Home | History | Annotate | Download | only in Scalar
      1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This transformation implements the well known scalar replacement of
     11 /// aggregates transformation. It tries to identify promotable elements of an
     12 /// aggregate alloca, and promote them to registers. It will also try to
     13 /// convert uses of an element (or set of elements) of an alloca into a vector
     14 /// or bitfield-style integer scalar if appropriate.
     15 ///
     16 /// It works to do this with minimal slicing of the alloca so that regions
     17 /// which are merely transferred in and out of external memory remain unchanged
     18 /// and are not decomposed to scalar code.
     19 ///
     20 /// Because this also performs alloca promotion, it can be thought of as also
     21 /// serving the purpose of SSA formation. The algorithm iterates on the
     22 /// function until all opportunities for promotion have been realized.
     23 ///
     24 //===----------------------------------------------------------------------===//
     25 
     26 #include "llvm/Transforms/Scalar.h"
     27 #include "llvm/ADT/STLExtras.h"
     28 #include "llvm/ADT/SetVector.h"
     29 #include "llvm/ADT/SmallVector.h"
     30 #include "llvm/ADT/Statistic.h"
     31 #include "llvm/Analysis/Loads.h"
     32 #include "llvm/Analysis/PtrUseVisitor.h"
     33 #include "llvm/Analysis/ValueTracking.h"
     34 #include "llvm/IR/Constants.h"
     35 #include "llvm/IR/DIBuilder.h"
     36 #include "llvm/IR/DataLayout.h"
     37 #include "llvm/IR/DebugInfo.h"
     38 #include "llvm/IR/DerivedTypes.h"
     39 #include "llvm/IR/Dominators.h"
     40 #include "llvm/IR/Function.h"
     41 #include "llvm/IR/IRBuilder.h"
     42 #include "llvm/IR/InstVisitor.h"
     43 #include "llvm/IR/Instructions.h"
     44 #include "llvm/IR/IntrinsicInst.h"
     45 #include "llvm/IR/LLVMContext.h"
     46 #include "llvm/IR/Operator.h"
     47 #include "llvm/Pass.h"
     48 #include "llvm/Support/CommandLine.h"
     49 #include "llvm/Support/Compiler.h"
     50 #include "llvm/Support/Debug.h"
     51 #include "llvm/Support/ErrorHandling.h"
     52 #include "llvm/Support/MathExtras.h"
     53 #include "llvm/Support/TimeValue.h"
     54 #include "llvm/Support/raw_ostream.h"
     55 #include "llvm/Transforms/Utils/Local.h"
     56 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
     57 #include "llvm/Transforms/Utils/SSAUpdater.h"
     58 
     59 #if __cplusplus >= 201103L && !defined(NDEBUG)
     60 // We only use this for a debug check in C++11
     61 #include <random>
     62 #endif
     63 
     64 using namespace llvm;
     65 
     66 #define DEBUG_TYPE "sroa"
     67 
     68 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
     69 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
     70 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
     71 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
     72 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
     73 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
     74 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
     75 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
     76 STATISTIC(NumDeleted, "Number of instructions deleted");
     77 STATISTIC(NumVectorized, "Number of vectorized aggregates");
     78 
     79 /// Hidden option to force the pass to not use DomTree and mem2reg, instead
     80 /// forming SSA values through the SSAUpdater infrastructure.
     81 static cl::opt<bool>
     82 ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
     83 
     84 /// Hidden option to enable randomly shuffling the slices to help uncover
     85 /// instability in their order.
     86 static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
     87                                              cl::init(false), cl::Hidden);
     88 
     89 /// Hidden option to experiment with completely strict handling of inbounds
     90 /// GEPs.
     91 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds",
     92                                         cl::init(false), cl::Hidden);
     93 
     94 namespace {
     95 /// \brief A custom IRBuilder inserter which prefixes all names if they are
     96 /// preserved.
     97 template <bool preserveNames = true>
     98 class IRBuilderPrefixedInserter :
     99     public IRBuilderDefaultInserter<preserveNames> {
    100   std::string Prefix;
    101 
    102 public:
    103   void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
    104 
    105 protected:
    106   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
    107                     BasicBlock::iterator InsertPt) const {
    108     IRBuilderDefaultInserter<preserveNames>::InsertHelper(
    109         I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt);
    110   }
    111 };
    112 
    113 // Specialization for not preserving the name is trivial.
    114 template <>
    115 class IRBuilderPrefixedInserter<false> :
    116     public IRBuilderDefaultInserter<false> {
    117 public:
    118   void SetNamePrefix(const Twine &P) {}
    119 };
    120 
    121 /// \brief Provide a typedef for IRBuilder that drops names in release builds.
    122 #ifndef NDEBUG
    123 typedef llvm::IRBuilder<true, ConstantFolder,
    124                         IRBuilderPrefixedInserter<true> > IRBuilderTy;
    125 #else
    126 typedef llvm::IRBuilder<false, ConstantFolder,
    127                         IRBuilderPrefixedInserter<false> > IRBuilderTy;
    128 #endif
    129 }
    130 
    131 namespace {
    132 /// \brief A used slice of an alloca.
    133 ///
    134 /// This structure represents a slice of an alloca used by some instruction. It
    135 /// stores both the begin and end offsets of this use, a pointer to the use
    136 /// itself, and a flag indicating whether we can classify the use as splittable
    137 /// or not when forming partitions of the alloca.
    138 class Slice {
    139   /// \brief The beginning offset of the range.
    140   uint64_t BeginOffset;
    141 
    142   /// \brief The ending offset, not included in the range.
    143   uint64_t EndOffset;
    144 
    145   /// \brief Storage for both the use of this slice and whether it can be
    146   /// split.
    147   PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
    148 
    149 public:
    150   Slice() : BeginOffset(), EndOffset() {}
    151   Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
    152       : BeginOffset(BeginOffset), EndOffset(EndOffset),
    153         UseAndIsSplittable(U, IsSplittable) {}
    154 
    155   uint64_t beginOffset() const { return BeginOffset; }
    156   uint64_t endOffset() const { return EndOffset; }
    157 
    158   bool isSplittable() const { return UseAndIsSplittable.getInt(); }
    159   void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
    160 
    161   Use *getUse() const { return UseAndIsSplittable.getPointer(); }
    162 
    163   bool isDead() const { return getUse() == nullptr; }
    164   void kill() { UseAndIsSplittable.setPointer(nullptr); }
    165 
    166   /// \brief Support for ordering ranges.
    167   ///
    168   /// This provides an ordering over ranges such that start offsets are
    169   /// always increasing, and within equal start offsets, the end offsets are
    170   /// decreasing. Thus the spanning range comes first in a cluster with the
    171   /// same start position.
    172   bool operator<(const Slice &RHS) const {
    173     if (beginOffset() < RHS.beginOffset()) return true;
    174     if (beginOffset() > RHS.beginOffset()) return false;
    175     if (isSplittable() != RHS.isSplittable()) return !isSplittable();
    176     if (endOffset() > RHS.endOffset()) return true;
    177     return false;
    178   }
    179 
    180   /// \brief Support comparison with a single offset to allow binary searches.
    181   friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
    182                                               uint64_t RHSOffset) {
    183     return LHS.beginOffset() < RHSOffset;
    184   }
    185   friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
    186                                               const Slice &RHS) {
    187     return LHSOffset < RHS.beginOffset();
    188   }
    189 
    190   bool operator==(const Slice &RHS) const {
    191     return isSplittable() == RHS.isSplittable() &&
    192            beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
    193   }
    194   bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
    195 };
    196 } // end anonymous namespace
    197 
    198 namespace llvm {
    199 template <typename T> struct isPodLike;
    200 template <> struct isPodLike<Slice> {
    201    static const bool value = true;
    202 };
    203 }
    204 
    205 namespace {
    206 /// \brief Representation of the alloca slices.
    207 ///
    208 /// This class represents the slices of an alloca which are formed by its
    209 /// various uses. If a pointer escapes, we can't fully build a representation
    210 /// for the slices used and we reflect that in this structure. The uses are
    211 /// stored, sorted by increasing beginning offset and with unsplittable slices
    212 /// starting at a particular offset before splittable slices.
    213 class AllocaSlices {
    214 public:
    215   /// \brief Construct the slices of a particular alloca.
    216   AllocaSlices(const DataLayout &DL, AllocaInst &AI);
    217 
    218   /// \brief Test whether a pointer to the allocation escapes our analysis.
    219   ///
    220   /// If this is true, the slices are never fully built and should be
    221   /// ignored.
    222   bool isEscaped() const { return PointerEscapingInstr; }
    223 
    224   /// \brief Support for iterating over the slices.
    225   /// @{
    226   typedef SmallVectorImpl<Slice>::iterator iterator;
    227   iterator begin() { return Slices.begin(); }
    228   iterator end() { return Slices.end(); }
    229 
    230   typedef SmallVectorImpl<Slice>::const_iterator const_iterator;
    231   const_iterator begin() const { return Slices.begin(); }
    232   const_iterator end() const { return Slices.end(); }
    233   /// @}
    234 
    235   /// \brief Allow iterating the dead users for this alloca.
    236   ///
    237   /// These are instructions which will never actually use the alloca as they
    238   /// are outside the allocated range. They are safe to replace with undef and
    239   /// delete.
    240   /// @{
    241   typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
    242   dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
    243   dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
    244   /// @}
    245 
    246   /// \brief Allow iterating the dead expressions referring to this alloca.
    247   ///
    248   /// These are operands which have cannot actually be used to refer to the
    249   /// alloca as they are outside its range and the user doesn't correct for
    250   /// that. These mostly consist of PHI node inputs and the like which we just
    251   /// need to replace with undef.
    252   /// @{
    253   typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
    254   dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
    255   dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
    256   /// @}
    257 
    258 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    259   void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
    260   void printSlice(raw_ostream &OS, const_iterator I,
    261                   StringRef Indent = "  ") const;
    262   void printUse(raw_ostream &OS, const_iterator I,
    263                 StringRef Indent = "  ") const;
    264   void print(raw_ostream &OS) const;
    265   void dump(const_iterator I) const;
    266   void dump() const;
    267 #endif
    268 
    269 private:
    270   template <typename DerivedT, typename RetT = void> class BuilderBase;
    271   class SliceBuilder;
    272   friend class AllocaSlices::SliceBuilder;
    273 
    274 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    275   /// \brief Handle to alloca instruction to simplify method interfaces.
    276   AllocaInst &AI;
    277 #endif
    278 
    279   /// \brief The instruction responsible for this alloca not having a known set
    280   /// of slices.
    281   ///
    282   /// When an instruction (potentially) escapes the pointer to the alloca, we
    283   /// store a pointer to that here and abort trying to form slices of the
    284   /// alloca. This will be null if the alloca slices are analyzed successfully.
    285   Instruction *PointerEscapingInstr;
    286 
    287   /// \brief The slices of the alloca.
    288   ///
    289   /// We store a vector of the slices formed by uses of the alloca here. This
    290   /// vector is sorted by increasing begin offset, and then the unsplittable
    291   /// slices before the splittable ones. See the Slice inner class for more
    292   /// details.
    293   SmallVector<Slice, 8> Slices;
    294 
    295   /// \brief Instructions which will become dead if we rewrite the alloca.
    296   ///
    297   /// Note that these are not separated by slice. This is because we expect an
    298   /// alloca to be completely rewritten or not rewritten at all. If rewritten,
    299   /// all these instructions can simply be removed and replaced with undef as
    300   /// they come from outside of the allocated space.
    301   SmallVector<Instruction *, 8> DeadUsers;
    302 
    303   /// \brief Operands which will become dead if we rewrite the alloca.
    304   ///
    305   /// These are operands that in their particular use can be replaced with
    306   /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
    307   /// to PHI nodes and the like. They aren't entirely dead (there might be
    308   /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
    309   /// want to swap this particular input for undef to simplify the use lists of
    310   /// the alloca.
    311   SmallVector<Use *, 8> DeadOperands;
    312 };
    313 }
    314 
    315 static Value *foldSelectInst(SelectInst &SI) {
    316   // If the condition being selected on is a constant or the same value is
    317   // being selected between, fold the select. Yes this does (rarely) happen
    318   // early on.
    319   if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
    320     return SI.getOperand(1+CI->isZero());
    321   if (SI.getOperand(1) == SI.getOperand(2))
    322     return SI.getOperand(1);
    323 
    324   return nullptr;
    325 }
    326 
    327 /// \brief Builder for the alloca slices.
    328 ///
    329 /// This class builds a set of alloca slices by recursively visiting the uses
    330 /// of an alloca and making a slice for each load and store at each offset.
    331 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
    332   friend class PtrUseVisitor<SliceBuilder>;
    333   friend class InstVisitor<SliceBuilder>;
    334   typedef PtrUseVisitor<SliceBuilder> Base;
    335 
    336   const uint64_t AllocSize;
    337   AllocaSlices &S;
    338 
    339   SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
    340   SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
    341 
    342   /// \brief Set to de-duplicate dead instructions found in the use walk.
    343   SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
    344 
    345 public:
    346   SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &S)
    347       : PtrUseVisitor<SliceBuilder>(DL),
    348         AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), S(S) {}
    349 
    350 private:
    351   void markAsDead(Instruction &I) {
    352     if (VisitedDeadInsts.insert(&I))
    353       S.DeadUsers.push_back(&I);
    354   }
    355 
    356   void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
    357                  bool IsSplittable = false) {
    358     // Completely skip uses which have a zero size or start either before or
    359     // past the end of the allocation.
    360     if (Size == 0 || Offset.uge(AllocSize)) {
    361       DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
    362                    << " which has zero size or starts outside of the "
    363                    << AllocSize << " byte alloca:\n"
    364                    << "    alloca: " << S.AI << "\n"
    365                    << "       use: " << I << "\n");
    366       return markAsDead(I);
    367     }
    368 
    369     uint64_t BeginOffset = Offset.getZExtValue();
    370     uint64_t EndOffset = BeginOffset + Size;
    371 
    372     // Clamp the end offset to the end of the allocation. Note that this is
    373     // formulated to handle even the case where "BeginOffset + Size" overflows.
    374     // This may appear superficially to be something we could ignore entirely,
    375     // but that is not so! There may be widened loads or PHI-node uses where
    376     // some instructions are dead but not others. We can't completely ignore
    377     // them, and so have to record at least the information here.
    378     assert(AllocSize >= BeginOffset); // Established above.
    379     if (Size > AllocSize - BeginOffset) {
    380       DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
    381                    << " to remain within the " << AllocSize << " byte alloca:\n"
    382                    << "    alloca: " << S.AI << "\n"
    383                    << "       use: " << I << "\n");
    384       EndOffset = AllocSize;
    385     }
    386 
    387     S.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
    388   }
    389 
    390   void visitBitCastInst(BitCastInst &BC) {
    391     if (BC.use_empty())
    392       return markAsDead(BC);
    393 
    394     return Base::visitBitCastInst(BC);
    395   }
    396 
    397   void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
    398     if (GEPI.use_empty())
    399       return markAsDead(GEPI);
    400 
    401     if (SROAStrictInbounds && GEPI.isInBounds()) {
    402       // FIXME: This is a manually un-factored variant of the basic code inside
    403       // of GEPs with checking of the inbounds invariant specified in the
    404       // langref in a very strict sense. If we ever want to enable
    405       // SROAStrictInbounds, this code should be factored cleanly into
    406       // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
    407       // by writing out the code here where we have tho underlying allocation
    408       // size readily available.
