Offset, adding the appropriate index to 1399 /// Indices, and setting Ty to the result subtype. 1400 /// 1401 /// If no natural GEP can be constructed, this function returns null. 1402 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, 1403 Value *Ptr, APInt Offset, Type *TargetTy, 1404 SmallVectorImpl<Value *> &Indices, 1405 Twine NamePrefix) { 1406 PointerType *Ty = cast<PointerType>(Ptr->getType()); 1407 1408 // Don't consider any GEPs through an i8* as natural unless the TargetTy is 1409 // an i8. 1410 if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8)) 1411 return nullptr; 1412 1413 Type *ElementTy = Ty->getElementType(); 1414 if (!ElementTy->isSized()) 1415 return nullptr; // We can't GEP through an unsized element. 1416 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); 1417 if (ElementSize == 0) 1418 return nullptr; // Zero-length arrays can't help us build a natural GEP. 1419 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1420 1421 Offset -= NumSkippedElements * ElementSize; 1422 Indices.push_back(IRB.getInt(NumSkippedElements)); 1423 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1424 Indices, NamePrefix); 1425 } 1426 1427 /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the 1428 /// resulting pointer has PointerTy. 1429 /// 1430 /// This tries very hard to compute a "natural" GEP which arrives at the offset 1431 /// and produces the pointer type desired. Where it cannot, it will try to use 1432 /// the natural GEP to arrive at the offset and bitcast to the type. Where that 1433 /// fails, it will try to use an existing i8* and GEP to the byte offset and 1434 /// bitcast to the type. 1435 /// 1436 /// The strategy for finding the more natural GEPs is to peel off layers of the 1437 /// pointer, walking back through bit casts and GEPs, searching for a base 1438 /// pointer from which we can compute a natural GEP with the desired 1439 /// properties. The algorithm tries to fold as many constant indices into 1440 /// a single GEP as possible, thus making each GEP more independent of the 1441 /// surrounding code. 1442 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, 1443 APInt Offset, Type *PointerTy, 1444 Twine NamePrefix) { 1445 // Even though we don't look through PHI nodes, we could be called on an 1446 // instruction in an unreachable block, which may be on a cycle. 1447 SmallPtrSet<Value *, 4> Visited; 1448 Visited.insert(Ptr); 1449 SmallVector<Value *, 4> Indices; 1450 1451 // We may end up computing an offset pointer that has the wrong type. If we 1452 // never are able to compute one directly that has the correct type, we'll 1453 // fall back to it, so keep it around here. 1454 Value *OffsetPtr = nullptr; 1455 1456 // Remember any i8 pointer we come across to re-use if we need to do a raw 1457 // byte offset. 1458 Value *Int8Ptr = nullptr; 1459 APInt Int8PtrOffset(Offset.getBitWidth(), 0); 1460 1461 Type *TargetTy = PointerTy->getPointerElementType(); 1462 1463 do { 1464 // First fold any existing GEPs into the offset. 1465 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1466 APInt GEPOffset(Offset.getBitWidth(), 0); 1467 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 1468 break; 1469 Offset += GEPOffset; 1470 Ptr = GEP->getPointerOperand(); 1471 if (!Visited.insert(Ptr)) 1472 break; 1473 } 1474 1475 // See if we can perform a natural GEP here. 1476 Indices.clear(); 1477 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, 1478 Indices, NamePrefix)) { 1479 if (P->getType() == PointerTy) { 1480 // Zap any offset pointer that we ended up computing in previous rounds. 1481 if (OffsetPtr && OffsetPtr->use_empty()) 1482 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) 1483 I->eraseFromParent(); 1484 return P; 1485 } 1486 if (!OffsetPtr) { 1487 OffsetPtr = P; 1488 } 1489 } 1490 1491 // Stash this pointer if we've found an i8*. 1492 if (Ptr->getType()->isIntegerTy(8)) { 1493 Int8Ptr = Ptr; 1494 Int8PtrOffset = Offset; 1495 } 1496 1497 // Peel off a layer of the pointer and update the offset appropriately. 1498 if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1499 Ptr = cast<Operator>(Ptr)->getOperand(0); 1500 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1501 if (GA->mayBeOverridden()) 1502 break; 1503 Ptr = GA->getAliasee(); 1504 } else { 1505 break; 1506 } 1507 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); 1508 } while (Visited.insert(Ptr)); 1509 1510 if (!OffsetPtr) { 1511 if (!Int8Ptr) { 1512 Int8Ptr = IRB.CreateBitCast( 1513 Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()), 1514 NamePrefix + "sroa_raw_cast"); 1515 Int8PtrOffset = Offset; 1516 } 1517 1518 OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr : 1519 IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset), 1520 NamePrefix + "sroa_raw_idx"); 1521 } 1522 Ptr = OffsetPtr; 1523 1524 // On the off chance we were targeting i8*, guard the bitcast here. 1525 if (Ptr->getType() != PointerTy) 1526 Ptr = IRB.CreateBitCast(Ptr, PointerTy, NamePrefix + "sroa_cast"); 1527 1528 return Ptr; 1529 } 1530 1531 /// \brief Test whether we can convert a value from the old to the new type. 1532 /// 1533 /// This predicate should be used to guard calls to convertValue in order to 1534 /// ensure that we only try to convert viable values. The strategy is that we 1535 /// will peel off single element struct and array wrappings to get to an 1536 /// underlying value, and convert that value. 1537 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { 1538 if (OldTy == NewTy) 1539 return true; 1540 if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy)) 1541 if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy)) 1542 if (NewITy->getBitWidth() >= OldITy->getBitWidth()) 1543 return true; 1544 if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy)) 1545 return false; 1546 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) 1547 return false; 1548 1549 // We can convert pointers to integers and vice-versa. Same for vectors 1550 // of pointers and integers. 1551 OldTy = OldTy->getScalarType(); 1552 NewTy = NewTy->getScalarType(); 1553 if (NewTy->isPointerTy() || OldTy->isPointerTy()) { 1554 if (NewTy->isPointerTy() && OldTy->isPointerTy()) 1555 return true; 1556 if (NewTy->isIntegerTy() || OldTy->isIntegerTy()) 1557 return true; 1558 return false; 1559 } 1560 1561 return true; 1562 } 1563 1564 /// \brief Generic routine to convert an SSA value to a value of a different 1565 /// type. 1566 /// 1567 /// This will try various different casting techniques, such as bitcasts, 1568 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test 1569 /// two types for viability with this routine. 1570 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 1571 Type *NewTy) { 1572 Type *OldTy = V->getType(); 1573 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); 1574 1575 if (OldTy == NewTy) 1576 return V; 1577 1578 if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy)) 1579 if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy)) 1580 if (NewITy->getBitWidth() > OldITy->getBitWidth()) 1581 return IRB.CreateZExt(V, NewITy); 1582 1583 // See if we need inttoptr for this type pair. A cast involving both scalars 1584 // and vectors requires and additional bitcast. 1585 if (OldTy->getScalarType()->isIntegerTy() && 1586 NewTy->getScalarType()->isPointerTy()) { 1587 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* 1588 if (OldTy->isVectorTy() && !NewTy->isVectorTy()) 1589 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 1590 NewTy); 1591 1592 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> 1593 if (!OldTy->isVectorTy() && NewTy->isVectorTy()) 1594 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 1595 NewTy); 1596 1597 return IRB.CreateIntToPtr(V, NewTy); 1598 } 1599 1600 // See if we need ptrtoint for this type pair. A cast involving both scalars 1601 // and vectors requires and additional bitcast. 1602 if (OldTy->getScalarType()->isPointerTy() && 1603 NewTy->getScalarType()->isIntegerTy()) { 1604 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 1605 if (OldTy->isVectorTy() && !NewTy->isVectorTy()) 1606 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1607 NewTy); 1608 1609 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> 1610 if (!OldTy->isVectorTy() && NewTy->isVectorTy()) 1611 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1612 NewTy); 1613 1614 return IRB.CreatePtrToInt(V, NewTy); 1615 } 1616 1617 return IRB.CreateBitCast(V, NewTy); 1618 } 1619 1620 /// \brief Test whether the given slice use can be promoted to a vector. 