    409       APInt GEPOffset = Offset;
    410       for (gep_type_iterator GTI = gep_type_begin(GEPI),
    411                              GTE = gep_type_end(GEPI);
    412            GTI != GTE; ++GTI) {
    413         ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
    414         if (!OpC)
    415           break;
    416 
    417         // Handle a struct index, which adds its field offset to the pointer.
    418         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    419           unsigned ElementIdx = OpC->getZExtValue();
    420           const StructLayout *SL = DL.getStructLayout(STy);
    421           GEPOffset +=
    422               APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
    423         } else {
    424           // For array or vector indices, scale the index by the size of the type.
    425           APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
    426           GEPOffset += Index * APInt(Offset.getBitWidth(),
    427                                      DL.getTypeAllocSize(GTI.getIndexedType()));
    428         }
    429 
    430         // If this index has computed an intermediate pointer which is not
    431         // inbounds, then the result of the GEP is a poison value and we can
    432         // delete it and all uses.
    433         if (GEPOffset.ugt(AllocSize))
    434           return markAsDead(GEPI);
    435       }
    436     }
    437 
    438     return Base::visitGetElementPtrInst(GEPI);
    439   }
    440 
    441   void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
    442                          uint64_t Size, bool IsVolatile) {
    443     // We allow splitting of loads and stores where the type is an integer type
    444     // and cover the entire alloca. This prevents us from splitting over
    445     // eagerly.
    446     // FIXME: In the great blue eventually, we should eagerly split all integer
    447     // loads and stores, and then have a separate step that merges adjacent
    448     // alloca partitions into a single partition suitable for integer widening.
    449     // Or we should skip the merge step and rely on GVN and other passes to
    450     // merge adjacent loads and stores that survive mem2reg.
    451     bool IsSplittable =
    452         Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize;
    453 
    454     insertUse(I, Offset, Size, IsSplittable);
    455   }
    456 
    457   void visitLoadInst(LoadInst &LI) {
    458     assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
    459            "All simple FCA loads should have been pre-split");
    460 
    461     if (!IsOffsetKnown)
    462       return PI.setAborted(&LI);
    463 
    464     uint64_t Size = DL.getTypeStoreSize(LI.getType());
    465     return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
    466   }
    467 
    468   void visitStoreInst(StoreInst &SI) {
    469     Value *ValOp = SI.getValueOperand();
    470     if (ValOp == *U)
    471       return PI.setEscapedAndAborted(&SI);
    472     if (!IsOffsetKnown)
    473       return PI.setAborted(&SI);
    474 
    475     uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
    476 
    477     // If this memory access can be shown to *statically* extend outside the
    478     // bounds of of the allocation, it's behavior is undefined, so simply
    479     // ignore it. Note that this is more strict than the generic clamping
    480     // behavior of insertUse. We also try to handle cases which might run the
    481     // risk of overflow.
    482     // FIXME: We should instead consider the pointer to have escaped if this
    483     // function is being instrumented for addressing bugs or race conditions.
    484     if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
    485       DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
    486                    << " which extends past the end of the " << AllocSize
    487                    << " byte alloca:\n"
    488                    << "    alloca: " << S.AI << "\n"
    489                    << "       use: " << SI << "\n");
    490       return markAsDead(SI);
    491     }
    492 
    493     assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
    494            "All simple FCA stores should have been pre-split");
    495     handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
    496   }
    497 
    498 
    499   void visitMemSetInst(MemSetInst &II) {
    500     assert(II.getRawDest() == *U && "Pointer use is not the destination?");
    501     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
    502     if ((Length && Length->getValue() == 0) ||
    503         (IsOffsetKnown && Offset.uge(AllocSize)))
    504       // Zero-length mem transfer intrinsics can be ignored entirely.
    505       return markAsDead(II);
    506 
    507     if (!IsOffsetKnown)
    508       return PI.setAborted(&II);
    509 
    510     insertUse(II, Offset,
    511               Length ? Length->getLimitedValue()
    512                      : AllocSize - Offset.getLimitedValue(),
    513               (bool)Length);
    514   }
    515 
    516   void visitMemTransferInst(MemTransferInst &II) {
    517     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
    518     if (Length && Length->getValue() == 0)
    519       // Zero-length mem transfer intrinsics can be ignored entirely.
    520       return markAsDead(II);
    521 
    522     // Because we can visit these intrinsics twice, also check to see if the
    523     // first time marked this instruction as dead. If so, skip it.
    524     if (VisitedDeadInsts.count(&II))
    525       return;
    526 
    527     if (!IsOffsetKnown)
    528       return PI.setAborted(&II);
    529 
    530     // This side of the transfer is completely out-of-bounds, and so we can
    531     // nuke the entire transfer. However, we also need to nuke the other side
    532     // if already added to our partitions.
    533     // FIXME: Yet another place we really should bypass this when
    534     // instrumenting for ASan.
    535     if (Offset.uge(AllocSize)) {
    536       SmallDenseMap<Instruction *, unsigned>::iterator MTPI = MemTransferSliceMap.find(&II);
    537       if (MTPI != MemTransferSliceMap.end())
    538         S.Slices[MTPI->second].kill();
    539       return markAsDead(II);
    540     }
    541 
    542     uint64_t RawOffset = Offset.getLimitedValue();
    543     uint64_t Size = Length ? Length->getLimitedValue()
    544                            : AllocSize - RawOffset;
    545 
    546     // Check for the special case where the same exact value is used for both
    547     // source and dest.
    548     if (*U == II.getRawDest() && *U == II.getRawSource()) {
    549       // For non-volatile transfers this is a no-op.
    550       if (!II.isVolatile())
    551         return markAsDead(II);
    552 
    553       return insertUse(II, Offset, Size, /*IsSplittable=*/false);
    554     }
    555 
    556     // If we have seen both source and destination for a mem transfer, then
    557     // they both point to the same alloca.
    558     bool Inserted;
    559     SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
    560     std::tie(MTPI, Inserted) =
    561         MemTransferSliceMap.insert(std::make_pair(&II, S.Slices.size()));
    562     unsigned PrevIdx = MTPI->second;
    563     if (!Inserted) {
    564       Slice &PrevP = S.Slices[PrevIdx];
    565 
    566       // Check if the begin offsets match and this is a non-volatile transfer.
    567       // In that case, we can completely elide the transfer.
    568       if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
    569         PrevP.kill();
    570         return markAsDead(II);
    571       }
    572 
    573       // Otherwise we have an offset transfer within the same alloca. We can't
    574       // split those.
    575       PrevP.makeUnsplittable();
    576     }
    577 
    578     // Insert the use now that we've fixed up the splittable nature.
    579     insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
    580 
    581     // Check that we ended up with a valid index in the map.
    582     assert(S.Slices[PrevIdx].getUse()->getUser() == &II &&
    583            "Map index doesn't point back to a slice with this user.");
    584   }
    585 
    586   // Disable SRoA for any intrinsics except for lifetime invariants.
    587   // FIXME: What about debug intrinsics? This matches old behavior, but
    588   // doesn't make sense.
    589   void visitIntrinsicInst(IntrinsicInst &II) {
    590     if (!IsOffsetKnown)
    591       return PI.setAborted(&II);
    592 
    593     if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
    594         II.getIntrinsicID() == Intrinsic::lifetime_end) {
    595       ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
    596       uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
    597                                Length->getLimitedValue());
    598       insertUse(II, Offset, Size, true);
    599       return;
    600     }
    601 
    602     Base::visitIntrinsicInst(II);
    603   }
    604 
    605   Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
    606     // We consider any PHI or select that results in a direct load or store of
    607     // the same offset to be a viable use for slicing purposes. These uses
    608     // are considered unsplittable and the size is the maximum loaded or stored
    609     // size.
    610     SmallPtrSet<Instruction *, 4> Visited;
    611     SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
    612     Visited.insert(Root);
    613     Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
    614     // If there are no loads or stores, the access is dead. We mark that as
    615     // a size zero access.
    616     Size = 0;
    617     do {
    618       Instruction *I, *UsedI;
    619       std::tie(UsedI, I) = Uses.pop_back_val();
    620 
    621       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    622         Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
    623         continue;
    624       }
    625       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    626         Value *Op = SI->getOperand(0);
    627         if (Op == UsedI)
    628           return SI;
    629         Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
    630         continue;
    631       }
    632 
    633       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
    634         if (!GEP->hasAllZeroIndices())
    635           return GEP;
    636       } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
    637                  !isa<SelectInst>(I)) {
    638         return I;
    639       }
    640 
    641       for (User *U : I->users())
    642         if (Visited.insert(cast<Instruction>(U)))
    643           Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
    644     } while (!Uses.empty());
    645 
    646     return nullptr;
    647   }
    648 
    649   void visitPHINode(PHINode &PN) {
    650     if (PN.use_empty())
    651       return markAsDead(PN);
    652     if (!IsOffsetKnown)
    653       return PI.setAborted(&PN);
    654 
    655     // See if we already have computed info on this node.
    656     uint64_t &PHISize = PHIOrSelectSizes[&PN];
    657     if (!PHISize) {
    658       // This is a new PHI node, check for an unsafe use of the PHI node.
    659       if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHISize))
    660         return PI.setAborted(UnsafeI);
    661     }
    662 
    663     // For PHI and select operands outside the alloca, we can't nuke the entire
    664     // phi or select -- the other side might still be relevant, so we special
    665     // case them here and use a separate structure to track the operands
    666     // themselves which should be replaced with undef.
    667     // FIXME: This should instead be escaped in the event we're instrumenting
    668     // for address sanitization.
    669     if (Offset.uge(AllocSize)) {
    670       S.DeadOperands.push_back(U);
    671       return;
    672     }
    673 
    674     insertUse(PN, Offset, PHISize);
    675   }
    676 
    677   void visitSelectInst(SelectInst &SI) {
    678     if (SI.use_empty())
    679       return markAsDead(SI);
    680     if (Value *Result = foldSelectInst(SI)) {
    681       if (Result == *U)
    682         // If the result of the constant fold will be the pointer, recurse
    683         // through the select as if we had RAUW'ed it.
    684         enqueueUsers(SI);
    685       else
    686         // Otherwise the operand to the select is dead, and we can replace it
    687         // with undef.
    688         S.DeadOperands.push_back(U);
    689 
    690       return;
    691     }
    692     if (!IsOffsetKnown)
    693       return PI.setAborted(&SI);
    694 
    695     // See if we already have computed info on this node.
    696     uint64_t &SelectSize = PHIOrSelectSizes[&SI];
    697     if (!SelectSize) {
    698       // This is a new Select, check for an unsafe use of it.
    699       if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectSize))
    700         return PI.setAborted(UnsafeI);
    701     }
    702 
    703     // For PHI and select operands outside the alloca, we can't nuke the entire
    704     // phi or select -- the other side might still be relevant, so we special
    705     // case them here and use a separate structure to track the operands
    706     // themselves which should be replaced with undef.
    707     // FIXME: This should instead be escaped in the event we're instrumenting
    708     // for address sanitization.
    709     if (Offset.uge(AllocSize)) {
    710       S.DeadOperands.push_back(U);
    711       return;
    712     }
    713 
    714     insertUse(SI, Offset, SelectSize);
    715   }
    716 
    717   /// \brief Disable SROA entirely if there are unhandled users of the alloca.
    718   void visitInstruction(Instruction &I) {
    719     PI.setAborted(&I);
    720   }
    721 };
    722 
    723 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
    724     :
    725 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    726       AI(AI),
    727 #endif
    728       PointerEscapingInstr(nullptr) {
    729   SliceBuilder PB(DL, AI, *this);
    730   SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
    731   if (PtrI.isEscaped() || PtrI.isAborted()) {
    732     // FIXME: We should sink the escape vs. abort info into the caller nicely,
    733     // possibly by just storing the PtrInfo in the AllocaSlices.
    734     PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
    735                                                   : PtrI.getAbortingInst();
    736     assert(PointerEscapingInstr && "Did not track a bad instruction");
    737     return;
    738   }
    739 
    740   Slices.erase(std::remove_if(Slices.begin(), Slices.end(),
    741                               std::mem_fun_ref(&Slice::isDead)),
    742                Slices.end());
    743 
    744 #if __cplusplus >= 201103L && !defined(NDEBUG)
    745   if (SROARandomShuffleSlices) {
    746     std::mt19937 MT(static_cast<unsigned>(sys::TimeValue::now().msec()));
    747     std::shuffle(Slices.begin(), Slices.end(), MT);
    748   }
    749 #endif
    750 
    751   // Sort the uses. This arranges for the offsets to be in ascending order,
    752   // and the sizes to be in descending order.
    753   std::sort(Slices.begin(), Slices.end());
    754 }
    755 
    756 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    757 
    758 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
    759                          StringRef Indent) const {
    760   printSlice(OS, I, Indent);
    761   printUse(OS, I, Indent);
    762 }
    763 
    764 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
    765                               StringRef Indent) const {
    766   OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
    767      << " slice #" << (I - begin())
    768      << (I->isSplittable() ? " (splittable)" : "") << "\n";
    769 }
    770 
    771 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
    772                             StringRef Indent) const {
    773   OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
    774 }
    775 
    776 void AllocaSlices::print(raw_ostream &OS) const {
    777   if (PointerEscapingInstr) {
    778     OS << "Can't analyze slices for alloca: " << AI << "\n"
    779        << "  A pointer to this alloca escaped by:\n"
    780        << "  " << *PointerEscapingInstr << "\n";
    781     return;
    782   }
    783 
    784   OS << "Slices of alloca: " << AI << "\n";
    785   for (const_iterator I = begin(), E = end(); I != E; ++I)
    786     print(OS, I);
    787 }
    788 
    789 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
    790   print(dbgs(), I);
    791 }
    792 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
    793 
    794 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    795 
    796 namespace {
    797 /// \brief Implementation of LoadAndStorePromoter for promoting allocas.
    798 ///
    799 /// This subclass of LoadAndStorePromoter adds overrides to handle promoting
    800 /// the loads and stores of an alloca instruction, as well as updating its
    801 /// debug information. This is used when a domtree is unavailable and thus
    802 /// mem2reg in its full form can't be used to handle promotion of allocas to
    803 /// scalar values.
    804 class AllocaPromoter : public LoadAndStorePromoter {
    805   AllocaInst &AI;
    806   DIBuilder &DIB;
    807 
    808   SmallVector<DbgDeclareInst *, 4> DDIs;
    809   SmallVector<DbgValueInst *, 4> DVIs;
    810 
    811 public:
    812   AllocaPromoter(const SmallVectorImpl<Instruction *> &Insts, SSAUpdater &S,
    813                  AllocaInst &AI, DIBuilder &DIB)
    814       : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
    815 
    816   void run(const SmallVectorImpl<Instruction*> &Insts) {
    817     // Retain the debug information attached to the alloca for use when
    818     // rewriting loads and stores.