1621 /// 1622 /// This function is called to test each entry in a partioning which is slated 1623 /// for a single slice. 1624 static bool isVectorPromotionViableForSlice( 1625 const DataLayout &DL, AllocaSlices &S, uint64_t SliceBeginOffset, 1626 uint64_t SliceEndOffset, VectorType *Ty, uint64_t ElementSize, 1627 AllocaSlices::const_iterator I) { 1628 // First validate the slice offsets. 1629 uint64_t BeginOffset = 1630 std::max(I->beginOffset(), SliceBeginOffset) - SliceBeginOffset; 1631 uint64_t BeginIndex = BeginOffset / ElementSize; 1632 if (BeginIndex * ElementSize != BeginOffset || 1633 BeginIndex >= Ty->getNumElements()) 1634 return false; 1635 uint64_t EndOffset = 1636 std::min(I->endOffset(), SliceEndOffset) - SliceBeginOffset; 1637 uint64_t EndIndex = EndOffset / ElementSize; 1638 if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements()) 1639 return false; 1640 1641 assert(EndIndex > BeginIndex && "Empty vector!"); 1642 uint64_t NumElements = EndIndex - BeginIndex; 1643 Type *SliceTy = 1644 (NumElements == 1) ? Ty->getElementType() 1645 : VectorType::get(Ty->getElementType(), NumElements); 1646 1647 Type *SplitIntTy = 1648 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); 1649 1650 Use *U = I->getUse(); 1651 1652 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 1653 if (MI->isVolatile()) 1654 return false; 1655 if (!I->isSplittable()) 1656 return false; // Skip any unsplittable intrinsics. 1657 } else if (U->get()->getType()->getPointerElementType()->isStructTy()) { 1658 // Disable vector promotion when there are loads or stores of an FCA. 1659 return false; 1660 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1661 if (LI->isVolatile()) 1662 return false; 1663 Type *LTy = LI->getType(); 1664 if (SliceBeginOffset > I->beginOffset() || 1665 SliceEndOffset < I->endOffset()) { 1666 assert(LTy->isIntegerTy()); 1667 LTy = SplitIntTy; 1668 } 1669 if (!canConvertValue(DL, SliceTy, LTy)) 1670 return false; 1671 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1672 if (SI->isVolatile()) 1673 return false; 1674 Type *STy = SI->getValueOperand()->getType(); 1675 if (SliceBeginOffset > I->beginOffset() || 1676 SliceEndOffset < I->endOffset()) { 1677 assert(STy->isIntegerTy()); 1678 STy = SplitIntTy; 1679 } 1680 if (!canConvertValue(DL, STy, SliceTy)) 1681 return false; 1682 } else { 1683 return false; 1684 } 1685 1686 return true; 1687 } 1688 1689 /// \brief Test whether the given alloca partitioning and range of slices can be 1690 /// promoted to a vector. 1691 /// 1692 /// This is a quick test to check whether we can rewrite a particular alloca 1693 /// partition (and its newly formed alloca) into a vector alloca with only 1694 /// whole-vector loads and stores such that it could be promoted to a vector 1695 /// SSA value. We only can ensure this for a limited set of operations, and we 1696 /// don't want to do the rewrites unless we are confident that the result will 1697 /// be promotable, so we have an early test here. 1698 static bool 1699 isVectorPromotionViable(const DataLayout &DL, Type *AllocaTy, AllocaSlices &S, 1700 uint64_t SliceBeginOffset, uint64_t SliceEndOffset, 1701 AllocaSlices::const_iterator I, 1702 AllocaSlices::const_iterator E, 1703 ArrayRef<AllocaSlices::iterator> SplitUses) { 1704 VectorType *Ty = dyn_cast<VectorType>(AllocaTy); 1705 if (!Ty) 1706 return false; 1707 1708 uint64_t ElementSize = DL.getTypeSizeInBits(Ty->getScalarType()); 1709 1710 // While the definition of LLVM vectors is bitpacked, we don't support sizes 1711 // that aren't byte sized. 1712 if (ElementSize % 8) 1713 return false; 1714 assert((DL.getTypeSizeInBits(Ty) % 8) == 0 && 1715 "vector size not a multiple of element size?"); 1716 ElementSize /= 8; 1717 1718 for (; I != E; ++I) 1719 if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset, 1720 SliceEndOffset, Ty, ElementSize, I)) 1721 return false; 1722 1723 for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(), 1724 SUE = SplitUses.end(); 1725 SUI != SUE; ++SUI) 1726 if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset, 1727 SliceEndOffset, Ty, ElementSize, *SUI)) 1728 return false; 1729 1730 return true; 1731 } 1732 1733 /// \brief Test whether a slice of an alloca is valid for integer widening. 1734 /// 1735 /// This implements the necessary checking for the \c isIntegerWideningViable 1736 /// test below on a single slice of the alloca. 1737 static bool isIntegerWideningViableForSlice(const DataLayout &DL, 1738 Type *AllocaTy, 1739 uint64_t AllocBeginOffset, 1740 uint64_t Size, AllocaSlices &S, 1741 AllocaSlices::const_iterator I, 1742 bool &WholeAllocaOp) { 1743 uint64_t RelBegin = I->beginOffset() - AllocBeginOffset; 1744 uint64_t RelEnd = I->endOffset() - AllocBeginOffset; 1745 1746 // We can't reasonably handle cases where the load or store extends past 1747 // the end of the aloca's type and into its padding. 1748 if (RelEnd > Size) 1749 return false; 1750 1751 Use *U = I->getUse(); 1752 1753 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1754 if (LI->isVolatile()) 1755 return false; 1756 if (RelBegin == 0 && RelEnd == Size) 1757 WholeAllocaOp = true; 1758 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 1759 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) 1760 return false; 1761 } else if (RelBegin != 0 || RelEnd != Size || 1762 !canConvertValue(DL, AllocaTy, LI->getType())) { 1763 // Non-integer loads need to be convertible from the alloca type so that 1764 // they are promotable. 1765 return false; 1766 } 1767 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1768 Type *ValueTy = SI->getValueOperand()->getType(); 1769 if (SI->isVolatile()) 1770 return false; 1771 if (RelBegin == 0 && RelEnd == Size) 1772 WholeAllocaOp = true; 1773 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { 1774 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) 1775 return false; 1776 } else if (RelBegin != 0 || RelEnd != Size || 1777 !canConvertValue(DL, ValueTy, AllocaTy)) { 1778 // Non-integer stores need to be convertible to the alloca type so that 1779 // they are promotable. 1780 return false; 1781 } 1782 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 1783 if (MI->isVolatile() || !isa<Constant>(MI->getLength())) 1784 return false; 1785 if (!I->isSplittable()) 1786 return false; // Skip any unsplittable intrinsics. 1787 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 1788 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1789 II->getIntrinsicID() != Intrinsic::lifetime_end) 1790 return false; 1791 } else { 1792 return false; 1793 } 1794 1795 return true; 1796 } 1797 1798 /// \brief Test whether the given alloca partition's integer operations can be 1799 /// widened to promotable ones. 1800 /// 1801 /// This is a quick test to check whether we can rewrite the integer loads and 1802 /// stores to a particular alloca into wider loads and stores and be able to 1803 /// promote the resulting alloca. 1804 static bool 1805 isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy, 1806 uint64_t AllocBeginOffset, AllocaSlices &S, 1807 AllocaSlices::const_iterator I, 1808 AllocaSlices::const_iterator E, 1809 ArrayRef<AllocaSlices::iterator> SplitUses) { 1810 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy); 1811 // Don't create integer types larger than the maximum bitwidth. 1812 if (SizeInBits > IntegerType::MAX_INT_BITS) 1813 return false; 1814 1815 // Don't try to handle allocas with bit-padding. 1816 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy)) 1817 return false; 1818 1819 // We need to ensure that an integer type with the appropriate bitwidth can 1820 // be converted to the alloca type, whatever that is. We don't want to force 1821 // the alloca itself to have an integer type if there is a more suitable one. 1822 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); 1823 if (!canConvertValue(DL, AllocaTy, IntTy) || 1824 !canConvertValue(DL, IntTy, AllocaTy)) 1825 return false; 1826 1827 uint64_t Size = DL.getTypeStoreSize(AllocaTy); 1828 1829 // While examining uses, we ensure that the alloca has a covering load or 1830 // store. We don't want to widen the integer operations only to fail to 1831 // promote due to some other unsplittable entry (which we may make splittable 1832 // later). However, if there are only splittable uses, go ahead and assume 1833 // that we cover the alloca. 1834 bool WholeAllocaOp = (I != E) ? false : DL.isLegalInteger(SizeInBits); 1835 1836 for (; I != E; ++I) 1837 if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size, 1838 S, I, WholeAllocaOp)) 1839 return false; 1840 1841 for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(), 1842 SUE = SplitUses.end(); 1843 SUI != SUE; ++SUI) 1844 if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size, 1845 S, *SUI, WholeAllocaOp)) 1846 return false; 1847 1848 return WholeAllocaOp; 1849 } 1850 1851 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 1852 IntegerType *Ty, uint64_t Offset, 1853 const Twine &Name) { 1854 DEBUG(dbgs() << " start: " << *V << "\n"); 1855 IntegerType *IntTy = cast<IntegerType>(V->getType()); 1856 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && 1857 "Element extends past full value"); 1858 uint64_t ShAmt = 8*Offset; 1859 if (DL.isBigEndian()) 1860 ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); 1861 if (ShAmt) { 1862 V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); 1863 DEBUG(dbgs() << " shifted: " << *V << "\n"); 1864 } 1865 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 1866 "Cannot extract to a larger integer!"); 1867 if (Ty != IntTy) { 1868 V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); 1869 DEBUG(dbgs() << " trunced: " << *V << "\n"); 1870 } 1871 return V; 1872 } 1873 1874 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, 1875 Value *V, uint64_t Offset, const Twine &Name) { 1876 IntegerType *IntTy = cast<IntegerType>(Old->getType()); 1877 IntegerType *Ty = cast<IntegerType>(V->getType()); 1878 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 1879 "Cannot insert a larger integer!"); 1880 DEBUG(dbgs() << " start: " << *V << "\n"); 1881 if (Ty != IntTy) { 1882 V = IRB.CreateZExt(V, IntTy, Name + ".ext"); 1883 DEBUG(dbgs() << " extended: " << *V << "\n"); 1884 } 1885 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && 1886 "Element store outside of alloca store"); 1887 uint64_t ShAmt = 8*Offset; 1888 if (DL.isBigEndian()) 1889 ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); 1890 if (ShAmt) { 1891 V = IRB.CreateShl(V, ShAmt, Name + ".shift"); 1892 DEBUG(dbgs() << " shifted: " << *V << "\n"); 1893 } 1894 1895 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { 1896 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); 1897 Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); 1898 DEBUG(dbgs() << " masked: " << *Old << "\n"); 1899 V = IRB.CreateOr(Old, V, Name + ".insert"); 1900 DEBUG(dbgs() << " inserted: " << *V << "\n"); 1901 } 1902 return V; 1903 } 1904 1905 static Value *extractVector(IRBuilderTy &IRB, Value *V, 1906 unsigned BeginIndex, unsigned EndIndex, 1907 const Twine &Name) { 1908 VectorType *VecTy = cast<VectorType>(V->getType()); 1909 unsigned NumElements = EndIndex - BeginIndex; 1910 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 1911 1912 if (NumElements == VecTy->getNumElements()) 1913 return V; 1914 1915 if (NumElements == 1) { 1916 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), 1917 Name + ".extract"); 1918 DEBUG(dbgs() << " extract: " << *V << "\n"); 1919 return V; 1920 } 1921 1922 SmallVector<Constant*, 8> Mask; 1923 Mask.reserve(NumElements); 1924 for (unsigned i = BeginIndex; i != EndIndex; ++i) 1925 Mask.push_back(IRB.getInt32(i)); 1926 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), 1927 ConstantVector::get(Mask), 1928 Name + ".extract"); 1929 DEBUG(dbgs() << " shuffle: " << *V << "\n"); 1930 return V; 1931 } 1932 1933 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, 1934 unsigned BeginIndex, const Twine &Name) { 1935 VectorType *VecTy = cast<VectorType>(Old->getType()); 1936 assert(VecTy && "Can only insert a vector into a vector"); 1937 1938 VectorType *Ty = dyn_cast<VectorType>(V->getType()); 1939 if (!Ty) { 1940 // Single element to insert. 1941 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), 1942 Name + ".insert"); 1943 DEBUG(dbgs() << " insert: " << *V << "\n"); 1944 return V; 1945 } 1946 1947 assert(Ty->getNumElements() <= VecTy->getNumElements() && 1948 "Too many elements!"); 1949 if (Ty->getNumElements() == VecTy->getNumElements()) { 1950 assert(V->getType() == VecTy && "Vector type mismatch"); 1951 return V; 1952 } 1953 unsigned EndIndex = BeginIndex + Ty->getNumElements(); 1954 1955 // When inserting a smaller vector into the larger to store, we first 1956 // use a shuffle vector to widen it with undef elements, and then 1957 // a second shuffle vector to select between the loaded vector and the 1958 // incoming vector. 1959 SmallVector<Constant*, 8> Mask; 1960 Mask.reserve(VecTy->getNumElements()); 1961 for (unsigned i = 0; i != VecTy->getNumElements(); ++i) 1962 if (i >= BeginIndex && i < EndIndex) 1963 Mask.push_back(IRB.getInt32(i - BeginIndex)); 1964 else 1965 Mask.push_back(UndefValue::get(IRB.getInt32Ty())); 1966 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), 1967 ConstantVector::get(Mask), 1968 Name + ".expand"); 1969 DEBUG(dbgs() << " shuffle: " << *V << "\n"); 1970 1971 Mask.clear(); 1972 for (unsigned i = 0; i != VecTy->getNumElements(); ++i) 1973 Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); 1974 1975 V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend"); 1976 1977 DEBUG(dbgs() << " blend: " << *V << "\n"); 1978 return V; 1979 } 1980 1981 namespace { 1982 /// \brief Visitor to rewrite instructions using p particular slice of an alloca 1983 /// to use a new alloca. 1984 /// 1985 /// Also implements the rewriting to vector-based accesses when the partition 1986 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic 1987 /// lives here. 1988 class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> { 1989 // Befriend the base class so it can delegate to private visit methods. 1990 friend class llvm::InstVisitor<AllocaSliceRewriter, bool>; 1991 typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base; 1992 1993 const DataLayout &DL; 1994 AllocaSlices &S; 1995 SROA &Pass; 1996 AllocaInst &OldAI, &NewAI; 1997 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; 1998 Type *NewAllocaTy; 1999 2000 // If we are rewriting an alloca partition which can be written as pure 2001 // vector operations, we stash extra information here. When VecTy is 2002 // non-null, we have some strict guarantees about the rewritten alloca: 2003 // - The new alloca is exactly the size of the vector type here. 2004 // - The accesses all either map to the entire vector or to a single 2005 // element. 2006 // - The set of accessing instructions is only one of those handled above 2007 // in isVectorPromotionViable. Generally these are the same access kinds 2008 // which are promotable via mem2reg. 2009 VectorType *VecTy; 2010 Type *ElementTy; 2011 uint64_t ElementSize; 2012 2013 // This is a convenience and flag variable that will be null unless the new 2014 // alloca's integer operations should be widened to this integer type due to 2015 // passing isIntegerWideningViable above. If it is non-null, the desired 2016 // integer type will be stored here for easy access during rewriting. 2017 IntegerType *IntTy; 2018 2019 // The original offset of the slice currently being rewritten relative to 2020 // the original alloca. 2021 uint64_t BeginOffset, EndOffset; 2022 // The new offsets of the slice currently being rewritten relative to the 2023 // original alloca. 2024 uint64_t NewBeginOffset, NewEndOffset; 2025 2026 uint64_t SliceSize; 2027 bool IsSplittable; 2028 bool IsSplit; 2029 Use *OldUse; 2030 Instruction *OldPtr; 2031 2032 // Track post-rewrite users which are PHI nodes and Selects. 