    819     if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
    820       for (User *U : DebugNode->users())
    821         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
    822           DDIs.push_back(DDI);
    823         else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
    824           DVIs.push_back(DVI);
    825     }
    826 
    827     LoadAndStorePromoter::run(Insts);
    828 
    829     // While we have the debug information, clear it off of the alloca. The
    830     // caller takes care of deleting the alloca.
    831     while (!DDIs.empty())
    832       DDIs.pop_back_val()->eraseFromParent();
    833     while (!DVIs.empty())
    834       DVIs.pop_back_val()->eraseFromParent();
    835   }
    836 
    837   bool isInstInList(Instruction *I,
    838                     const SmallVectorImpl<Instruction*> &Insts) const override {
    839     Value *Ptr;
    840     if (LoadInst *LI = dyn_cast<LoadInst>(I))
    841       Ptr = LI->getOperand(0);
    842     else
    843       Ptr = cast<StoreInst>(I)->getPointerOperand();
    844 
    845     // Only used to detect cycles, which will be rare and quickly found as
    846     // we're walking up a chain of defs rather than down through uses.
    847     SmallPtrSet<Value *, 4> Visited;
    848 
    849     do {
    850       if (Ptr == &AI)
    851         return true;
    852 
    853       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr))
    854         Ptr = BCI->getOperand(0);
    855       else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
    856         Ptr = GEPI->getPointerOperand();
    857       else
    858         return false;
    859 
    860     } while (Visited.insert(Ptr));
    861 
    862     return false;
    863   }
    864 
    865   void updateDebugInfo(Instruction *Inst) const override {
    866     for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
    867            E = DDIs.end(); I != E; ++I) {
    868       DbgDeclareInst *DDI = *I;
    869       if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    870         ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
    871       else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
    872         ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
    873     }
    874     for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
    875            E = DVIs.end(); I != E; ++I) {
    876       DbgValueInst *DVI = *I;
    877       Value *Arg = nullptr;
    878       if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    879         // If an argument is zero extended then use argument directly. The ZExt
    880         // may be zapped by an optimization pass in future.
    881         if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
    882           Arg = dyn_cast<Argument>(ZExt->getOperand(0));
    883         else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
    884           Arg = dyn_cast<Argument>(SExt->getOperand(0));
    885         if (!Arg)
    886           Arg = SI->getValueOperand();
    887       } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    888         Arg = LI->getPointerOperand();
    889       } else {
    890         continue;
    891       }
    892       Instruction *DbgVal =
    893         DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
    894                                      Inst);
    895       DbgVal->setDebugLoc(DVI->getDebugLoc());
    896     }
    897   }
    898 };
    899 } // end anon namespace
    900 
    901 
    902 namespace {
    903 /// \brief An optimization pass providing Scalar Replacement of Aggregates.
    904 ///
    905 /// This pass takes allocations which can be completely analyzed (that is, they
    906 /// don't escape) and tries to turn them into scalar SSA values. There are
    907 /// a few steps to this process.
    908 ///
    909 /// 1) It takes allocations of aggregates and analyzes the ways in which they
    910 ///    are used to try to split them into smaller allocations, ideally of
    911 ///    a single scalar data type. It will split up memcpy and memset accesses
    912 ///    as necessary and try to isolate individual scalar accesses.
    913 /// 2) It will transform accesses into forms which are suitable for SSA value
    914 ///    promotion. This can be replacing a memset with a scalar store of an
    915 ///    integer value, or it can involve speculating operations on a PHI or
    916 ///    select to be a PHI or select of the results.
    917 /// 3) Finally, this will try to detect a pattern of accesses which map cleanly
    918 ///    onto insert and extract operations on a vector value, and convert them to
    919 ///    this form. By doing so, it will enable promotion of vector aggregates to
    920 ///    SSA vector values.
    921 class SROA : public FunctionPass {
    922   const bool RequiresDomTree;
    923 
    924   LLVMContext *C;
    925   const DataLayout *DL;
    926   DominatorTree *DT;
    927 
    928   /// \brief Worklist of alloca instructions to simplify.
    929   ///
    930   /// Each alloca in the function is added to this. Each new alloca formed gets
    931   /// added to it as well to recursively simplify unless that alloca can be
    932   /// directly promoted. Finally, each time we rewrite a use of an alloca other
    933   /// the one being actively rewritten, we add it back onto the list if not
    934   /// already present to ensure it is re-visited.
    935   SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
    936 
    937   /// \brief A collection of instructions to delete.
    938   /// We try to batch deletions to simplify code and make things a bit more
    939   /// efficient.
    940   SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
    941 
    942   /// \brief Post-promotion worklist.
    943   ///
    944   /// Sometimes we discover an alloca which has a high probability of becoming
    945   /// viable for SROA after a round of promotion takes place. In those cases,
    946   /// the alloca is enqueued here for re-processing.
    947   ///
    948   /// Note that we have to be very careful to clear allocas out of this list in
    949   /// the event they are deleted.
    950   SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
    951 
    952   /// \brief A collection of alloca instructions we can directly promote.
    953   std::vector<AllocaInst *> PromotableAllocas;
    954 
    955   /// \brief A worklist of PHIs to speculate prior to promoting allocas.
    956   ///
    957   /// All of these PHIs have been checked for the safety of speculation and by
    958   /// being speculated will allow promoting allocas currently in the promotable
    959   /// queue.
    960   SetVector<PHINode *, SmallVector<PHINode *, 2> > SpeculatablePHIs;
    961 
    962   /// \brief A worklist of select instructions to speculate prior to promoting
    963   /// allocas.
    964   ///
    965   /// All of these select instructions have been checked for the safety of
    966   /// speculation and by being speculated will allow promoting allocas
    967   /// currently in the promotable queue.
    968   SetVector<SelectInst *, SmallVector<SelectInst *, 2> > SpeculatableSelects;
    969 
    970 public:
    971   SROA(bool RequiresDomTree = true)
    972       : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
    973         C(nullptr), DL(nullptr), DT(nullptr) {
    974     initializeSROAPass(*PassRegistry::getPassRegistry());
    975   }
    976   bool runOnFunction(Function &F) override;
    977   void getAnalysisUsage(AnalysisUsage &AU) const override;
    978 
    979   const char *getPassName() const override { return "SROA"; }
    980   static char ID;
    981 
    982 private:
    983   friend class PHIOrSelectSpeculator;
    984   friend class AllocaSliceRewriter;
    985 
    986   bool rewritePartition(AllocaInst &AI, AllocaSlices &S,
    987                         AllocaSlices::iterator B, AllocaSlices::iterator E,
    988                         int64_t BeginOffset, int64_t EndOffset,
    989                         ArrayRef<AllocaSlices::iterator> SplitUses);
    990   bool splitAlloca(AllocaInst &AI, AllocaSlices &S);
    991   bool runOnAlloca(AllocaInst &AI);
    992   void clobberUse(Use &U);
    993   void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
    994   bool promoteAllocas(Function &F);
    995 };
    996 }
    997 
    998 char SROA::ID = 0;
    999 
   1000 FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
   1001   return new SROA(RequiresDomTree);
   1002 }
   1003 
   1004 INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
   1005                       false, false)
   1006 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   1007 INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
   1008                     false, false)
   1009 
   1010 /// Walk the range of a partitioning looking for a common type to cover this
   1011 /// sequence of slices.
   1012 static Type *findCommonType(AllocaSlices::const_iterator B,
   1013                             AllocaSlices::const_iterator E,
   1014                             uint64_t EndOffset) {
   1015   Type *Ty = nullptr;
   1016   bool TyIsCommon = true;
   1017   IntegerType *ITy = nullptr;
   1018 
   1019   // Note that we need to look at *every* alloca slice's Use to ensure we
   1020   // always get consistent results regardless of the order of slices.
   1021   for (AllocaSlices::const_iterator I = B; I != E; ++I) {
   1022     Use *U = I->getUse();
   1023     if (isa<IntrinsicInst>(*U->getUser()))
   1024       continue;
   1025     if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
   1026       continue;
   1027 
   1028     Type *UserTy = nullptr;
   1029     if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
   1030       UserTy = LI->getType();
   1031     } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
   1032       UserTy = SI->getValueOperand()->getType();
   1033     }
   1034 
   1035     if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
   1036       // If the type is larger than the partition, skip it. We only encounter
   1037       // this for split integer operations where we want to use the type of the
   1038       // entity causing the split. Also skip if the type is not a byte width
   1039       // multiple.
   1040       if (UserITy->getBitWidth() % 8 != 0 ||
   1041           UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
   1042         continue;
   1043 
   1044       // Track the largest bitwidth integer type used in this way in case there
   1045       // is no common type.
   1046       if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
   1047         ITy = UserITy;
   1048     }
   1049 
   1050     // To avoid depending on the order of slices, Ty and TyIsCommon must not
   1051     // depend on types skipped above.
   1052     if (!UserTy || (Ty && Ty != UserTy))
   1053       TyIsCommon = false; // Give up on anything but an iN type.
   1054     else
   1055       Ty = UserTy;
   1056   }
   1057 
   1058   return TyIsCommon ? Ty : ITy;
   1059 }
   1060 
   1061 /// PHI instructions that use an alloca and are subsequently loaded can be
   1062 /// rewritten to load both input pointers in the pred blocks and then PHI the
   1063 /// results, allowing the load of the alloca to be promoted.
   1064 /// From this:
   1065 ///   %P2 = phi [i32* %Alloca, i32* %Other]
   1066 ///   %V = load i32* %P2
   1067 /// to:
   1068 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
   1069 ///   ...
   1070 ///   %V2 = load i32* %Other
   1071 ///   ...
   1072 ///   %V = phi [i32 %V1, i32 %V2]
   1073 ///
   1074 /// We can do this to a select if its only uses are loads and if the operands
   1075 /// to the select can be loaded unconditionally.
   1076 ///
   1077 /// FIXME: This should be hoisted into a generic utility, likely in
   1078 /// Transforms/Util/Local.h
   1079 static bool isSafePHIToSpeculate(PHINode &PN,
   1080                                  const DataLayout *DL = nullptr) {
   1081   // For now, we can only do this promotion if the load is in the same block
   1082   // as the PHI, and if there are no stores between the phi and load.
   1083   // TODO: Allow recursive phi users.
   1084   // TODO: Allow stores.
   1085   BasicBlock *BB = PN.getParent();
   1086   unsigned MaxAlign = 0;
   1087   bool HaveLoad = false;
   1088   for (User *U : PN.users()) {
   1089     LoadInst *LI = dyn_cast<LoadInst>(U);
   1090     if (!LI || !LI->isSimple())
   1091       return false;
   1092 
   1093     // For now we only allow loads in the same block as the PHI.  This is
   1094     // a common case that happens when instcombine merges two loads through
   1095     // a PHI.
   1096     if (LI->getParent() != BB)
   1097       return false;
   1098 
   1099     // Ensure that there are no instructions between the PHI and the load that
   1100     // could store.
   1101     for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
   1102       if (BBI->mayWriteToMemory())
   1103         return false;
   1104 
   1105     MaxAlign = std::max(MaxAlign, LI->getAlignment());
   1106     HaveLoad = true;
   1107   }
   1108 
   1109   if (!HaveLoad)
   1110     return false;
   1111 
   1112   // We can only transform this if it is safe to push the loads into the
   1113   // predecessor blocks. The only thing to watch out for is that we can't put
   1114   // a possibly trapping load in the predecessor if it is a critical edge.
   1115   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
   1116     TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
   1117     Value *InVal = PN.getIncomingValue(Idx);
   1118 
   1119     // If the value is produced by the terminator of the predecessor (an
   1120     // invoke) or it has side-effects, there is no valid place to put a load
   1121     // in the predecessor.
   1122     if (TI == InVal || TI->mayHaveSideEffects())
   1123       return false;
   1124 
   1125     // If the predecessor has a single successor, then the edge isn't
   1126     // critical.
   1127     if (TI->getNumSuccessors() == 1)
   1128       continue;
   1129 
   1130     // If this pointer is always safe to load, or if we can prove that there
   1131     // is already a load in the block, then we can move the load to the pred
   1132     // block.
   1133     if (InVal->isDereferenceablePointer(DL) ||
   1134         isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL))
   1135       continue;
   1136 
   1137     return false;
   1138   }
   1139 
   1140   return true;
   1141 }
   1142 
   1143 static void speculatePHINodeLoads(PHINode &PN) {
   1144   DEBUG(dbgs() << "    original: " << PN << "\n");
   1145 
   1146   Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
   1147   IRBuilderTy PHIBuilder(&PN);
   1148   PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
   1149                                         PN.getName() + ".sroa.speculated");
   1150 
   1151   // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
   1152   // matter which one we get and if any differ.
   1153   LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
   1154   MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
   1155   unsigned Align = SomeLoad->getAlignment();
   1156 
   1157   // Rewrite all loads of the PN to use the new PHI.
   1158   while (!PN.use_empty()) {
   1159     LoadInst *LI = cast<LoadInst>(PN.user_back());
   1160     LI->replaceAllUsesWith(NewPN);
   1161     LI->eraseFromParent();
   1162   }
   1163 
   1164   // Inject loads into all of the pred blocks.
   1165   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
   1166     BasicBlock *Pred = PN.getIncomingBlock(Idx);
   1167     TerminatorInst *TI = Pred->getTerminator();
   1168     Value *InVal = PN.getIncomingValue(Idx);
   1169     IRBuilderTy PredBuilder(TI);
   1170 
   1171     LoadInst *Load = PredBuilder.CreateLoad(
   1172         InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
   1173     ++NumLoadsSpeculated;
   1174     Load->setAlignment(Align);
   1175     if (TBAATag)
   1176       Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
   1177     NewPN->addIncoming(Load, Pred);
   1178   }
   1179 
   1180   DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
   1181   PN.eraseFromParent();
   1182 }
   1183 
   1184 /// Select instructions that use an alloca and are subsequently loaded can be
   1185 /// rewritten to load both input pointers and then select between the result,
   1186 /// allowing the load of the alloca to be promoted.
   1187 /// From this:
   1188 ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
   1189 ///   %V = load i32* %P2
   1190 /// to:
   1191 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
   1192 ///   %V2 = load i32* %Other
   1193 ///   %V = select i1 %cond, i32 %V1, i32 %V2
   1194 ///
   1195 /// We can do this to a select if its only uses are loads and if the operand
   1196 /// to the select can be loaded unconditionally.
   1197 static bool isSafeSelectToSpeculate(SelectInst &SI,
   1198                                     const DataLayout *DL = nullptr) {
   1199   Value *TValue = SI.getTrueValue();
   1200   Value *FValue = SI.getFalseValue();
   1201   bool TDerefable = TValue->isDereferenceablePointer(DL);
   1202   bool FDerefable = FValue->isDereferenceablePointer(DL);
   1203 
   1204   for (User *U : SI.users()) {
   1205     LoadInst *LI = dyn_cast<LoadInst>(U);
   1206     if (!LI || !LI->isSimple())
   1207       return false;
   1208 
   1209     // Both operands to the select need to be dereferencable, either
   1210     // absolutely (e.g. allocas) or at this point because we can see other
   1211     // accesses to it.