2033 SmallPtrSetImpl<PHINode *> &PHIUsers; 2034 SmallPtrSetImpl<SelectInst *> &SelectUsers; 2035 2036 // Utility IR builder, whose name prefix is setup for each visited use, and 2037 // the insertion point is set to point to the user. 2038 IRBuilderTy IRB; 2039 2040 public: 2041 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &S, SROA &Pass, 2042 AllocaInst &OldAI, AllocaInst &NewAI, 2043 uint64_t NewAllocaBeginOffset, 2044 uint64_t NewAllocaEndOffset, bool IsVectorPromotable, 2045 bool IsIntegerPromotable, 2046 SmallPtrSetImpl<PHINode *> &PHIUsers, 2047 SmallPtrSetImpl<SelectInst *> &SelectUsers) 2048 : DL(DL), S(S), Pass(Pass), OldAI(OldAI), NewAI(NewAI), 2049 NewAllocaBeginOffset(NewAllocaBeginOffset), 2050 NewAllocaEndOffset(NewAllocaEndOffset), 2051 NewAllocaTy(NewAI.getAllocatedType()), 2052 VecTy(IsVectorPromotable ? cast<VectorType>(NewAllocaTy) : nullptr), 2053 ElementTy(VecTy ? VecTy->getElementType() : nullptr), 2054 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0), 2055 IntTy(IsIntegerPromotable 2056 ? Type::getIntNTy( 2057 NewAI.getContext(), 2058 DL.getTypeSizeInBits(NewAI.getAllocatedType())) 2059 : nullptr), 2060 BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(), 2061 OldPtr(), PHIUsers(PHIUsers), SelectUsers(SelectUsers), 2062 IRB(NewAI.getContext(), ConstantFolder()) { 2063 if (VecTy) { 2064 assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 && 2065 "Only multiple-of-8 sized vector elements are viable"); 2066 ++NumVectorized; 2067 } 2068 assert((!IsVectorPromotable && !IsIntegerPromotable) || 2069 IsVectorPromotable != IsIntegerPromotable); 2070 } 2071 2072 bool visit(AllocaSlices::const_iterator I) { 2073 bool CanSROA = true; 2074 BeginOffset = I->beginOffset(); 2075 EndOffset = I->endOffset(); 2076 IsSplittable = I->isSplittable(); 2077 IsSplit = 2078 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; 2079 2080 // Compute the intersecting offset range. 2081 assert(BeginOffset < NewAllocaEndOffset); 2082 assert(EndOffset > NewAllocaBeginOffset); 2083 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2084 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2085 2086 SliceSize = NewEndOffset - NewBeginOffset; 2087 2088 OldUse = I->getUse(); 2089 OldPtr = cast<Instruction>(OldUse->get()); 2090 2091 Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); 2092 IRB.SetInsertPoint(OldUserI); 2093 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); 2094 IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); 2095 2096 CanSROA &= visit(cast<Instruction>(OldUse->getUser())); 2097 if (VecTy || IntTy) 2098 assert(CanSROA); 2099 return CanSROA; 2100 } 2101 2102 private: 2103 // Make sure the other visit overloads are visible. 2104 using Base::visit; 2105 2106 // Every instruction which can end up as a user must have a rewrite rule. 2107 bool visitInstruction(Instruction &I) { 2108 DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); 2109 llvm_unreachable("No rewrite rule for this instruction!"); 2110 } 2111 2112 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { 2113 // Note that the offset computation can use BeginOffset or NewBeginOffset 2114 // interchangeably for unsplit slices. 2115 assert(IsSplit || BeginOffset == NewBeginOffset); 2116 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2117 2118 #ifndef NDEBUG 2119 StringRef OldName = OldPtr->getName(); 2120 // Skip through the last '.sroa.' component of the name. 2121 size_t LastSROAPrefix = OldName.rfind(".sroa."); 2122 if (LastSROAPrefix != StringRef::npos) { 2123 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); 2124 // Look for an SROA slice index. 2125 size_t IndexEnd = OldName.find_first_not_of("0123456789"); 2126 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { 2127 // Strip the index and look for the offset. 2128 OldName = OldName.substr(IndexEnd + 1); 2129 size_t OffsetEnd = OldName.find_first_not_of("0123456789"); 2130 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') 2131 // Strip the offset. 2132 OldName = OldName.substr(OffsetEnd + 1); 2133 } 2134 } 2135 // Strip any SROA suffixes as well. 2136 OldName = OldName.substr(0, OldName.find(".sroa_")); 2137 #endif 2138 2139 return getAdjustedPtr(IRB, DL, &NewAI, 2140 APInt(DL.getPointerSizeInBits(), Offset), PointerTy, 2141 #ifndef NDEBUG 2142 Twine(OldName) + "." 2143 #else 2144 Twine() 2145 #endif 2146 ); 2147 } 2148 2149 /// \brief Compute suitable alignment to access this slice of the *new* alloca. 2150 /// 2151 /// You can optionally pass a type to this routine and if that type's ABI 2152 /// alignment is itself suitable, this will return zero. 2153 unsigned getSliceAlign(Type *Ty = nullptr) { 2154 unsigned NewAIAlign = NewAI.getAlignment(); 2155 if (!NewAIAlign) 2156 NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType()); 2157 unsigned Align = MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset); 2158 return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align; 2159 } 2160 2161 unsigned getIndex(uint64_t Offset) { 2162 assert(VecTy && "Can only call getIndex when rewriting a vector"); 2163 uint64_t RelOffset = Offset - NewAllocaBeginOffset; 2164 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); 2165 uint32_t Index = RelOffset / ElementSize; 2166 assert(Index * ElementSize == RelOffset); 2167 return Index; 2168 } 2169 2170 void deleteIfTriviallyDead(Value *V) { 2171 Instruction *I = cast<Instruction>(V); 2172 if (isInstructionTriviallyDead(I)) 2173 Pass.DeadInsts.insert(I); 2174 } 2175 2176 Value *rewriteVectorizedLoadInst() { 2177 unsigned BeginIndex = getIndex(NewBeginOffset); 2178 unsigned EndIndex = getIndex(NewEndOffset); 2179 assert(EndIndex > BeginIndex && "Empty vector!"); 2180 2181 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2182 "load"); 2183 return extractVector(IRB, V, BeginIndex, EndIndex, "vec"); 2184 } 2185 2186 Value *rewriteIntegerLoad(LoadInst &LI) { 2187 assert(IntTy && "We cannot insert an integer to the alloca"); 2188 assert(!LI.isVolatile()); 2189 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2190 "load"); 2191 V = convertValue(DL, IRB, V, IntTy); 2192 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2193 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2194 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) 2195 V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset, 2196 "extract"); 2197 return V; 2198 } 2199 2200 bool visitLoadInst(LoadInst &LI) { 2201 DEBUG(dbgs() << " original: " << LI << "\n"); 2202 Value *OldOp = LI.getOperand(0); 2203 assert(OldOp == OldPtr); 2204 2205 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) 2206 : LI.getType(); 2207 bool IsPtrAdjusted = false; 2208 Value *V; 2209 if (VecTy) { 2210 V = rewriteVectorizedLoadInst(); 2211 } else if (IntTy && LI.getType()->isIntegerTy()) { 2212 V = rewriteIntegerLoad(LI); 2213 } else if (NewBeginOffset == NewAllocaBeginOffset && 2214 canConvertValue(DL, NewAllocaTy, LI.getType())) { 2215 V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2216 LI.isVolatile(), LI.getName()); 2217 } else { 2218 Type *LTy = TargetTy->getPointerTo(); 2219 V = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy), 2220 getSliceAlign(TargetTy), LI.isVolatile(), 2221 LI.getName()); 2222 IsPtrAdjusted = true; 2223 } 2224 V = convertValue(DL, IRB, V, TargetTy); 2225 2226 if (IsSplit) { 2227 assert(!LI.isVolatile()); 2228 assert(LI.getType()->isIntegerTy() && 2229 "Only integer type loads and stores are split"); 2230 assert(SliceSize < DL.getTypeStoreSize(LI.getType()) && 2231 "Split load isn't smaller than original load"); 2232 assert(LI.getType()->getIntegerBitWidth() == 2233 DL.getTypeStoreSizeInBits(LI.getType()) && 2234 "Non-byte-multiple bit width"); 2235 // Move the insertion point just past the load so that we can refer to it. 2236 IRB.SetInsertPoint(std::next(BasicBlock::iterator(&LI))); 2237 // Create a placeholder value with the same type as LI to use as the 2238 // basis for the new value. This allows us to replace the uses of LI with 2239 // the computed value, and then replace the placeholder with LI, leaving 2240 // LI only used for this computation. 2241 Value *Placeholder 2242 = new LoadInst(UndefValue::get(LI.getType()->getPointerTo())); 2243 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset, 2244 "insert"); 2245 LI.replaceAllUsesWith(V); 2246 Placeholder->replaceAllUsesWith(&LI); 2247 delete Placeholder; 2248 } else { 2249 LI.replaceAllUsesWith(V); 2250 } 2251 2252 Pass.DeadInsts.insert(&LI); 2253 deleteIfTriviallyDead(OldOp); 2254 DEBUG(dbgs() << " to: " << *V << "\n"); 2255 return !LI.isVolatile() && !IsPtrAdjusted; 2256 } 2257 2258 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp) { 2259 if (V->getType() != VecTy) { 2260 unsigned BeginIndex = getIndex(NewBeginOffset); 2261 unsigned EndIndex = getIndex(NewEndOffset); 2262 assert(EndIndex > BeginIndex && "Empty vector!"); 2263 unsigned NumElements = EndIndex - BeginIndex; 2264 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2265 Type *SliceTy = 2266 (NumElements == 1) ? ElementTy 2267 : VectorType::get(ElementTy, NumElements); 2268 if (V->getType() != SliceTy) 2269 V = convertValue(DL, IRB, V, SliceTy); 2270 2271 // Mix in the existing elements. 2272 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2273 "load"); 2274 V = insertVector(IRB, Old, V, BeginIndex, "vec"); 2275 } 2276 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); 2277 Pass.DeadInsts.insert(&SI); 2278 2279 (void)Store; 2280 DEBUG(dbgs() << " to: " << *Store << "\n"); 2281 return true; 2282 } 2283 2284 bool rewriteIntegerStore(Value *V, StoreInst &SI) { 2285 assert(IntTy && "We cannot extract an integer from the alloca"); 2286 assert(!SI.isVolatile()); 2287 if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) { 2288 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2289 "oldload"); 2290 Old = convertValue(DL, IRB, Old, IntTy); 2291 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2292 uint64_t Offset = BeginOffset - NewAllocaBeginOffset; 2293 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, 2294 "insert"); 2295 } 2296 V = convertValue(DL, IRB, V, NewAllocaTy); 2297 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); 2298 Pass.DeadInsts.insert(&SI); 2299 (void)Store; 2300 DEBUG(dbgs() << " to: " << *Store << "\n"); 2301 return true; 2302 } 2303 2304 bool visitStoreInst(StoreInst &SI) { 2305 DEBUG(dbgs() << " original: " << SI << "\n"); 2306 Value *OldOp = SI.getOperand(1); 2307 assert(OldOp == OldPtr); 2308 2309 Value *V = SI.getValueOperand(); 2310 2311 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2312 // alloca that should be re-examined after promoting this alloca. 2313 if (V->getType()->isPointerTy()) 2314 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) 2315 Pass.PostPromotionWorklist.insert(AI); 2316 2317 if (SliceSize < DL.getTypeStoreSize(V->getType())) { 2318 assert(!SI.isVolatile()); 2319 assert(V->getType()->isIntegerTy() && 2320 "Only integer type loads and stores are split"); 2321 assert(V->getType()->getIntegerBitWidth() == 2322 DL.getTypeStoreSizeInBits(V->getType()) && 2323 "Non-byte-multiple bit width"); 2324 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); 2325 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset, 2326 "extract"); 2327 } 2328 2329 if (VecTy) 2330 return rewriteVectorizedStoreInst(V, SI, OldOp); 2331 if (IntTy && V->getType()->isIntegerTy()) 2332 return rewriteIntegerStore(V, SI); 2333 2334 StoreInst *NewSI; 2335 if (NewBeginOffset == NewAllocaBeginOffset && 2336 NewEndOffset == NewAllocaEndOffset && 2337 canConvertValue(DL, V->getType(), NewAllocaTy)) { 2338 V = convertValue(DL, IRB, V, NewAllocaTy); 2339 NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), 2340 SI.isVolatile()); 2341 } else { 2342 Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo()); 2343 NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()), 2344 SI.isVolatile()); 2345 } 2346 (void)NewSI; 2347 Pass.DeadInsts.insert(&SI); 2348 deleteIfTriviallyDead(OldOp); 2349 2350 DEBUG(dbgs() << " to: " << *NewSI << "\n"); 2351 return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile(); 2352 } 2353 2354 /// \brief Compute an integer value from splatting an i8 across the given 2355 /// number of bytes. 2356 /// 2357 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't 2358 /// call this routine. 2359 /// FIXME: Heed the advice above. 2360 /// 2361 /// \param V The i8 value to splat. 2362 /// \param Size The number of bytes in the output (assuming i8 is one byte) 2363 Value *getIntegerSplat(Value *V, unsigned Size) { 2364 assert(Size > 0 && "Expected a positive number of bytes."); 2365 IntegerType *VTy = cast<IntegerType>(V->getType()); 2366 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); 2367 if (Size == 1) 2368 return V; 2369 2370 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8); 2371 V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"), 2372 ConstantExpr::getUDiv( 2373 Constant::getAllOnesValue(SplatIntTy), 2374 ConstantExpr::getZExt( 2375 Constant::getAllOnesValue(V->getType()), 2376 SplatIntTy)), 2377 "isplat"); 2378 return V; 2379 } 2380 2381 /// \brief Compute a vector splat for a given element value. 2382 Value *getVectorSplat(Value *V, unsigned NumElements) { 2383 V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); 2384 DEBUG(dbgs() << " splat: " << *V << "\n"); 2385 return V; 2386 } 2387 2388 bool visitMemSetInst(MemSetInst &II) { 2389 DEBUG(dbgs() << " original: " << II << "\n"); 2390 assert(II.getRawDest() == OldPtr); 2391 2392 // If the memset has a variable size, it cannot be split, just adjust the 2393 // pointer to the new alloca. 2394 if (!isa<Constant>(II.getLength())) { 2395 assert(!IsSplit); 2396 assert(NewBeginOffset == BeginOffset); 2397 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); 2398 Type *CstTy = II.getAlignmentCst()->getType(); 2399 II.setAlignment(ConstantInt::get(CstTy, getSliceAlign())); 2400 2401 deleteIfTriviallyDead(OldPtr); 2402 return false; 2403 } 2404 2405 // Record this instruction for deletion. 2406 Pass.DeadInsts.insert(&II); 2407 2408 Type *AllocaTy = NewAI.getAllocatedType(); 2409 Type *ScalarTy = AllocaTy->getScalarType(); 2410 2411 // If this doesn't map cleanly onto the alloca type, and that type isn't 2412 // a single value type, just emit a memset. 2413 if (!VecTy && !IntTy && 2414 (BeginOffset > NewAllocaBeginOffset || 2415 EndOffset < NewAllocaEndOffset || 2416 !AllocaTy->isSingleValueType() || 2417 !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) || 2418 DL.getTypeSizeInBits(ScalarTy)%8 != 0)) { 2419 Type *SizeTy = II.getLength()->getType(); 2420 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2421 CallInst *New = IRB.CreateMemSet( 2422 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, 2423 getSliceAlign(), II.isVolatile()); 2424 (void)New; 2425 DEBUG(dbgs() << " to: " << *New << "\n"); 2426 return false; 2427 } 2428 2429 // If we can represent this as a simple value, we have to build the actual 2430 // value to store, which requires expanding the byte present in memset to 2431 // a sensible representation for the alloca type. This is essentially 2432 // splatting the byte to a sufficiently wide integer, splatting it across 2433 // any desired vector width, and bitcasting to the final type. 2434 Value *V; 2435 2436 if (VecTy) { 2437 // If this is a memset of a vectorized alloca, insert it. 2438 assert(ElementTy == ScalarTy); 2439 2440 unsigned BeginIndex = getIndex(NewBeginOffset); 2441 unsigned EndIndex = getIndex(NewEndOffset); 2442 assert(EndIndex > BeginIndex && "Empty vector!"); 2443 unsigned NumElements = EndIndex - BeginIndex; 2444 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2445 2446 Value *Splat = 2447 getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8); 2448 Splat = convertValue(DL, IRB, Splat, ElementTy); 2449 if (NumElements > 1) 2450 Splat = getVectorSplat(Splat, NumElements); 2451 2452 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2453 "oldload"); 2454 V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); 2455 } else if (IntTy) { 2456 // If this is a memset on an alloca where we can widen stores, insert the 2457 // set integer. 2458 assert(!II.isVolatile()); 2459 2460 uint64_t Size = NewEndOffset - NewBeginOffset; 2461 V = getIntegerSplat(II.getValue(), Size); 2462 2463 if (IntTy && (BeginOffset != NewAllocaBeginOffset || 2464 EndOffset != NewAllocaBeginOffset)) { 2465 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2466 "oldload"); 2467 Old = convertValue(DL, IRB, Old, IntTy); 2468 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2469 V = insertInteger(DL, IRB, Old, V, Offset, "insert"); 2470 } else { 2471 assert(V->getType() == IntTy && 2472 "Wrong type for an alloca wide integer!"); 2473 } 2474 V = convertValue(DL, IRB, V, AllocaTy); 2475 } else { 2476 // Established these invariants above. 