   1212     if (!TDerefable &&
   1213         !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL))
   1214       return false;
   1215     if (!FDerefable &&
   1216         !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL))
   1217       return false;
   1218   }
   1219 
   1220   return true;
   1221 }
   1222 
   1223 static void speculateSelectInstLoads(SelectInst &SI) {
   1224   DEBUG(dbgs() << "    original: " << SI << "\n");
   1225 
   1226   IRBuilderTy IRB(&SI);
   1227   Value *TV = SI.getTrueValue();
   1228   Value *FV = SI.getFalseValue();
   1229   // Replace the loads of the select with a select of two loads.
   1230   while (!SI.use_empty()) {
   1231     LoadInst *LI = cast<LoadInst>(SI.user_back());
   1232     assert(LI->isSimple() && "We only speculate simple loads");
   1233 
   1234     IRB.SetInsertPoint(LI);
   1235     LoadInst *TL =
   1236         IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
   1237     LoadInst *FL =
   1238         IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
   1239     NumLoadsSpeculated += 2;
   1240 
   1241     // Transfer alignment and TBAA info if present.
   1242     TL->setAlignment(LI->getAlignment());
   1243     FL->setAlignment(LI->getAlignment());
   1244     if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
   1245       TL->setMetadata(LLVMContext::MD_tbaa, Tag);
   1246       FL->setMetadata(LLVMContext::MD_tbaa, Tag);
   1247     }
   1248 
   1249     Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
   1250                                 LI->getName() + ".sroa.speculated");
   1251 
   1252     DEBUG(dbgs() << "          speculated to: " << *V << "\n");
   1253     LI->replaceAllUsesWith(V);
   1254     LI->eraseFromParent();
   1255   }
   1256   SI.eraseFromParent();
   1257 }
   1258 
   1259 /// \brief Build a GEP out of a base pointer and indices.
   1260 ///
   1261 /// This will return the BasePtr if that is valid, or build a new GEP
   1262 /// instruction using the IRBuilder if GEP-ing is needed.
   1263 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
   1264                        SmallVectorImpl<Value *> &Indices, Twine NamePrefix) {
   1265   if (Indices.empty())
   1266     return BasePtr;
   1267 
   1268   // A single zero index is a no-op, so check for this and avoid building a GEP
   1269   // in that case.
   1270   if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
   1271     return BasePtr;
   1272 
   1273   return IRB.CreateInBoundsGEP(BasePtr, Indices, NamePrefix + "sroa_idx");
   1274 }
   1275 
   1276 /// \brief Get a natural GEP off of the BasePtr walking through Ty toward
   1277 /// TargetTy without changing the offset of the pointer.
   1278 ///
   1279 /// This routine assumes we've already established a properly offset GEP with
   1280 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
   1281 /// zero-indices down through type layers until we find one the same as
   1282 /// TargetTy. If we can't find one with the same type, we at least try to use
   1283 /// one with the same size. If none of that works, we just produce the GEP as
   1284 /// indicated by Indices to have the correct offset.
   1285 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
   1286                                     Value *BasePtr, Type *Ty, Type *TargetTy,
   1287                                     SmallVectorImpl<Value *> &Indices,
   1288                                     Twine NamePrefix) {
   1289   if (Ty == TargetTy)
   1290     return buildGEP(IRB, BasePtr, Indices, NamePrefix);
   1291 
   1292   // Pointer size to use for the indices.
   1293   unsigned PtrSize = DL.getPointerTypeSizeInBits(BasePtr->getType());
   1294 
   1295   // See if we can descend into a struct and locate a field with the correct
   1296   // type.
   1297   unsigned NumLayers = 0;
   1298   Type *ElementTy = Ty;
   1299   do {
   1300     if (ElementTy->isPointerTy())
   1301       break;
   1302 
   1303     if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
   1304       ElementTy = ArrayTy->getElementType();
   1305       Indices.push_back(IRB.getIntN(PtrSize, 0));
   1306     } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
   1307       ElementTy = VectorTy->getElementType();
   1308       Indices.push_back(IRB.getInt32(0));
   1309     } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
   1310       if (STy->element_begin() == STy->element_end())
   1311         break; // Nothing left to descend into.
   1312       ElementTy = *STy->element_begin();
   1313       Indices.push_back(IRB.getInt32(0));
   1314     } else {
   1315       break;
   1316     }
   1317     ++NumLayers;
   1318   } while (ElementTy != TargetTy);
   1319   if (ElementTy != TargetTy)
   1320     Indices.erase(Indices.end() - NumLayers, Indices.end());
   1321 
   1322   return buildGEP(IRB, BasePtr, Indices, NamePrefix);
   1323 }
   1324 
   1325 /// \brief Recursively compute indices for a natural GEP.
   1326 ///
   1327 /// This is the recursive step for getNaturalGEPWithOffset that walks down the
   1328 /// element types adding appropriate indices for the GEP.
   1329 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
   1330                                        Value *Ptr, Type *Ty, APInt &Offset,
   1331                                        Type *TargetTy,
   1332                                        SmallVectorImpl<Value *> &Indices,
   1333                                        Twine NamePrefix) {
   1334   if (Offset == 0)
   1335     return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices, NamePrefix);
   1336 
   1337   // We can't recurse through pointer types.
   1338   if (Ty->isPointerTy())
   1339     return nullptr;
   1340 
   1341   // We try to analyze GEPs over vectors here, but note that these GEPs are
   1342   // extremely poorly defined currently. The long-term goal is to remove GEPing
   1343   // over a vector from the IR completely.
   1344   if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
   1345     unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
   1346     if (ElementSizeInBits % 8 != 0) {
   1347       // GEPs over non-multiple of 8 size vector elements are invalid.
   1348       return nullptr;
   1349     }
   1350     APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
   1351     APInt NumSkippedElements = Offset.sdiv(ElementSize);
   1352     if (NumSkippedElements.ugt(VecTy->getNumElements()))
   1353       return nullptr;
   1354     Offset -= NumSkippedElements * ElementSize;
   1355     Indices.push_back(IRB.getInt(NumSkippedElements));
   1356     return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
   1357                                     Offset, TargetTy, Indices, NamePrefix);
   1358   }
   1359 
   1360   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
   1361     Type *ElementTy = ArrTy->getElementType();
   1362     APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
   1363     APInt NumSkippedElements = Offset.sdiv(ElementSize);
   1364     if (NumSkippedElements.ugt(ArrTy->getNumElements()))
   1365       return nullptr;
   1366 
   1367     Offset -= NumSkippedElements * ElementSize;
   1368     Indices.push_back(IRB.getInt(NumSkippedElements));
   1369     return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
   1370                                     Indices, NamePrefix);
   1371   }
   1372 
   1373   StructType *STy = dyn_cast<StructType>(Ty);
   1374   if (!STy)
   1375     return nullptr;
   1376 
   1377   const StructLayout *SL = DL.getStructLayout(STy);
   1378   uint64_t StructOffset = Offset.getZExtValue();
   1379   if (StructOffset >= SL->getSizeInBytes())
   1380     return nullptr;
   1381   unsigned Index = SL->getElementContainingOffset(StructOffset);
   1382   Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
   1383   Type *ElementTy = STy->getElementType(Index);
   1384   if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
   1385     return nullptr; // The offset points into alignment padding.
   1386 
   1387   Indices.push_back(IRB.getInt32(Index));
   1388   return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
   1389                                   Indices, NamePrefix);
   1390 }
   1391 
   1392 /// \brief Get a natural GEP from a base pointer to a particular offset and
   1393 /// resulting in a particular type.
   1394 ///
   1395 /// The goal is to produce a "natural" looking GEP that works with the existing
   1396 /// composite types to arrive at the appropriate offset and element type for
   1397 /// a pointer. TargetTy is the element type the returned GEP should point-to if
   1398 /// possible. We recurse by decreasing Offset, adding the appropriate index to
   1399 /// Indices, and setting Ty to the result subtype.
   1400 ///
   1401 /// If no natural GEP can be constructed, this function returns null.
   1402 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
   1403                                       Value *Ptr, APInt Offset, Type *TargetTy,
   1404                                       SmallVectorImpl<Value *> &Indices,
   1405                                       Twine NamePrefix) {
   1406   PointerType *Ty = cast<PointerType>(Ptr->getType());
   1407 
   1408   // Don't consider any GEPs through an i8* as natural unless the TargetTy is
   1409   // an i8.
   1410   if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
   1411     return nullptr;
   1412 
   1413   Type *ElementTy = Ty->getElementType();
   1414   if (!ElementTy->isSized())
   1415     return nullptr; // We can't GEP through an unsized element.
   1416   APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
   1417   if (ElementSize == 0)
   1418     return nullptr; // Zero-length arrays can't help us build a natural GEP.
   1419   APInt NumSkippedElements = Offset.sdiv(ElementSize);
   1420 
   1421   Offset -= NumSkippedElements * ElementSize;
   1422   Indices.push_back(IRB.getInt(NumSkippedElements));
   1423   return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
   1424                                   Indices, NamePrefix);
   1425 }
   1426 
   1427 /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
   1428 /// resulting pointer has PointerTy.
   1429 ///
   1430 /// This tries very hard to compute a "natural" GEP which arrives at the offset
   1431 /// and produces the pointer type desired. Where it cannot, it will try to use
   1432 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
   1433 /// fails, it will try to use an existing i8* and GEP to the byte offset and
   1434 /// bitcast to the type.
   1435 ///
   1436 /// The strategy for finding the more natural GEPs is to peel off layers of the
   1437 /// pointer, walking back through bit casts and GEPs, searching for a base
   1438 /// pointer from which we can compute a natural GEP with the desired
   1439 /// properties. The algorithm tries to fold as many constant indices into
   1440 /// a single GEP as possible, thus making each GEP more independent of the
   1441 /// surrounding code.
   1442 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
   1443                              APInt Offset, Type *PointerTy,
   1444                              Twine NamePrefix) {
   1445   // Even though we don't look through PHI nodes, we could be called on an
   1446   // instruction in an unreachable block, which may be on a cycle.
   1447   SmallPtrSet<Value *, 4> Visited;
   1448   Visited.insert(Ptr);
   1449   SmallVector<Value *, 4> Indices;
   1450 
   1451   // We may end up computing an offset pointer that has the wrong type. If we
   1452   // never are able to compute one directly that has the correct type, we'll
   1453   // fall back to it, so keep it around here.
   1454   Value *OffsetPtr = nullptr;
   1455 
   1456   // Remember any i8 pointer we come across to re-use if we need to do a raw
   1457   // byte offset.
   1458   Value *Int8Ptr = nullptr;
   1459   APInt Int8PtrOffset(Offset.getBitWidth(), 0);
   1460 
   1461   Type *TargetTy = PointerTy->getPointerElementType();
   1462 
   1463   do {
   1464     // First fold any existing GEPs into the offset.
   1465     while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
   1466       APInt GEPOffset(Offset.getBitWidth(), 0);
   1467       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
   1468         break;
   1469       Offset += GEPOffset;
   1470       Ptr = GEP->getPointerOperand();
   1471       if (!Visited.insert(Ptr))
   1472         break;
   1473     }
   1474 
   1475     // See if we can perform a natural GEP here.
   1476     Indices.clear();
   1477     if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
   1478                                            Indices, NamePrefix)) {
   1479       if (P->getType() == PointerTy) {
   1480         // Zap any offset pointer that we ended up computing in previous rounds.
   1481         if (OffsetPtr && OffsetPtr->use_empty())
   1482           if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
   1483             I->eraseFromParent();
   1484         return P;
   1485       }
   1486       if (!OffsetPtr) {
   1487         OffsetPtr = P;
   1488       }
   1489     }
   1490 
   1491     // Stash this pointer if we've found an i8*.
   1492     if (Ptr->getType()->isIntegerTy(8)) {
   1493       Int8Ptr = Ptr;
   1494       Int8PtrOffset = Offset;
   1495     }
   1496 
   1497     // Peel off a layer of the pointer and update the offset appropriately.
   1498     if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
   1499       Ptr = cast<Operator>(Ptr)->getOperand(0);
   1500     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
   1501       if (GA->mayBeOverridden())
   1502         break;
   1503       Ptr = GA->getAliasee();
   1504     } else {
   1505       break;
   1506     }
   1507     assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
   1508   } while (Visited.insert(Ptr));
   1509 
   1510   if (!OffsetPtr) {
   1511     if (!Int8Ptr) {
   1512       Int8Ptr = IRB.CreateBitCast(
   1513           Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
   1514           NamePrefix + "sroa_raw_cast");
   1515       Int8PtrOffset = Offset;
   1516     }
   1517 
   1518     OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
   1519       IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
   1520                             NamePrefix + "sroa_raw_idx");
   1521   }
   1522   Ptr = OffsetPtr;
   1523 
   1524   // On the off chance we were targeting i8*, guard the bitcast here.
   1525   if (Ptr->getType() != PointerTy)
   1526     Ptr = IRB.CreateBitCast(Ptr, PointerTy, NamePrefix + "sroa_cast");
   1527 
   1528   return Ptr;
   1529 }
   1530 
   1531 /// \brief Test whether we can convert a value from the old to the new type.
   1532 ///
   1533 /// This predicate should be used to guard calls to convertValue in order to
   1534 /// ensure that we only try to convert viable values. The strategy is that we
   1535 /// will peel off single element struct and array wrappings to get to an
   1536 /// underlying value, and convert that value.
   1537 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
   1538   if (OldTy == NewTy)
   1539     return true;
   1540   if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
   1541     if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
   1542       if (NewITy->getBitWidth() >= OldITy->getBitWidth())
   1543         return true;
   1544   if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
   1545     return false;
   1546   if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
   1547     return false;
   1548 
   1549   // We can convert pointers to integers and vice-versa. Same for vectors
   1550   // of pointers and integers.
   1551   OldTy = OldTy->getScalarType();
   1552   NewTy = NewTy->getScalarType();
   1553   if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
   1554     if (NewTy->isPointerTy() && OldTy->isPointerTy())
   1555       return true;
   1556     if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
   1557       return true;
   1558     return false;
   1559   }
   1560 
   1561   return true;
   1562 }
   1563 
   1564 /// \brief Generic routine to convert an SSA value to a value of a different
   1565 /// type.
   1566 ///
   1567 /// This will try various different casting techniques, such as bitcasts,
   1568 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
   1569 /// two types for viability with this routine.
   1570 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
   1571                            Type *NewTy) {
   1572   Type *OldTy = V->getType();
   1573   assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
   1574 
   1575   if (OldTy == NewTy)
   1576     return V;
   1577 
   1578   if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
   1579     if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
   1580       if (NewITy->getBitWidth() > OldITy->getBitWidth())
   1581         return IRB.CreateZExt(V, NewITy);
   1582 
   1583   // See if we need inttoptr for this type pair. A cast involving both scalars
   1584   // and vectors requires and additional bitcast.
   1585   if (OldTy->getScalarType()->isIntegerTy() &&
   1586       NewTy->getScalarType()->isPointerTy()) {
   1587     // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
   1588     if (OldTy->isVectorTy() && !NewTy->isVectorTy())
   1589       return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
   1590                                 NewTy);
   1591 
   1592     // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
   1593     if (!OldTy->isVectorTy() && NewTy->isVectorTy())
   1594       return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
   1595                                 NewTy);
   1596 
   1597     return IRB.CreateIntToPtr(V, NewTy);
   1598   }
   1599 
   1600   // See if we need ptrtoint for this type pair. A cast involving both scalars
   1601   // and vectors requires and additional bitcast.