2477 assert(NewBeginOffset == NewAllocaBeginOffset); 2478 assert(NewEndOffset == NewAllocaEndOffset); 2479 2480 V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8); 2481 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) 2482 V = getVectorSplat(V, AllocaVecTy->getNumElements()); 2483 2484 V = convertValue(DL, IRB, V, AllocaTy); 2485 } 2486 2487 Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), 2488 II.isVolatile()); 2489 (void)New; 2490 DEBUG(dbgs() << " to: " << *New << "\n"); 2491 return !II.isVolatile(); 2492 } 2493 2494 bool visitMemTransferInst(MemTransferInst &II) { 2495 // Rewriting of memory transfer instructions can be a bit tricky. We break 2496 // them into two categories: split intrinsics and unsplit intrinsics. 2497 2498 DEBUG(dbgs() << " original: " << II << "\n"); 2499 2500 bool IsDest = &II.getRawDestUse() == OldUse; 2501 assert((IsDest && II.getRawDest() == OldPtr) || 2502 (!IsDest && II.getRawSource() == OldPtr)); 2503 2504 unsigned SliceAlign = getSliceAlign(); 2505 2506 // For unsplit intrinsics, we simply modify the source and destination 2507 // pointers in place. This isn't just an optimization, it is a matter of 2508 // correctness. With unsplit intrinsics we may be dealing with transfers 2509 // within a single alloca before SROA ran, or with transfers that have 2510 // a variable length. We may also be dealing with memmove instead of 2511 // memcpy, and so simply updating the pointers is the necessary for us to 2512 // update both source and dest of a single call. 2513 if (!IsSplittable) { 2514 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2515 if (IsDest) 2516 II.setDest(AdjustedPtr); 2517 else 2518 II.setSource(AdjustedPtr); 2519 2520 if (II.getAlignment() > SliceAlign) { 2521 Type *CstTy = II.getAlignmentCst()->getType(); 2522 II.setAlignment( 2523 ConstantInt::get(CstTy, MinAlign(II.getAlignment(), SliceAlign))); 2524 } 2525 2526 DEBUG(dbgs() << " to: " << II << "\n"); 2527 deleteIfTriviallyDead(OldPtr); 2528 return false; 2529 } 2530 // For split transfer intrinsics we have an incredibly useful assurance: 2531 // the source and destination do not reside within the same alloca, and at 2532 // least one of them does not escape. This means that we can replace 2533 // memmove with memcpy, and we don't need to worry about all manner of 2534 // downsides to splitting and transforming the operations. 2535 2536 // If this doesn't map cleanly onto the alloca type, and that type isn't 2537 // a single value type, just emit a memcpy. 2538 bool EmitMemCpy 2539 = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset || 2540 EndOffset < NewAllocaEndOffset || 2541 !NewAI.getAllocatedType()->isSingleValueType()); 2542 2543 // If we're just going to emit a memcpy, the alloca hasn't changed, and the 2544 // size hasn't been shrunk based on analysis of the viable range, this is 2545 // a no-op. 2546 if (EmitMemCpy && &OldAI == &NewAI) { 2547 // Ensure the start lines up. 2548 assert(NewBeginOffset == BeginOffset); 2549 2550 // Rewrite the size as needed. 2551 if (NewEndOffset != EndOffset) 2552 II.setLength(ConstantInt::get(II.getLength()->getType(), 2553 NewEndOffset - NewBeginOffset)); 2554 return false; 2555 } 2556 // Record this instruction for deletion. 2557 Pass.DeadInsts.insert(&II); 2558 2559 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2560 // alloca that should be re-examined after rewriting this instruction. 2561 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); 2562 if (AllocaInst *AI 2563 = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) { 2564 assert(AI != &OldAI && AI != &NewAI && 2565 "Splittable transfers cannot reach the same alloca on both ends."); 2566 Pass.Worklist.insert(AI); 2567 } 2568 2569 Type *OtherPtrTy = OtherPtr->getType(); 2570 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); 2571 2572 // Compute the relative offset for the other pointer within the transfer. 2573 unsigned IntPtrWidth = DL.getPointerSizeInBits(OtherAS); 2574 APInt OtherOffset(IntPtrWidth, NewBeginOffset - BeginOffset); 2575 unsigned OtherAlign = MinAlign(II.getAlignment() ? II.getAlignment() : 1, 2576 OtherOffset.zextOrTrunc(64).getZExtValue()); 2577 2578 if (EmitMemCpy) { 2579 // Compute the other pointer, folding as much as possible to produce 2580 // a single, simple GEP in most cases. 2581 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 2582 OtherPtr->getName() + "."); 2583 2584 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2585 Type *SizeTy = II.getLength()->getType(); 2586 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2587 2588 CallInst *New = IRB.CreateMemCpy( 2589 IsDest ? OurPtr : OtherPtr, IsDest ? OtherPtr : OurPtr, Size, 2590 MinAlign(SliceAlign, OtherAlign), II.isVolatile()); 2591 (void)New; 2592 DEBUG(dbgs() << " to: " << *New << "\n"); 2593 return false; 2594 } 2595 2596 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && 2597 NewEndOffset == NewAllocaEndOffset; 2598 uint64_t Size = NewEndOffset - NewBeginOffset; 2599 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; 2600 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; 2601 unsigned NumElements = EndIndex - BeginIndex; 2602 IntegerType *SubIntTy 2603 = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : nullptr; 2604 2605 // Reset the other pointer type to match the register type we're going to 2606 // use, but using the address space of the original other pointer. 2607 if (VecTy && !IsWholeAlloca) { 2608 if (NumElements == 1) 2609 OtherPtrTy = VecTy->getElementType(); 2610 else 2611 OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements); 2612 2613 OtherPtrTy = OtherPtrTy->getPointerTo(OtherAS); 2614 } else if (IntTy && !IsWholeAlloca) { 2615 OtherPtrTy = SubIntTy->getPointerTo(OtherAS); 2616 } else { 2617 OtherPtrTy = NewAllocaTy->getPointerTo(OtherAS); 2618 } 2619 2620 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 2621 OtherPtr->getName() + "."); 2622 unsigned SrcAlign = OtherAlign; 2623 Value *DstPtr = &NewAI; 2624 unsigned DstAlign = SliceAlign; 2625 if (!IsDest) { 2626 std::swap(SrcPtr, DstPtr); 2627 std::swap(SrcAlign, DstAlign); 2628 } 2629 2630 Value *Src; 2631 if (VecTy && !IsWholeAlloca && !IsDest) { 2632 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2633 "load"); 2634 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); 2635 } else if (IntTy && !IsWholeAlloca && !IsDest) { 2636 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2637 "load"); 2638 Src = convertValue(DL, IRB, Src, IntTy); 2639 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2640 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); 2641 } else { 2642 Src = IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(), 2643 "copyload"); 2644 } 2645 2646 if (VecTy && !IsWholeAlloca && IsDest) { 2647 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2648 "oldload"); 2649 Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); 2650 } else if (IntTy && !IsWholeAlloca && IsDest) { 2651 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2652 "oldload"); 2653 Old = convertValue(DL, IRB, Old, IntTy); 2654 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2655 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); 2656 Src = convertValue(DL, IRB, Src, NewAllocaTy); 2657 } 2658 2659 StoreInst *Store = cast<StoreInst>( 2660 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); 2661 (void)Store; 2662 DEBUG(dbgs() << " to: " << *Store << "\n"); 2663 return !II.isVolatile(); 2664 } 2665 2666 bool visitIntrinsicInst(IntrinsicInst &II) { 2667 assert(II.getIntrinsicID() == Intrinsic::lifetime_start || 2668 II.getIntrinsicID() == Intrinsic::lifetime_end); 2669 DEBUG(dbgs() << " original: " << II << "\n"); 2670 assert(II.getArgOperand(1) == OldPtr); 2671 2672 // Record this instruction for deletion. 2673 Pass.DeadInsts.insert(&II); 2674 2675 ConstantInt *Size 2676 = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), 2677 NewEndOffset - NewBeginOffset); 2678 Value *Ptr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2679 Value *New; 2680 if (II.getIntrinsicID() == Intrinsic::lifetime_start) 2681 New = IRB.CreateLifetimeStart(Ptr, Size); 2682 else 2683 New = IRB.CreateLifetimeEnd(Ptr, Size); 2684 2685 (void)New; 2686 DEBUG(dbgs() << " to: " << *New << "\n"); 2687 return true; 2688 } 2689 2690 bool visitPHINode(PHINode &PN) { 2691 DEBUG(dbgs() << " original: " << PN << "\n"); 2692 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); 2693 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); 2694 2695 // We would like to compute a new pointer in only one place, but have it be 2696 // as local as possible to the PHI. To do that, we re-use the location of 2697 // the old pointer, which necessarily must be in the right position to 2698 // dominate the PHI. 2699 IRBuilderTy PtrBuilder(IRB); 2700 PtrBuilder.SetInsertPoint(OldPtr); 2701 PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc()); 2702 2703 Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType()); 2704 // Replace the operands which were using the old pointer. 2705 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); 2706 2707 DEBUG(dbgs() << " to: " << PN << "\n"); 2708 deleteIfTriviallyDead(OldPtr); 2709 2710 // PHIs can't be promoted on their own, but often can be speculated. We 2711 // check the speculation outside of the rewriter so that we see the 2712 // fully-rewritten alloca. 2713 PHIUsers.insert(&PN); 2714 return true; 2715 } 2716 2717 bool visitSelectInst(SelectInst &SI) { 2718 DEBUG(dbgs() << " original: " << SI << "\n"); 2719 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && 2720 "Pointer isn't an operand!"); 2721 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); 2722 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); 2723 2724 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2725 // Replace the operands which were using the old pointer. 2726 if (SI.getOperand(1) == OldPtr) 2727 SI.setOperand(1, NewPtr); 2728 if (SI.getOperand(2) == OldPtr) 2729 SI.setOperand(2, NewPtr); 2730 2731 DEBUG(dbgs() << " to: " << SI << "\n"); 2732 deleteIfTriviallyDead(OldPtr); 2733 2734 // Selects can't be promoted on their own, but often can be speculated. We 2735 // check the speculation outside of the rewriter so that we see the 2736 // fully-rewritten alloca. 2737 SelectUsers.insert(&SI); 2738 return true; 2739 } 2740 2741 }; 2742 } 2743 2744 namespace { 2745 /// \brief Visitor to rewrite aggregate loads and stores as scalar. 2746 /// 2747 /// This pass aggressively rewrites all aggregate loads and stores on 2748 /// a particular pointer (or any pointer derived from it which we can identify) 2749 /// with scalar loads and stores. 2750 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { 2751 // Befriend the base class so it can delegate to private visit methods. 2752 friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>; 2753 2754 const DataLayout &DL; 2755 2756 /// Queue of pointer uses to analyze and potentially rewrite. 2757 SmallVector<Use *, 8> Queue; 2758 2759 /// Set to prevent us from cycling with phi nodes and loops. 2760 SmallPtrSet<User *, 8> Visited; 2761 2762 /// The current pointer use being rewritten. This is used to dig up the used 2763 /// value (as opposed to the user). 2764 Use *U; 2765 2766 public: 2767 AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {} 2768 2769 /// Rewrite loads and stores through a pointer and all pointers derived from 2770 /// it. 2771 bool rewrite(Instruction &I) { 2772 DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); 2773 enqueueUsers(I); 2774 bool Changed = false; 2775 while (!Queue.empty()) { 2776 U = Queue.pop_back_val(); 2777 Changed |= visit(cast<Instruction>(U->getUser())); 2778 } 2779 return Changed; 2780 } 2781 2782 private: 2783 /// Enqueue all the users of the given instruction for further processing. 2784 /// This uses a set to de-duplicate users. 2785 void enqueueUsers(Instruction &I) { 2786 for (Use &U : I.uses()) 2787 if (Visited.insert(U.getUser())) 2788 Queue.push_back(&U); 2789 } 2790 2791 // Conservative default is to not rewrite anything. 2792 bool visitInstruction(Instruction &I) { return false; } 2793 2794 /// \brief Generic recursive split emission class. 2795 template <typename Derived> 2796 class OpSplitter { 2797 protected: 2798 /// The builder used to form new instructions. 2799 IRBuilderTy IRB; 2800 /// The indices which to be used with insert- or extractvalue to select the 2801 /// appropriate value within the aggregate. 2802 SmallVector<unsigned, 4> Indices; 2803 /// The indices to a GEP instruction which will move Ptr to the correct slot 2804 /// within the aggregate. 2805 SmallVector<Value *, 4> GEPIndices; 2806 /// The base pointer of the original op, used as a base for GEPing the 2807 /// split operations. 2808 Value *Ptr; 2809 2810 /// Initialize the splitter with an insertion point, Ptr and start with a 2811 /// single zero GEP index. 2812 OpSplitter(Instruction *InsertionPoint, Value *Ptr) 2813 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {} 2814 2815 public: 2816 /// \brief Generic recursive split emission routine. 2817 /// 2818 /// This method recursively splits an aggregate op (load or store) into 2819 /// scalar or vector ops. It splits recursively until it hits a single value 2820 /// and emits that single value operation via the template argument. 2821 /// 2822 /// The logic of this routine relies on GEPs and insertvalue and 2823 /// extractvalue all operating with the same fundamental index list, merely 2824 /// formatted differently (GEPs need actual values). 2825 /// 2826 /// \param Ty The type being split recursively into smaller ops. 2827 /// \param Agg The aggregate value being built up or stored, depending on 2828 /// whether this is splitting a load or a store respectively. 2829 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { 2830 if (Ty->isSingleValueType()) 2831 return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name); 2832 2833 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 2834 unsigned OldSize = Indices.size(); 2835 (void)OldSize; 2836 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; 2837 ++Idx) { 2838 assert(Indices.size() == OldSize && "Did not return to the old size"); 2839 Indices.push_back(Idx); 2840 GEPIndices.push_back(IRB.getInt32(Idx)); 2841 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); 2842 GEPIndices.pop_back(); 2843 Indices.pop_back(); 2844 } 2845 return; 2846 } 2847 2848 if (StructType *STy = dyn_cast<StructType>(Ty)) { 2849 unsigned OldSize = Indices.size(); 2850 (void)OldSize; 2851 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; 2852 ++Idx) { 2853 assert(Indices.size() == OldSize && "Did not return to the old size"); 2854 Indices.push_back(Idx); 2855 GEPIndices.push_back(IRB.getInt32(Idx)); 2856 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); 2857 GEPIndices.pop_back(); 2858 Indices.pop_back(); 2859 } 2860 return; 2861 } 2862 2863 llvm_unreachable("Only arrays and structs are aggregate loadable types"); 2864 } 2865 }; 2866 2867 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { 2868 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr) 2869 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {} 2870 2871 /// Emit a leaf load of a single value. This is called at the leaves of the 2872 /// recursive emission to actually load values. 2873 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { 2874 assert(Ty->isSingleValueType()); 2875 // Load the single value and insert it using the indices. 2876 Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"); 2877 Value *Load = IRB.CreateLoad(GEP, Name + ".load"); 2878 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); 2879 DEBUG(dbgs() << " to: " << *Load << "\n"); 2880 } 2881 }; 2882 2883 bool visitLoadInst(LoadInst &LI) { 2884 assert(LI.getPointerOperand() == *U); 2885 if (!LI.isSimple() || LI.getType()->isSingleValueType()) 2886 return false; 2887 2888 // We have an aggregate being loaded, split it apart. 2889 DEBUG(dbgs() << " original: " << LI << "\n"); 2890 LoadOpSplitter Splitter(&LI, *U); 2891 Value *V = UndefValue::get(LI.getType()); 2892 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); 2893 LI.replaceAllUsesWith(V); 2894 LI.eraseFromParent(); 2895 return true; 2896 } 2897 2898 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { 2899 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr) 2900 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {} 2901 2902 /// Emit a leaf store of a single value. This is called at the leaves of the 2903 /// recursive emission to actually produce stores. 