   1602   if (OldTy->getScalarType()->isPointerTy() &&
   1603       NewTy->getScalarType()->isIntegerTy()) {
   1604     // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
   1605     if (OldTy->isVectorTy() && !NewTy->isVectorTy())
   1606       return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
   1607                                NewTy);
   1608 
   1609     // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
   1610     if (!OldTy->isVectorTy() && NewTy->isVectorTy())
   1611       return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
   1612                                NewTy);
   1613 
   1614     return IRB.CreatePtrToInt(V, NewTy);
   1615   }
   1616 
   1617   return IRB.CreateBitCast(V, NewTy);
   1618 }
   1619 
   1620 /// \brief Test whether the given slice use can be promoted to a vector.
   1621 ///
   1622 /// This function is called to test each entry in a partioning which is slated
   1623 /// for a single slice.
   1624 static bool isVectorPromotionViableForSlice(
   1625     const DataLayout &DL, AllocaSlices &S, uint64_t SliceBeginOffset,
   1626     uint64_t SliceEndOffset, VectorType *Ty, uint64_t ElementSize,
   1627     AllocaSlices::const_iterator I) {
   1628   // First validate the slice offsets.
   1629   uint64_t BeginOffset =
   1630       std::max(I->beginOffset(), SliceBeginOffset) - SliceBeginOffset;
   1631   uint64_t BeginIndex = BeginOffset / ElementSize;
   1632   if (BeginIndex * ElementSize != BeginOffset ||
   1633       BeginIndex >= Ty->getNumElements())
   1634     return false;
   1635   uint64_t EndOffset =
   1636       std::min(I->endOffset(), SliceEndOffset) - SliceBeginOffset;
   1637   uint64_t EndIndex = EndOffset / ElementSize;
   1638   if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
   1639     return false;
   1640 
   1641   assert(EndIndex > BeginIndex && "Empty vector!");
   1642   uint64_t NumElements = EndIndex - BeginIndex;
   1643   Type *SliceTy =
   1644       (NumElements == 1) ? Ty->getElementType()
   1645                          : VectorType::get(Ty->getElementType(), NumElements);
   1646 
   1647   Type *SplitIntTy =
   1648       Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
   1649 
   1650   Use *U = I->getUse();
   1651 
   1652   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
   1653     if (MI->isVolatile())
   1654       return false;
   1655     if (!I->isSplittable())
   1656       return false; // Skip any unsplittable intrinsics.
   1657   } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
   1658     // Disable vector promotion when there are loads or stores of an FCA.
   1659     return false;
   1660   } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
   1661     if (LI->isVolatile())
   1662       return false;
   1663     Type *LTy = LI->getType();
   1664     if (SliceBeginOffset > I->beginOffset() ||
   1665         SliceEndOffset < I->endOffset()) {
   1666       assert(LTy->isIntegerTy());
   1667       LTy = SplitIntTy;
   1668     }
   1669     if (!canConvertValue(DL, SliceTy, LTy))
   1670       return false;
   1671   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
   1672     if (SI->isVolatile())
   1673       return false;
   1674     Type *STy = SI->getValueOperand()->getType();
   1675     if (SliceBeginOffset > I->beginOffset() ||
   1676         SliceEndOffset < I->endOffset()) {
   1677       assert(STy->isIntegerTy());
   1678       STy = SplitIntTy;
   1679     }
   1680     if (!canConvertValue(DL, STy, SliceTy))
   1681       return false;
   1682   } else {
   1683     return false;
   1684   }
   1685 
   1686   return true;
   1687 }
   1688 
   1689 /// \brief Test whether the given alloca partitioning and range of slices can be
   1690 /// promoted to a vector.
   1691 ///
   1692 /// This is a quick test to check whether we can rewrite a particular alloca
   1693 /// partition (and its newly formed alloca) into a vector alloca with only
   1694 /// whole-vector loads and stores such that it could be promoted to a vector
   1695 /// SSA value. We only can ensure this for a limited set of operations, and we
   1696 /// don't want to do the rewrites unless we are confident that the result will
   1697 /// be promotable, so we have an early test here.
   1698 static bool
   1699 isVectorPromotionViable(const DataLayout &DL, Type *AllocaTy, AllocaSlices &S,
   1700                         uint64_t SliceBeginOffset, uint64_t SliceEndOffset,
   1701                         AllocaSlices::const_iterator I,
   1702                         AllocaSlices::const_iterator E,
   1703                         ArrayRef<AllocaSlices::iterator> SplitUses) {
   1704   VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
   1705   if (!Ty)
   1706     return false;
   1707 
   1708   uint64_t ElementSize = DL.getTypeSizeInBits(Ty->getScalarType());
   1709 
   1710   // While the definition of LLVM vectors is bitpacked, we don't support sizes
   1711   // that aren't byte sized.
   1712   if (ElementSize % 8)
   1713     return false;
   1714   assert((DL.getTypeSizeInBits(Ty) % 8) == 0 &&
   1715          "vector size not a multiple of element size?");
   1716   ElementSize /= 8;
   1717 
   1718   for (; I != E; ++I)
   1719     if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
   1720                                          SliceEndOffset, Ty, ElementSize, I))
   1721       return false;
   1722 
   1723   for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
   1724                                                         SUE = SplitUses.end();
   1725        SUI != SUE; ++SUI)
   1726     if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
   1727                                          SliceEndOffset, Ty, ElementSize, *SUI))
   1728       return false;
   1729 
   1730   return true;
   1731 }
   1732 
   1733 /// \brief Test whether a slice of an alloca is valid for integer widening.
   1734 ///
   1735 /// This implements the necessary checking for the \c isIntegerWideningViable
   1736 /// test below on a single slice of the alloca.
   1737 static bool isIntegerWideningViableForSlice(const DataLayout &DL,
   1738                                             Type *AllocaTy,
   1739                                             uint64_t AllocBeginOffset,
   1740                                             uint64_t Size, AllocaSlices &S,
   1741                                             AllocaSlices::const_iterator I,
   1742                                             bool &WholeAllocaOp) {
   1743   uint64_t RelBegin = I->beginOffset() - AllocBeginOffset;
   1744   uint64_t RelEnd = I->endOffset() - AllocBeginOffset;
   1745 
   1746   // We can't reasonably handle cases where the load or store extends past
   1747   // the end of the aloca's type and into its padding.
   1748   if (RelEnd > Size)
   1749     return false;
   1750 
   1751   Use *U = I->getUse();
   1752 
   1753   if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
   1754     if (LI->isVolatile())
   1755       return false;
   1756     if (RelBegin == 0 && RelEnd == Size)
   1757       WholeAllocaOp = true;
   1758     if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
   1759       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
   1760         return false;
   1761     } else if (RelBegin != 0 || RelEnd != Size ||
   1762                !canConvertValue(DL, AllocaTy, LI->getType())) {
   1763       // Non-integer loads need to be convertible from the alloca type so that
   1764       // they are promotable.
   1765       return false;
   1766     }
   1767   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
   1768     Type *ValueTy = SI->getValueOperand()->getType();
   1769     if (SI->isVolatile())
   1770       return false;
   1771     if (RelBegin == 0 && RelEnd == Size)
   1772       WholeAllocaOp = true;
   1773     if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
   1774       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
   1775         return false;
   1776     } else if (RelBegin != 0 || RelEnd != Size ||
   1777                !canConvertValue(DL, ValueTy, AllocaTy)) {
   1778       // Non-integer stores need to be convertible to the alloca type so that
   1779       // they are promotable.
   1780       return false;
   1781     }
   1782   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
   1783     if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
   1784       return false;
   1785     if (!I->isSplittable())
   1786       return false; // Skip any unsplittable intrinsics.
   1787   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
   1788     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
   1789         II->getIntrinsicID() != Intrinsic::lifetime_end)
   1790       return false;
   1791   } else {
   1792     return false;
   1793   }
   1794 
   1795   return true;
   1796 }
   1797 
   1798 /// \brief Test whether the given alloca partition's integer operations can be
   1799 /// widened to promotable ones.
   1800 ///
   1801 /// This is a quick test to check whether we can rewrite the integer loads and
   1802 /// stores to a particular alloca into wider loads and stores and be able to
   1803 /// promote the resulting alloca.
   1804 static bool
   1805 isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy,
   1806                         uint64_t AllocBeginOffset, AllocaSlices &S,
   1807                         AllocaSlices::const_iterator I,
   1808                         AllocaSlices::const_iterator E,
   1809                         ArrayRef<AllocaSlices::iterator> SplitUses) {
   1810   uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
   1811   // Don't create integer types larger than the maximum bitwidth.
   1812   if (SizeInBits > IntegerType::MAX_INT_BITS)
   1813     return false;
   1814 
   1815   // Don't try to handle allocas with bit-padding.
   1816   if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
   1817     return false;
   1818 
   1819   // We need to ensure that an integer type with the appropriate bitwidth can
   1820   // be converted to the alloca type, whatever that is. We don't want to force
   1821   // the alloca itself to have an integer type if there is a more suitable one.
   1822   Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
   1823   if (!canConvertValue(DL, AllocaTy, IntTy) ||
   1824       !canConvertValue(DL, IntTy, AllocaTy))
   1825     return false;
   1826 
   1827   uint64_t Size = DL.getTypeStoreSize(AllocaTy);
   1828 
   1829   // While examining uses, we ensure that the alloca has a covering load or
   1830   // store. We don't want to widen the integer operations only to fail to
   1831   // promote due to some other unsplittable entry (which we may make splittable
   1832   // later). However, if there are only splittable uses, go ahead and assume
   1833   // that we cover the alloca.
   1834   bool WholeAllocaOp = (I != E) ? false : DL.isLegalInteger(SizeInBits);
   1835 
   1836   for (; I != E; ++I)
   1837     if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
   1838                                          S, I, WholeAllocaOp))
   1839       return false;
   1840 
   1841   for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
   1842                                                         SUE = SplitUses.end();
   1843        SUI != SUE; ++SUI)
   1844     if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
   1845                                          S, *SUI, WholeAllocaOp))
   1846       return false;
   1847 
   1848   return WholeAllocaOp;
   1849 }
   1850 
   1851 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
   1852                              IntegerType *Ty, uint64_t Offset,
   1853                              const Twine &Name) {
   1854   DEBUG(dbgs() << "       start: " << *V << "\n");
   1855   IntegerType *IntTy = cast<IntegerType>(V->getType());
   1856   assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
   1857          "Element extends past full value");
   1858   uint64_t ShAmt = 8*Offset;
   1859   if (DL.isBigEndian())
   1860     ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
   1861   if (ShAmt) {
   1862     V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
   1863     DEBUG(dbgs() << "     shifted: " << *V << "\n");
   1864   }
   1865   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
   1866          "Cannot extract to a larger integer!");
   1867   if (Ty != IntTy) {
   1868     V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
   1869     DEBUG(dbgs() << "     trunced: " << *V << "\n");
   1870   }
   1871   return V;
   1872 }
   1873 
   1874 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
   1875                             Value *V, uint64_t Offset, const Twine &Name) {
   1876   IntegerType *IntTy = cast<IntegerType>(Old->getType());
   1877   IntegerType *Ty = cast<IntegerType>(V->getType());
   1878   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
   1879          "Cannot insert a larger integer!");
   1880   DEBUG(dbgs() << "       start: " << *V << "\n");
   1881   if (Ty != IntTy) {
   1882     V = IRB.CreateZExt(V, IntTy, Name + ".ext");
   1883     DEBUG(dbgs() << "    extended: " << *V << "\n");
   1884   }
   1885   assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
   1886          "Element store outside of alloca store");
   1887   uint64_t ShAmt = 8*Offset;
   1888   if (DL.isBigEndian())
   1889     ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
   1890   if (ShAmt) {
   1891     V = IRB.CreateShl(V, ShAmt, Name + ".shift");
   1892     DEBUG(dbgs() << "     shifted: " << *V << "\n");
   1893   }
   1894 
   1895   if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
   1896     APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
   1897     Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
   1898     DEBUG(dbgs() << "      masked: " << *Old << "\n");
   1899     V = IRB.CreateOr(Old, V, Name + ".insert");
   1900     DEBUG(dbgs() << "    inserted: " << *V << "\n");
   1901   }
   1902   return V;
   1903 }
   1904 
   1905 static Value *extractVector(IRBuilderTy &IRB, Value *V,
   1906                             unsigned BeginIndex, unsigned EndIndex,
   1907                             const Twine &Name) {
   1908   VectorType *VecTy = cast<VectorType>(V->getType());
   1909   unsigned NumElements = EndIndex - BeginIndex;
   1910   assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
   1911 
   1912   if (NumElements == VecTy->getNumElements())
   1913     return V;
   1914 
   1915   if (NumElements == 1) {
   1916     V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
   1917                                  Name + ".extract");
   1918     DEBUG(dbgs() << "     extract: " << *V << "\n");
   1919     return V;
   1920   }
   1921 
   1922   SmallVector<Constant*, 8> Mask;
   1923   Mask.reserve(NumElements);
   1924   for (unsigned i = BeginIndex; i != EndIndex; ++i)
   1925     Mask.push_back(IRB.getInt32(i));
   1926   V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
   1927                               ConstantVector::get(Mask),
   1928                               Name + ".extract");
   1929   DEBUG(dbgs() << "     shuffle: " << *V << "\n");
   1930   return V;
   1931 }
   1932 
   1933 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
   1934                            unsigned BeginIndex, const Twine &Name) {
   1935   VectorType *VecTy = cast<VectorType>(Old->getType());
   1936   assert(VecTy && "Can only insert a vector into a vector");
   1937 
   1938   VectorType *Ty = dyn_cast<VectorType>(V->getType());
   1939   if (!Ty) {
   1940     // Single element to insert.
   1941     V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
   1942                                 Name + ".insert");
   1943     DEBUG(dbgs() <<  "     insert: " << *V << "\n");
   1944     return V;
   1945   }
   1946 
   1947   assert(Ty->getNumElements() <= VecTy->getNumElements() &&
   1948          "Too many elements!");
   1949   if (Ty->getNumElements() == VecTy->getNumElements()) {
   1950     assert(V->getType() == VecTy && "Vector type mismatch");
   1951     return V;
   1952   }
   1953   unsigned EndIndex = BeginIndex + Ty->getNumElements();
   1954 
   1955   // When inserting a smaller vector into the larger to store, we first
   1956   // use a shuffle vector to widen it with undef elements, and then
   1957   // a second shuffle vector to select between the loaded vector and the
   1958   // incoming vector.
   1959   SmallVector<Constant*, 8> Mask;
   1960   Mask.reserve(VecTy->getNumElements());
   1961   for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
   1962     if (i >= BeginIndex && i < EndIndex)
   1963       Mask.push_back(IRB.getInt32(i - BeginIndex));
   1964     else
   1965       Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
   1966   V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
   1967                               ConstantVector::get(Mask),
   1968                               Name + ".expand");
   1969   DEBUG(dbgs() << "    shuffle: " << *V << "\n");
   1970 
   1971   Mask.clear();
   1972   for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
   1973     Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
   1974 
   1975   V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
   1976 
   1977   DEBUG(dbgs() << "    blend: " << *V << "\n");
   1978   return V;
   1979 }
   1980 
   1981 namespace {
   1982 /// \brief Visitor to rewrite instructions using p particular slice of an alloca
   1983 /// to use a new alloca.