2904 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { 2905 assert(Ty->isSingleValueType()); 2906 // Extract the single value and store it using the indices. 2907 Value *Store = IRB.CreateStore( 2908 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"), 2909 IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep")); 2910 (void)Store; 2911 DEBUG(dbgs() << " to: " << *Store << "\n"); 2912 } 2913 }; 2914 2915 bool visitStoreInst(StoreInst &SI) { 2916 if (!SI.isSimple() || SI.getPointerOperand() != *U) 2917 return false; 2918 Value *V = SI.getValueOperand(); 2919 if (V->getType()->isSingleValueType()) 2920 return false; 2921 2922 // We have an aggregate being stored, split it apart. 2923 DEBUG(dbgs() << " original: " << SI << "\n"); 2924 StoreOpSplitter Splitter(&SI, *U); 2925 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); 2926 SI.eraseFromParent(); 2927 return true; 2928 } 2929 2930 bool visitBitCastInst(BitCastInst &BC) { 2931 enqueueUsers(BC); 2932 return false; 2933 } 2934 2935 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2936 enqueueUsers(GEPI); 2937 return false; 2938 } 2939 2940 bool visitPHINode(PHINode &PN) { 2941 enqueueUsers(PN); 2942 return false; 2943 } 2944 2945 bool visitSelectInst(SelectInst &SI) { 2946 enqueueUsers(SI); 2947 return false; 2948 } 2949 }; 2950 } 2951 2952 /// \brief Strip aggregate type wrapping. 2953 /// 2954 /// This removes no-op aggregate types wrapping an underlying type. It will 2955 /// strip as many layers of types as it can without changing either the type 2956 /// size or the allocated size. 2957 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { 2958 if (Ty->isSingleValueType()) 2959 return Ty; 2960 2961 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2962 uint64_t TypeSize = DL.getTypeSizeInBits(Ty); 2963 2964 Type *InnerTy; 2965 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 2966 InnerTy = ArrTy->getElementType(); 2967 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 2968 const StructLayout *SL = DL.getStructLayout(STy); 2969 unsigned Index = SL->getElementContainingOffset(0); 2970 InnerTy = STy->getElementType(Index); 2971 } else { 2972 return Ty; 2973 } 2974 2975 if (AllocSize > DL.getTypeAllocSize(InnerTy) || 2976 TypeSize > DL.getTypeSizeInBits(InnerTy)) 2977 return Ty; 2978 2979 return stripAggregateTypeWrapping(DL, InnerTy); 2980 } 2981 2982 /// \brief Try to find a partition of the aggregate type passed in for a given 2983 /// offset and size. 2984 /// 2985 /// This recurses through the aggregate type and tries to compute a subtype 2986 /// based on the offset and size. When the offset and size span a sub-section 2987 /// of an array, it will even compute a new array type for that sub-section, 2988 /// and the same for structs. 2989 /// 2990 /// Note that this routine is very strict and tries to find a partition of the 2991 /// type which produces the *exact* right offset and size. It is not forgiving 2992 /// when the size or offset cause either end of type-based partition to be off. 2993 /// Also, this is a best-effort routine. It is reasonable to give up and not 2994 /// return a type if necessary. 2995 static Type *getTypePartition(const DataLayout &DL, Type *Ty, 2996 uint64_t Offset, uint64_t Size) { 2997 if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size) 2998 return stripAggregateTypeWrapping(DL, Ty); 2999 if (Offset > DL.getTypeAllocSize(Ty) || 3000 (DL.getTypeAllocSize(Ty) - Offset) < Size) 3001 return nullptr; 3002 3003 if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) { 3004 // We can't partition pointers... 3005 if (SeqTy->isPointerTy()) 3006 return nullptr; 3007 3008 Type *ElementTy = SeqTy->getElementType(); 3009 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); 3010 uint64_t NumSkippedElements = Offset / ElementSize; 3011 if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) { 3012 if (NumSkippedElements >= ArrTy->getNumElements()) 3013 return nullptr; 3014 } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) { 3015 if (NumSkippedElements >= VecTy->getNumElements()) 3016 return nullptr; 3017 } 3018 Offset -= NumSkippedElements * ElementSize; 3019 3020 // First check if we need to recurse. 3021 if (Offset > 0 || Size < ElementSize) { 3022 // Bail if the partition ends in a different array element. 3023 if ((Offset + Size) > ElementSize) 3024 return nullptr; 3025 // Recurse through the element type trying to peel off offset bytes. 3026 return getTypePartition(DL, ElementTy, Offset, Size); 3027 } 3028 assert(Offset == 0); 3029 3030 if (Size == ElementSize) 3031 return stripAggregateTypeWrapping(DL, ElementTy); 3032 assert(Size > ElementSize); 3033 uint64_t NumElements = Size / ElementSize; 3034 if (NumElements * ElementSize != Size) 3035 return nullptr; 3036 return ArrayType::get(ElementTy, NumElements); 3037 } 3038 3039 StructType *STy = dyn_cast<StructType>(Ty); 3040 if (!STy) 3041 return nullptr; 3042 3043 const StructLayout *SL = DL.getStructLayout(STy); 3044 if (Offset >= SL->getSizeInBytes()) 3045 return nullptr; 3046 uint64_t EndOffset = Offset + Size; 3047 if (EndOffset > SL->getSizeInBytes()) 3048 return nullptr; 3049 3050 unsigned Index = SL->getElementContainingOffset(Offset); 3051 Offset -= SL->getElementOffset(Index); 3052 3053 Type *ElementTy = STy->getElementType(Index); 3054 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); 3055 if (Offset >= ElementSize) 3056 return nullptr; // The offset points into alignment padding. 3057 3058 // See if any partition must be contained by the element. 3059 if (Offset > 0 || Size < ElementSize) { 3060 if ((Offset + Size) > ElementSize) 3061 return nullptr; 3062 return getTypePartition(DL, ElementTy, Offset, Size); 3063 } 3064 assert(Offset == 0); 3065 3066 if (Size == ElementSize) 3067 return stripAggregateTypeWrapping(DL, ElementTy); 3068 3069 StructType::element_iterator EI = STy->element_begin() + Index, 3070 EE = STy->element_end(); 3071 if (EndOffset < SL->getSizeInBytes()) { 3072 unsigned EndIndex = SL->getElementContainingOffset(EndOffset); 3073 if (Index == EndIndex) 3074 return nullptr; // Within a single element and its padding. 3075 3076 // Don't try to form "natural" types if the elements don't line up with the 3077 // expected size. 3078 // FIXME: We could potentially recurse down through the last element in the 3079 // sub-struct to find a natural end point. 3080 if (SL->getElementOffset(EndIndex) != EndOffset) 3081 return nullptr; 3082 3083 assert(Index < EndIndex); 3084 EE = STy->element_begin() + EndIndex; 3085 } 3086 3087 // Try to build up a sub-structure. 3088 StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE), 3089 STy->isPacked()); 3090 const StructLayout *SubSL = DL.getStructLayout(SubTy); 3091 if (Size != SubSL->getSizeInBytes()) 3092 return nullptr; // The sub-struct doesn't have quite the size needed. 3093 3094 return SubTy; 3095 } 3096 3097 /// \brief Rewrite an alloca partition's users. 3098 /// 3099 /// This routine drives both of the rewriting goals of the SROA pass. It tries 3100 /// to rewrite uses of an alloca partition to be conducive for SSA value 3101 /// promotion. If the partition needs a new, more refined alloca, this will 3102 /// build that new alloca, preserving as much type information as possible, and 3103 /// rewrite the uses of the old alloca to point at the new one and have the 3104 /// appropriate new offsets. It also evaluates how successful the rewrite was 3105 /// at enabling promotion and if it was successful queues the alloca to be 3106 /// promoted. 3107 bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S, 3108 AllocaSlices::iterator B, AllocaSlices::iterator E, 3109 int64_t BeginOffset, int64_t EndOffset, 3110 ArrayRef<AllocaSlices::iterator> SplitUses) { 3111 assert(BeginOffset < EndOffset); 3112 uint64_t SliceSize = EndOffset - BeginOffset; 3113 3114 // Try to compute a friendly type for this partition of the alloca. This 3115 // won't always succeed, in which case we fall back to a legal integer type 3116 // or an i8 array of an appropriate size. 3117 Type *SliceTy = nullptr; 3118 if (Type *CommonUseTy = findCommonType(B, E, EndOffset)) 3119 if (DL->getTypeAllocSize(CommonUseTy) >= SliceSize) 3120 SliceTy = CommonUseTy; 3121 if (!SliceTy) 3122 if (