   1984 ///
   1985 /// Also implements the rewriting to vector-based accesses when the partition
   1986 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
   1987 /// lives here.
   1988 class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
   1989   // Befriend the base class so it can delegate to private visit methods.
   1990   friend class llvm::InstVisitor<AllocaSliceRewriter, bool>;
   1991   typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base;
   1992 
   1993   const DataLayout &DL;
   1994   AllocaSlices &S;
   1995   SROA &Pass;
   1996   AllocaInst &OldAI, &NewAI;
   1997   const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
   1998   Type *NewAllocaTy;
   1999 
   2000   // If we are rewriting an alloca partition which can be written as pure
   2001   // vector operations, we stash extra information here. When VecTy is
   2002   // non-null, we have some strict guarantees about the rewritten alloca:
   2003   //   - The new alloca is exactly the size of the vector type here.
   2004   //   - The accesses all either map to the entire vector or to a single
   2005   //     element.
   2006   //   - The set of accessing instructions is only one of those handled above
   2007   //     in isVectorPromotionViable. Generally these are the same access kinds
   2008   //     which are promotable via mem2reg.
   2009   VectorType *VecTy;
   2010   Type *ElementTy;
   2011   uint64_t ElementSize;
   2012 
   2013   // This is a convenience and flag variable that will be null unless the new
   2014   // alloca's integer operations should be widened to this integer type due to
   2015   // passing isIntegerWideningViable above. If it is non-null, the desired
   2016   // integer type will be stored here for easy access during rewriting.
   2017   IntegerType *IntTy;
   2018 
   2019   // The original offset of the slice currently being rewritten relative to
   2020   // the original alloca.
   2021   uint64_t BeginOffset, EndOffset;
   2022   // The new offsets of the slice currently being rewritten relative to the
   2023   // original alloca.
   2024   uint64_t NewBeginOffset, NewEndOffset;
   2025 
   2026   uint64_t SliceSize;
   2027   bool IsSplittable;
   2028   bool IsSplit;
   2029   Use *OldUse;
   2030   Instruction *OldPtr;
   2031 
   2032   // Track post-rewrite users which are PHI nodes and Selects.
   2033   SmallPtrSetImpl<PHINode *> &PHIUsers;
   2034   SmallPtrSetImpl<SelectInst *> &SelectUsers;
   2035 
   2036   // Utility IR builder, whose name prefix is setup for each visited use, and
   2037   // the insertion point is set to point to the user.
   2038   IRBuilderTy IRB;
   2039 
   2040 public:
   2041   AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &S, SROA &Pass,
   2042                       AllocaInst &OldAI, AllocaInst &NewAI,
   2043                       uint64_t NewAllocaBeginOffset,
   2044                       uint64_t NewAllocaEndOffset, bool IsVectorPromotable,
   2045                       bool IsIntegerPromotable,
   2046                       SmallPtrSetImpl<PHINode *> &PHIUsers,
   2047                       SmallPtrSetImpl<SelectInst *> &SelectUsers)
   2048       : DL(DL), S(S), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
   2049         NewAllocaBeginOffset(NewAllocaBeginOffset),
   2050         NewAllocaEndOffset(NewAllocaEndOffset),
   2051         NewAllocaTy(NewAI.getAllocatedType()),
   2052         VecTy(IsVectorPromotable ? cast<VectorType>(NewAllocaTy) : nullptr),
   2053         ElementTy(VecTy ? VecTy->getElementType() : nullptr),
   2054         ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
   2055         IntTy(IsIntegerPromotable
   2056                   ? Type::getIntNTy(
   2057                         NewAI.getContext(),
   2058                         DL.getTypeSizeInBits(NewAI.getAllocatedType()))
   2059                   : nullptr),
   2060         BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(),
   2061         OldPtr(), PHIUsers(PHIUsers), SelectUsers(SelectUsers),
   2062         IRB(NewAI.getContext(), ConstantFolder()) {
   2063     if (VecTy) {
   2064       assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
   2065              "Only multiple-of-8 sized vector elements are viable");
   2066       ++NumVectorized;
   2067     }
   2068     assert((!IsVectorPromotable && !IsIntegerPromotable) ||
   2069            IsVectorPromotable != IsIntegerPromotable);
   2070   }
   2071 
   2072   bool visit(AllocaSlices::const_iterator I) {
   2073     bool CanSROA = true;
   2074     BeginOffset = I->beginOffset();
   2075     EndOffset = I->endOffset();
   2076     IsSplittable = I->isSplittable();
   2077     IsSplit =
   2078         BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
   2079 
   2080     // Compute the intersecting offset range.
   2081     assert(BeginOffset < NewAllocaEndOffset);
   2082     assert(EndOffset > NewAllocaBeginOffset);
   2083     NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
   2084     NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
   2085 
   2086     SliceSize = NewEndOffset - NewBeginOffset;
   2087 
   2088     OldUse = I->getUse();
   2089     OldPtr = cast<Instruction>(OldUse->get());
   2090 
   2091     Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
   2092     IRB.SetInsertPoint(OldUserI);
   2093     IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
   2094     IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
   2095 
   2096     CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
   2097     if (VecTy || IntTy)
   2098       assert(CanSROA);
   2099     return CanSROA;
   2100   }
   2101 
   2102 private:
   2103   // Make sure the other visit overloads are visible.
   2104   using Base::visit;
   2105 
   2106   // Every instruction which can end up as a user must have a rewrite rule.
   2107   bool visitInstruction(Instruction &I) {
   2108     DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
   2109     llvm_unreachable("No rewrite rule for this instruction!");
   2110   }
   2111 
   2112   Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
   2113     // Note that the offset computation can use BeginOffset or NewBeginOffset
   2114     // interchangeably for unsplit slices.
   2115     assert(IsSplit || BeginOffset == NewBeginOffset);
   2116     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
   2117 
   2118 #ifndef NDEBUG
   2119     StringRef OldName = OldPtr->getName();
   2120     // Skip through the last '.sroa.' component of the name.
   2121     size_t LastSROAPrefix = OldName.rfind(".sroa.");
   2122     if (LastSROAPrefix != StringRef::npos) {
   2123       OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
   2124       // Look for an SROA slice index.
   2125       size_t IndexEnd = OldName.find_first_not_of("0123456789");
   2126       if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
   2127         // Strip the index and look for the offset.
   2128         OldName = OldName.substr(IndexEnd + 1);
   2129         size_t OffsetEnd = OldName.find_first_not_of("0123456789");
   2130         if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
   2131           // Strip the offset.
   2132           OldName = OldName.substr(OffsetEnd + 1);
   2133       }
   2134     }
   2135     // Strip any SROA suffixes as well.
   2136     OldName = OldName.substr(0, OldName.find(".sroa_"));
   2137 #endif
   2138 
   2139     return getAdjustedPtr(IRB, DL, &NewAI,
   2140                           APInt(DL.getPointerSizeInBits(), Offset), PointerTy,
   2141 #ifndef NDEBUG
   2142                           Twine(OldName) + "."
   2143 #else
   2144                           Twine()
   2145 #endif
   2146                           );
   2147   }
   2148 
   2149   /// \brief Compute suitable alignment to access this slice of the *new* alloca.
   2150   ///
   2151   /// You can optionally pass a type to this routine and if that type's ABI
   2152   /// alignment is itself suitable, this will return zero.
   2153   unsigned getSliceAlign(Type *Ty = nullptr) {
   2154     unsigned NewAIAlign = NewAI.getAlignment();
   2155     if (!NewAIAlign)
   2156       NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
   2157     unsigned Align = MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
   2158     return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align;
   2159   }
   2160 
   2161   unsigned getIndex(uint64_t Offset) {
   2162     assert(VecTy && "Can only call getIndex when rewriting a vector");
   2163     uint64_t RelOffset = Offset - NewAllocaBeginOffset;
   2164     assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
   2165     uint32_t Index = RelOffset / ElementSize;
   2166     assert(Index * ElementSize == RelOffset);
   2167     return Index;
   2168   }
   2169 
   2170   void deleteIfTriviallyDead(Value *V) {
   2171     Instruction *I = cast<Instruction>(V);
   2172     if (isInstructionTriviallyDead(I))
   2173       Pass.DeadInsts.insert(I);
   2174   }
   2175 
   2176   Value *rewriteVectorizedLoadInst() {
   2177     unsigned BeginIndex = getIndex(NewBeginOffset);
   2178     unsigned EndIndex = getIndex(NewEndOffset);
   2179     assert(EndIndex > BeginIndex && "Empty vector!");
   2180 
   2181     Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
   2182                                      "load");
   2183     return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
   2184   }
   2185 
   2186   Value *rewriteIntegerLoad(LoadInst &LI) {
   2187     assert(IntTy && "We cannot insert an integer to the alloca");
   2188     assert(!LI.isVolatile());
   2189     Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
   2190                                      "load");
   2191     V = convertValue(DL, IRB, V, IntTy);
   2192     assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
   2193     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
   2194     if (Offset > 0 || NewEndOffset < NewAllocaEndOffset)
   2195       V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset,
   2196                          "extract");
   2197     return V;
   2198   }
   2199 
   2200   bool visitLoadInst(LoadInst &LI) {
   2201     DEBUG(dbgs() << "    original: " << LI << "\n");
   2202     Value *OldOp = LI.getOperand(0);
   2203     assert(OldOp == OldPtr);
   2204 
   2205     Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
   2206                              : LI.getType();
   2207     bool IsPtrAdjusted = false;
   2208     Value *V;
   2209     if (VecTy) {
   2210       V = rewriteVectorizedLoadInst();
   2211     } else if (IntTy && LI.getType()->isIntegerTy()) {
   2212       V = rewriteIntegerLoad(LI);
   2213     } else if (NewBeginOffset == NewAllocaBeginOffset &&
   2214                canConvertValue(DL, NewAllocaTy, LI.getType())) {
   2215       V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
   2216                                 LI.isVolatile(), LI.getName());
   2217     } else {
   2218       Type *LTy = TargetTy->getPointerTo();
   2219       V = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy),
   2220                                 getSliceAlign(TargetTy), LI.isVolatile(),
   2221                                 LI.getName());
   2222       IsPtrAdjusted = true;
   2223     }
   2224     V = convertValue(DL, IRB, V, TargetTy);
   2225 
   2226     if (IsSplit) {
   2227       assert(!LI.isVolatile());
   2228       assert(LI.getType()->isIntegerTy() &&
   2229              "Only integer type loads and stores are split");
   2230       assert(SliceSize < DL.getTypeStoreSize(LI.getType()) &&
   2231              "Split load isn't smaller than original load");
   2232       assert(LI.getType()->getIntegerBitWidth() ==
   2233              DL.getTypeStoreSizeInBits(LI.getType()) &&
   2234              "Non-byte-multiple bit width");
   2235       // Move the insertion point just past the load so that we can refer to it.
   2236       IRB.SetInsertPoint(std::next(BasicBlock::iterator(&LI)));
   2237       // Create a placeholder value with the same type as LI to use as the
   2238       // basis for the new value. This allows us to replace the uses of LI with
   2239       // the computed value, and then replace the placeholder with LI, leaving
   2240       // LI only used for this computation.
   2241       Value *Placeholder
   2242         = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
   2243       V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset,
   2244                         "insert");
   2245       LI.replaceAllUsesWith(V);
   2246       Placeholder->replaceAllUsesWith(&LI);
   2247       delete Placeholder;
   2248     } else {
   2249       LI.replaceAllUsesWith(V);
   2250     }
   2251 
   2252     Pass.DeadInsts.insert(&LI);
   2253     deleteIfTriviallyDead(OldOp);
   2254     DEBUG(dbgs() << "          to: " << *V << "\n");
   2255     return !LI.isVolatile() && !IsPtrAdjusted;
   2256   }
   2257 
   2258   bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp) {
   2259     if (V->getType() != VecTy) {
   2260       unsigned BeginIndex = getIndex(NewBeginOffset);
   2261       unsigned EndIndex = getIndex(NewEndOffset);
   2262       assert(EndIndex > BeginIndex && "Empty vector!");
   2263       unsigned NumElements = EndIndex - BeginIndex;
   2264       assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
   2265       Type *SliceTy =
   2266           (NumElements == 1) ? ElementTy
   2267                              : VectorType::get(ElementTy, NumElements);
   2268       if (V->getType() != SliceTy)
   2269         V = convertValue(DL, IRB, V, SliceTy);
   2270 
   2271       // Mix in the existing elements.
   2272       Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
   2273                                          "load");
   2274       V = insertVector(IRB, Old, V, BeginIndex, "vec");
   2275     }
   2276     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
   2277     Pass.DeadInsts.insert(&SI);
   2278 
   2279     (void)Store;
   2280     DEBUG(dbgs() << "          to: " << *Store << "\n");
   2281     return true;
   2282   }
   2283 
   2284   bool rewriteIntegerStore(Value *V, StoreInst &SI) {
   2285     assert(IntTy && "We cannot extract an integer from the alloca");
   2286     assert(!SI.isVolatile());
   2287     if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
   2288       Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
   2289                                          "oldload");
   2290       Old = convertValue(DL, IRB, Old, IntTy);
   2291       assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
   2292       uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
   2293       V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset,
   2294                         "insert");
   2295     }
   2296     V = convertValue(DL, IRB, V, NewAllocaTy);
   2297     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
   2298     Pass.DeadInsts.insert(&SI);
   2299     (void)Store;
   2300     DEBUG(dbgs() << "          to: " << *Store << "\n");
   2301     return true;
   2302   }
   2303 
   2304   bool visitStoreInst(StoreInst &SI) {
   2305     DEBUG(dbgs() << "    original: " << SI << "\n");
   2306     Value *OldOp = SI.getOperand(1);
   2307     assert(OldOp == OldPtr);
   2308 
   2309     Value *V = SI.getValueOperand();
   2310 
   2311     // Strip all inbounds GEPs and pointer casts to try to dig out any root
   2312     // alloca that should be re-examined after promoting this alloca.
   2313     if (V->getType()->isPointerTy())
   2314       if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
   2315         Pass.PostPromotionWorklist.insert(AI);
   2316 
   2317     if (SliceSize < DL.getTypeStoreSize(V->getType())) {
   2318       assert(!SI.isVolatile());
   2319       assert(V->getType()->isIntegerTy() &&
   2320              "Only integer type loads and stores are split");
   2321       assert(V->getType()->getIntegerBitWidth() ==
   2322              DL.getTypeStoreSizeInBits(V->getType()) &&
   2323              "Non-byte-multiple bit width");
   2324       IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
   2325       V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset,
   2326                          "extract");
   2327     }
   2328 
   2329     if (VecTy)
   2330       return rewriteVectorizedStoreInst(V, SI, OldOp);
   2331     if (IntTy && V->getType()->isIntegerTy())
   2332       return rewriteIntegerStore(V, SI);
   2333 
   2334     StoreInst *NewSI;
   2335     if (NewBeginOffset == NewAllocaBeginOffset &&
   2336         NewEndOffset == NewAllocaEndOffset &&
   2337         canConvertValue(DL, V->getType(), NewAllocaTy)) {
   2338       V = convertValue(DL, IRB, V, NewAllocaTy);
   2339       NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
   2340                                      SI.isVolatile());
   2341     } else {
   2342       Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo());
   2343       NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()),
   2344                                      SI.isVolatile());
   2345     }
   2346     (void)NewSI;
   2347     Pass.DeadInsts.insert(&SI);
   2348     deleteIfTriviallyDead(OldOp);
   2349 
   2350     DEBUG(dbgs() << "          to: " << *NewSI << "\n");
   2351     return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
   2352   }
   2353 
   2354   /// \brief Compute an integer value from splatting an i8 across the given
   2355   /// number of bytes.
   2356   ///
   2357   /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
   2358   /// call this routine.
   2359   /// FIXME: Heed the advice above.
   2360   ///
   2361   /// \param V The i8 value to splat.
   2362   /// \param Size The number of bytes in the output (assuming i8 is one byte)
   2363   Value *getIntegerSplat(Value *V, unsigned Size) {
   2364     assert(Size > 0 && "Expected a positive number of bytes.");
   2365     IntegerType *VTy = cast<IntegerType>(V->getType());
   2366     assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
   2367     if (Size == 1)
   2368       return V;
   2369 
   2370     Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
   2371     V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"),
   2372                       ConstantExpr::getUDiv(
   2373                         Constant::getAllOnesValue(SplatIntTy),
   2374                         ConstantExpr::getZExt(
   2375                           Constant::getAllOnesValue(V->getType()),
   2376                           SplatIntTy)),
   2377                       "isplat");
   2378     return V;
   2379   }
   2380 
   2381   /// \brief Compute a vector splat for a given element value.
   2382   Value *getVectorSplat(Value *V, unsigned NumElements) {
   2383     V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
   2384     DEBUG(dbgs() << "       splat: " << *V << "\n");
   2385     return V;
   2386   }
   2387 
   2388   bool visitMemSetInst(MemSetInst &II) {
   2389     DEBUG(dbgs() << "    original: " << II << "\n");
   2390     assert(II.getRawDest() == OldPtr);
   2391 
   2392     // If the memset has a variable size, it cannot be split, just adjust the
   2393     // pointer to the new alloca.
   2394     if (!isa<Constant>(II.getLength())) {
   2395       assert(!IsSplit);
   2396       assert(NewBeginOffset == BeginOffset);
   2397       II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
   2398       Type *CstTy = II.getAlignmentCst()->getType();
   2399       II.setAlignment(ConstantInt::get(CstTy, getSliceAlign()));
   2400 
   2401       deleteIfTriviallyDead(OldPtr);
   2402       return false;
   2403     }
   2404 
   2405     // Record this instruction for deletion.
   2406     Pass.DeadInsts.insert(&II);
   2407 
   2408     Type *AllocaTy = NewAI.getAllocatedType();
   2409     Type *ScalarTy = AllocaTy->getScalarType();
   2410 
   2411     // If this doesn't map cleanly onto the alloca type, and that type isn't
   2412     // a single value type, just emit a memset.
   2413     if (!VecTy && !IntTy &&
   2414         (BeginOffset > NewAllocaBeginOffset ||
   2415          EndOffset < NewAllocaEndOffset ||
   2416          !AllocaTy->isSingleValueType() ||
   2417          !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
   2418          DL.getTypeSizeInBits(ScalarTy)%8 != 0)) {
   2419       Type *SizeTy = II.getLength()->getType();
   2420       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
   2421       CallInst *New = IRB.CreateMemSet(
   2422           getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
   2423           getSliceAlign(), II.isVolatile());
   2424       (void)New;
   2425       DEBUG(dbgs() << "          to: " << *New << "\n");
   2426       return false;
   2427     }
   2428 
   2429     // If we can represent this as a simple value, we have to build the actual
   2430     // value to store, which requires expanding the byte present in memset to
   2431     // a sensible representation for the alloca type. This is essentially
   2432     // splatting the byte to a sufficiently wide integer, splatting it across
   2433     // any desired vector width, and bitcasting to the final type.
   2434     Value *V;
   2435 
   2436     if (VecTy) {
   2437       // If this is a memset of a vectorized alloca, insert it.
   2438       assert(ElementTy == ScalarTy);
   2439 
   2440       unsigned BeginIndex = getIndex(NewBeginOffset);
   2441       unsigned EndIndex = getIndex(NewEndOffset);
   2442       assert(EndIndex > BeginIndex && "Empty vector!");
   2443       unsigned NumElements = EndIndex - BeginIndex;
   2444       assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
   2445 
   2446       Value *Splat =
   2447           getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
   2448       Splat = convertValue(DL, IRB, Splat, ElementTy);
   2449       if (NumElements > 1)
   2450         Splat = getVectorSplat(Splat, NumElements);
   2451 
   2452       Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
   2453                                          "oldload");
   2454       V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
   2455     } else if (IntTy) {
   2456       // If this is a memset on an alloca where we can widen stores, insert the
   2457       // set integer.
   2458       assert(!II.isVolatile());
   2459 
   2460       uint64_t Size = NewEndOffset - NewBeginOffset;
   2461       V = getIntegerSplat(II.getValue(), Size);
   2462 
   2463       if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
   2464                     EndOffset != NewAllocaBeginOffset)) {
   2465         Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
   2466                                            "oldload");
   2467         Old = convertValue(DL, IRB, Old, IntTy);
   2468         uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
   2469         V = insertInteger(DL, IRB, Old, V, Offset, "insert");
   2470       } else {
   2471         assert(V->getType() == IntTy &&
   2472                "Wrong type for an alloca wide integer!");
   2473       }
   2474       V = convertValue(DL, IRB, V, AllocaTy);
   2475     } else {
   2476       // Established these invariants above.
   2477       assert(NewBeginOffset == NewAllocaBeginOffset);
   2478       assert(NewEndOffset == NewAllocaEndOffset);
   2479 
   2480       V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
   2481       if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
   2482         V = getVectorSplat(V, AllocaVecTy->getNumElements());
   2483 
   2484       V = convertValue(DL, IRB, V, AllocaTy);
   2485     }
   2486 
   2487     Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
   2488                                         II.isVolatile());
   2489     (void)New;
   2490     DEBUG(dbgs() << "          to: " << *New << "\n");
   2491     return !II.isVolatile();
   2492   }
   2493 
   2494   bool visitMemTransferInst(MemTransferInst &II) {
   2495     // Rewriting of memory transfer instructions can be a bit tricky. We break
   2496     // them into two categories: split intrinsics and unsplit intrinsics.
   2497 
   2498     DEBUG(dbgs() << "    original: " << II << "\n");
   2499 
   2500     bool IsDest = &II.getRawDestUse() == OldUse;
   2501     assert((IsDest && II.getRawDest() == OldPtr) ||
   2502            (!IsDest && II.getRawSource() == OldPtr));
   2503 
   2504     unsigned SliceAlign = getSliceAlign();
   2505 
   2506     // For unsplit intrinsics, we simply modify the source and destination
   2507     // pointers in place. This isn't just an optimization, it is a matter of
   2508     // correctness. With unsplit intrinsics we may be dealing with transfers
   2509     // within a single alloca before SROA ran, or with transfers that have
   2510     // a variable length. We may also be dealing with memmove instead of
   2511     // memcpy, and so simply updating the pointers is the necessary for us to
   2512     // update both source and dest of a single call.
   2513     if (!IsSplittable) {
   2514       Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
   2515       if (IsDest)
   2516         II.setDest(AdjustedPtr);
   2517       else
   2518         II.setSource(AdjustedPtr);
   2519 
   2520       if (II.getAlignment() > SliceAlign) {
   2521         Type *CstTy = II.getAlignmentCst()->getType();
   2522         II.setAlignment(
   2523             ConstantInt::get(CstTy, MinAlign(II.getAlignment(), SliceAlign)));
   2524       }
   2525 
   2526       DEBUG(dbgs() << "          to: " << II << "\n");
   2527       deleteIfTriviallyDead(OldPtr);
   2528       return false;
   2529     }
   2530     // For split transfer intrinsics we have an incredibly useful assurance:
   2531     // the source and destination do not reside within the same alloca, and at
   2532     // least one of them does not escape. This means that we can replace
   2533     // memmove with memcpy, and we don't need to worry about all manner of
   2534     // downsides to splitting and transforming the operations.
   2535 
   2536     // If this doesn't map cleanly onto the alloca type, and that type isn't
   2537     // a single value type, just emit a memcpy.
   2538     bool EmitMemCpy
   2539       = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset ||
   2540                              EndOffset < NewAllocaEndOffset ||
   2541                              !NewAI.getAllocatedType()->isSingleValueType());
   2542 
   2543     // If we're just going to emit a memcpy, the alloca hasn't changed, and the
   2544     // size hasn't been shrunk based on analysis of the viable range, this is
   2545     // a no-op.
   2546     if (EmitMemCpy && &OldAI == &NewAI) {
   2547       // Ensure the start lines up.
   2548       assert(NewBeginOffset == BeginOffset);
   2549 
   2550       // Rewrite the size as needed.
   2551       if (NewEndOffset != EndOffset)
   2552         II.setLength(ConstantInt::get(II.getLength()->getType(),
   2553                                       NewEndOffset - NewBeginOffset));
   2554       return false;
   2555     }
   2556     // Record this instruction for deletion.
   2557     Pass.DeadInsts.insert(&II);
   2558 
   2559     // Strip all inbounds GEPs and pointer casts to try to dig out any root
   2560     // alloca that should be re-examined after rewriting this instruction.
   2561     Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
   2562     if (AllocaInst *AI
   2563           = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
   2564       assert(AI != &OldAI && AI != &NewAI &&
   2565              "Splittable transfers cannot reach the same alloca on both ends.");
   2566       Pass.Worklist.insert(AI);
   2567     }
   2568 
   2569     Type *OtherPtrTy = OtherPtr->getType();
   2570     unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
   2571 
   2572     // Compute the relative offset for the other pointer within the transfer.
   2573     unsigned IntPtrWidth = DL.getPointerSizeInBits(OtherAS);
   2574     APInt OtherOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
   2575     unsigned OtherAlign = MinAlign(II.getAlignment() ? II.getAlignment() : 1,
   2576                                    OtherOffset.zextOrTrunc(64).getZExtValue());
   2577 
   2578     if (EmitMemCpy) {
   2579       // Compute the other pointer, folding as much as possible to produce
   2580       // a single, simple GEP in most cases.
   2581       OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
   2582                                 OtherPtr->getName() + ".");
   2583 
   2584       Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
   2585       Type *SizeTy = II.getLength()->getType();
   2586       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
   2587 
   2588       CallInst *New = IRB.CreateMemCpy(
   2589           IsDest ? OurPtr : OtherPtr, IsDest ? OtherPtr : OurPtr, Size,
   2590           MinAlign(SliceAlign, OtherAlign), II.isVolatile());
   2591       (void)New;
   2592       DEBUG(dbgs() << "          to: " << *New << "\n");
   2593       return false;
   2594     }
   2595 
   2596     bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
   2597                          NewEndOffset == NewAllocaEndOffset;
   2598     uint64_t Size = NewEndOffset - NewBeginOffset;
   2599     unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
   2600     unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
   2601     unsigned NumElements = EndIndex - BeginIndex;
   2602     IntegerType *SubIntTy
   2603       = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : nullptr;
   2604 
   2605     // Reset the other pointer type to match the register type we're going to
   2606     // use, but using the address space of the original other pointer.
   2607     if (VecTy && !IsWholeAlloca) {
   2608       if (NumElements == 1)
   2609         OtherPtrTy = VecTy->getElementType();
   2610       else
   2611         OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
   2612 
   2613       OtherPtrTy = OtherPtrTy->getPointerTo(OtherAS);
   2614     } else if (IntTy && !IsWholeAlloca) {
   2615       OtherPtrTy = SubIntTy->getPointerTo(OtherAS);
   2616     } else {
   2617       OtherPtrTy = NewAllocaTy->getPointerTo(OtherAS);
   2618     }
   2619 
   2620     Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
   2621                                    OtherPtr->getName() + ".");
   2622     unsigned SrcAlign = OtherAlign;
   2623     Value *DstPtr = &NewAI;
   2624     unsigned DstAlign = SliceAlign;
   2625     if (!IsDest) {
   2626       std::swap(SrcPtr, DstPtr);
   2627       std::swap(SrcAlign, DstAlign);
   2628     }
   2629 
   2630     Value *Src;
   2631     if (VecTy && !IsWholeAlloca && !IsDest) {
   2632       Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
   2633                                   "load");
   2634       Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
   2635     } else if (IntTy && !IsWholeAlloca && !IsDest) {
   2636       Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
   2637                                   "load");
   2638       Src = convertValue(DL, IRB, Src, IntTy);
   2639       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
   2640       Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
   2641     } else {
   2642       Src = IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(),
   2643                                   "copyload");
   2644     }
   2645 
   2646     if (VecTy && !IsWholeAlloca && IsDest) {
   2647       Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
   2648                                          "oldload");
   2649       Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
   2650     } else if (IntTy && !IsWholeAlloca && IsDest) {
   2651       Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
   2652                                          "oldload");
   2653       Old = convertValue(DL, IRB, Old, IntTy);
   2654       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
   2655       Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
   2656       Src = convertValue(DL, IRB, Src, NewAllocaTy);
   2657     }
   2658 
   2659     StoreInst *Store = cast<StoreInst>(
   2660         IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
   2661     (void)Store;
   2662     DEBUG(dbgs() << "          to: " << *Store << "\n");
   2663     return !II.isVolatile();
   2664   }
   2665 
   2666   bool visitIntrinsicInst(IntrinsicInst &II) {
   2667     assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
   2668            II.getIntrinsicID() == Intrinsic::lifetime_end);
   2669     DEBUG(dbgs() << "    original: " << II << "\n");
   2670     assert(II.getArgOperand(1) == OldPtr);
   2671 
   2672     // Record this instruction for deletion.
   2673     Pass.DeadInsts.insert(&II);
   2674 
   2675     ConstantInt *Size
   2676       = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
   2677                          NewEndOffset - NewBeginOffset);
   2678     Value *Ptr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
   2679     Value *New;
   2680     if (II.getIntrinsicID() == Intrinsic::lifetime_start)
   2681       New = IRB.CreateLifetimeStart(Ptr, Size);
   2682     else
   2683       New = IRB.CreateLifetimeEnd(Ptr, Size);
   2684 
   2685     (void)New;
   2686     DEBUG(dbgs() << "          to: " << *New << "\n");
   2687     return true;
   2688   }
   2689 
   2690   bool visitPHINode(PHINode &PN) {
   2691     DEBUG(dbgs() << "    original: " << PN << "\n");
   2692     assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
   2693     assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
   2694 
   2695     // We would like to compute a new pointer in only one place, but have it be
   2696     // as local as possible to the PHI. To do that, we re-use the location of
   2697     // the old pointer, which necessarily must be in the right position to
   2698     // dominate the PHI.
   2699     IRBuilderTy PtrBuilder(IRB);
   2700     PtrBuilder.SetInsertPoint(OldPtr);
   2701     PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc());
   2702 
   2703     Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType());
   2704     // Replace the operands which were using the old pointer.
   2705     std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
   2706 
   2707     DEBUG(dbgs() << "          to: " << PN << "\n");
   2708     deleteIfTriviallyDead(OldPtr);
   2709 
   2710     // PHIs can't be promoted on their own, but often can be speculated. We
   2711     // check the speculation outside of the rewriter so that we see the
   2712     // fully-rewritten alloca.
   2713     PHIUsers.insert(&PN);
   2714     return true;
   2715   }
   2716 
   2717   bool visitSelectInst(SelectInst &SI) {
   2718     DEBUG(dbgs() << "    original: " << SI << "\n");
   2719     assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
   2720            "Pointer isn't an operand!");
   2721     assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
   2722     assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
   2723 
   2724     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
   2725     // Replace the operands which were using the old pointer.
   2726     if (SI.getOperand(1) == OldPtr)
   2727       SI.setOperand(1, NewPtr);
   2728     if (SI.getOperand(2) == OldPtr)
   2729       SI.setOperand(2, NewPtr);
   2730 
   2731     DEBUG(dbgs() << "          to: " << SI << "\n");
   2732     deleteIfTriviallyDead(OldPtr);
   2733 
   2734     // Selects can't be promoted on their own, but often can be speculated. We
   2735     // check the speculation outside of the rewriter so that we see the
   2736     // fully-rewritten alloca.
   2737     SelectUsers.insert(&SI);
   2738     return true;
   2739   }
   2740 
   2741 };
   2742 }
   2743 
   2744 namespace {
   2745 /// \brief Visitor to rewrite aggregate loads and stores as scalar.
   2746 ///
   2747 /// This pass aggressively rewrites all aggregate loads and stores on
   2748 /// a particular pointer (or any pointer derived from it which we can identify)
   2749 /// with scalar loads and stores.
   2750 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
   2751   // Befriend the base class so it can delegate to private visit methods.
   2752   friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
   2753 
   2754   const DataLayout &DL;
   2755 
   2756   /// Queue of pointer uses to analyze and potentially rewrite.
   2757   SmallVector<Use *, 8> Queue;
   2758 
   2759   /// Set to prevent us from cycling with phi nodes and loops.
   2760   SmallPtrSet<User *, 8> Visited;
   2761 
   2762   /// The current pointer use being rewritten. This is used to dig up the used
   2763   /// value (as opposed to the user).
   2764   Use *U;
   2765 
   2766 public:
   2767   AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
   2768 
   2769   /// Rewrite loads and stores through a pointer and all pointers derived from
   2770   /// it.
   2771   bool rewrite(Instruction &I) {
   2772     DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
   2773     enqueueUsers(I);
   2774     bool Changed = false;
   2775     while (!Queue.empty()) {
   2776       U = Queue.pop_back_val();
   2777       Changed |= visit(cast<Instruction>(U->getUser()));
   2778     }
   2779     return Changed;
   2780   }
   2781 
   2782 private:
   2783   /// Enqueue all the users of the given instruction for further processing.
   2784   /// This uses a set to de-duplicate users.
   2785   void enqueueUsers(Instruction &I) {
   2786     for (Use &U : I.uses())
   2787       if (Visited.insert(U.getUser()))
   2788         Queue.push_back(&U);
   2789   }
   2790 
   2791   // Conservative default is to not rewrite anything.
   2792   bool visitInstruction(Instruction &I) { return false; }
   2793 
   2794   /// \brief Generic recursive split emission class.
   2795   template <typename Derived>
   2796   class OpSplitter {
   2797   protected:
   2798     /// The builder used to form new instructions.
   2799     IRBuilderTy IRB;
   2800     /// The indices which to be used with insert- or extractvalue to select the
   2801     /// appropriate value within the aggregate.
   2802     SmallVector<unsigned, 4> Indices;
   2803     /// The indices to a GEP instruction which will move Ptr to the correct slot
   2804     /// within the aggregate.
   2805     SmallVector<Value *, 4> GEPIndices;
   2806     /// The base pointer of the original op, used as a base for GEPing the
   2807     /// split operations.
   2808     Value *Ptr;
   2809 
   2810     /// Initialize the splitter with an insertion point, Ptr and start with a
   2811     /// single zero GEP index.
   2812     OpSplitter(Instruction *InsertionPoint, Value *Ptr)
   2813       : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
   2814 
   2815   public:
   2816     /// \brief Generic recursive split emission routine.
   2817     ///
   2818     /// This method recursively splits an aggregate op (load or store) into
   2819     /// scalar or vector ops. It splits recursively until it hits a single value
   2820     /// and emits that single value operation via the template argument.
   2821     ///
   2822     /// The logic of this routine relies on GEPs and insertvalue and
   2823     /// extractvalue all operating with the same fundamental index list, merely
   2824     /// formatted differently (GEPs need actual values).
   2825     ///
   2826     /// \param Ty  The type being split recursively into smaller ops.
   2827     /// \param Agg The aggregate value being built up or stored, depending on
   2828     /// whether this is splitting a load or a store respectively.
   2829     void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
   2830       if (Ty->isSingleValueType())
   2831         return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
   2832 
   2833       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
   2834         unsigned OldSize = Indices.size();
   2835         (void)OldSize;
   2836         for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
   2837              ++Idx) {
   2838           assert(Indices.size() == OldSize && "Did not return to the old size");
   2839           Indices.push_back(Idx);
   2840           GEPIndices.push_back(IRB.getInt32(Idx));
   2841           emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
   2842           GEPIndices.pop_back();
   2843           Indices.pop_back();
   2844         }
   2845         return;
   2846       }
   2847 
   2848       if (StructType *STy = dyn_cast<StructType>(Ty)) {
   2849         unsigned OldSize = Indices.size();
   2850         (void)OldSize;
   2851         for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
   2852              ++Idx) {
   2853           assert(Indices.size() == OldSize && "Did not return to the old size");
   2854           Indices.push_back(Idx);
   2855           GEPIndices.push_back(IRB.getInt32(Idx));
   2856           emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
   2857           GEPIndices.pop_back();
   2858           Indices.pop_back();
   2859         }
   2860         return;
   2861       }
   2862 
   2863       llvm_unreachable("Only arrays and structs are aggregate loadable types");
   2864     }
   2865   };
   2866 
   2867   struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
   2868     LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
   2869       : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
   2870 
   2871     /// Emit a leaf load of a single value. This is called at the leaves of the
   2872     /// recursive emission to actually load values.
   2873     void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
   2874       assert(Ty->isSingleValueType());
   2875       // Load the single value and insert it using the indices.
   2876       Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep");
   2877       Value *Load = IRB.CreateLoad(GEP, Name + ".load");
   2878       Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
   2879       DEBUG(dbgs() << "          to: " << *Load << "\n");
   2880     }
   2881   };
   2882 
   2883   bool visitLoadInst(LoadInst &LI) {
   2884     assert(LI.getPointerOperand() == *U);
   2885     if (!LI.isSimple() || LI.getType()->isSingleValueType())
   2886       return false;
   2887 
   2888     // We have an aggregate being loaded, split it apart.
   2889     DEBUG(dbgs() << "    original: " << LI << "\n");
   2890     LoadOpSplitter Splitter(&LI, *U);
   2891     Value *V = UndefValue::get(LI.getType());
   2892     Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
   2893     LI.replaceAllUsesWith(V);
   2894     LI.eraseFromParent();
   2895     return true;
   2896   }
   2897 
   2898   struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
   2899     StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
   2900       : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
   2901 
   2902     /// Emit a leaf store of a single value. This is called at the leaves of the
   2903     /// recursive emission to actually produce stores.
   2904     void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
   2905       assert(Ty->isSingleValueType());
   2906       // Extract the single value and store it using the indices.
   2907       Value *Store = IRB.CreateStore(
   2908         IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
   2909         IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
   2910       (void)Store;
   2911       DEBUG(dbgs() << "          to: " << *Store << "\n");
   2912     }
   2913   };
   2914 
   2915   bool visitStoreInst(StoreInst &SI) {
   2916     if (!SI.isSimple() || SI.getPointerOperand() != *U)
   2917       return false;
   2918     Value *V = SI.getValueOperand();
   2919     if (V->getType()->isSingleValueType())
   2920       return false;
   2921 
   2922     // We have an aggregate being stored, split it apart.
   2923     DEBUG(dbgs() << "    original: " << SI << "\n");
   2924     StoreOpSplitter Splitter(&SI, *U);
   2925     Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
   2926     SI.eraseFromParent();
   2927     return true;
   2928   }
   2929 
   2930   bool visitBitCastInst(BitCastInst &BC) {
   2931     enqueueUsers(BC);
   2932     return false;
   2933   }
   2934 
   2935   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
   2936     enqueueUsers(GEPI);
   2937     return false;
   2938   }
   2939 
   2940   bool visitPHINode(PHINode &PN) {
   2941     enqueueUsers(PN);
   2942     return false;
   2943   }
   2944 
   2945   bool visitSelectInst(SelectInst &SI) {
   2946     enqueueUsers(SI);
   2947     return false;
   2948   }
   2949 };
   2950 }
   2951 
   2952 /// \brief Strip aggregate type wrapping.
   2953 ///
   2954 /// This removes no-op aggregate types wrapping an underlying type. It will
   2955 /// strip as many layers of types as it can without changing either the type
   2956 /// size or the allocated size.
   2957 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
   2958   if (Ty->isSingleValueType())
   2959     return Ty;
   2960 
   2961   uint64_t AllocSize = DL.getTypeAllocSize(Ty);
   2962   uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
   2963 
   2964   Type *InnerTy;
   2965   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
   2966     InnerTy = ArrTy->getElementType();
   2967   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
   2968     const StructLayout *SL = DL.getStructLayout(STy);
   2969     unsigned Index = SL->getElementContainingOffset(0);
   2970     InnerTy = STy->getElementType(Index);
   2971   } else {
   2972     return Ty;
   2973   }
   2974 
   2975   if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
   2976       TypeSize > DL.getTypeSizeInBits(InnerTy))
   2977     return Ty;
   2978 
   2979   return stripAggregateTypeWrapping(DL, InnerTy);
   2980 }
   2981 
   2982 /// \brief Try to find a partition of the aggregate type passed in for a given
   2983 /// offset and size.
   2984 ///
   2985 /// This recurses through the aggregate type and tries to compute a subtype
   2986 /// based on the offset and size. When the offset and size span a sub-section
   2987 /// of an array, it will even compute a new array type for that sub-section,
   2988 /// and the same for structs.
   2989 ///
   2990 /// Note that this routine is very strict and tries to find a partition of the
   2991 /// type which produces the *exact* right offset and size. It is not forgiving
   2992 /// when the size or offset cause either end of type-based partition to be off.
   2993 /// Also, this is a best-effort routine. It is reasonable to give up and not
   2994 /// return a type if necessary.
   2995 static Type *getTypePartition(const DataLayout &DL, Type *Ty,
   2996                               uint64_t Offset, uint64_t Size) {
   2997   if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
   2998     return stripAggregateTypeWrapping(DL, Ty);
   2999   if (Offset > DL.getTypeAllocSize(Ty) ||
   3000       (DL.getTypeAllocSize(Ty) - Offset) < Size)
   3001     return nullptr;
   3002 
   3003   if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
   3004     // We can't partition pointers...
   3005     if (SeqTy->isPointerTy())
   3006       return nullptr;
   3007 
   3008     Type *ElementTy = SeqTy->getElementType();
   3009     uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
   3010     uint64_t NumSkippedElements = Offset / ElementSize;
   3011     if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) {
   3012       if (NumSkippedElements >= ArrTy->getNumElements())
   3013         return nullptr;
   3014     } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) {
   3015       if (NumSkippedElements >= VecTy->getNumElements())
   3016         return nullptr;
   3017     }
   3018     Offset -= NumSkippedElements * ElementSize;
   3019 
   3020     // First check if we need to recurse.
   3021     if (Offset > 0 || Size < ElementSize) {
   3022       // Bail if the partition ends in a different array element.
   3023       if ((Offset + Size) > ElementSize)
   3024         return nullptr;
   3025       // Recurse through the element type trying to peel off offset bytes.
   3026       return getTypePartition(DL, ElementTy, Offset, Size);
   3027     }
   3028     assert(Offset == 0);
   3029 
   3030     if (Size == ElementSize)
   3031       return stripAggregateTypeWrapping(DL, ElementTy);
   3032     assert(Size > ElementSize);
   3033     uint64_t NumElements = Size / ElementSize;
   3034     if (NumElements * ElementSize != Size)
   3035       return nullptr;
   3036     return ArrayType::get(ElementTy, NumElements);
   3037   }
   3038 
   3039   StructType *STy = dyn_cast<StructType>(Ty);
   3040   if (!STy)
   3041     return nullptr;
   3042 
   3043   const StructLayout *SL = DL.getStructLayout(STy);
   3044   if (Offset >= SL->getSizeInBytes())
   3045     return nullptr;
   3046   uint64_t EndOffset = Offset + Size;
   3047   if (EndOffset > SL->getSizeInBytes())
   3048     return nullptr;
   3049 
   3050   unsigned Index = SL->getElementContainingOffset(Offset);
   3051   Offset -= SL->getElementOffset(Index);
   3052 
   3053   Type *ElementTy = STy->getElementType(Index);
   3054   uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
   3055   if (Offset >= ElementSize)
   3056     return nullptr; // The offset points into alignment padding.
   3057 
   3058   // See if any partition must be contained by the element.
   3059   if (Offset > 0 || Size < ElementSize) {
   3060     if ((Offset + Size) > ElementSize)
   3061       return nullptr;
   3062     return getTypePartition(DL, ElementTy, Offset, Size);
   3063   }
   3064   assert(Offset == 0);
   3065 
   3066   if (Size == ElementSize)
   3067     return stripAggregateTypeWrapping(DL, ElementTy);
   3068 
   3069   StructType::element_iterator EI = STy->element_begin() + Index,
   3070                                EE = STy->element_end();
   3071   if (EndOffset < SL->getSizeInBytes()) {
   3072     unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
   3073     if (Index == EndIndex)
   3074       return nullptr; // Within a single element and its padding.
   3075 
   3076     // Don't try to form "natural" types if the elements don't line up with the
   3077     // expected size.
   3078     // FIXME: We could potentially recurse down through the last element in the
   3079     // sub-struct to find a natural end point.
   3080     if (SL->getElementOffset(EndIndex) != EndOffset)
   3081       return nullptr;
   3082 
   3083     assert(Index < EndIndex);
   3084     EE = STy->element_begin() + EndIndex;
   3085   }
   3086 
   3087   // Try to build up a sub-structure.
   3088   StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
   3089                                       STy->isPacked());
   3090   const StructLayout *SubSL = DL.getStructLayout(SubTy);
   3091   if (Size != SubSL->getSizeInBytes())
   3092     return nullptr; // The sub-struct doesn't have quite the size needed.
   3093 
   3094   return SubTy;
   3095 }
   3096 
   3097 /// \brief Rewrite an alloca partition's users.
   3098 ///
   3099 /// This routine drives both of the rewriting goals of the SROA pass. It tries
   3100 /// to rewrite uses of an alloca partition to be conducive for SSA value
   3101 /// promotion. If the partition needs a new, more refined alloca, this will
   3102 /// build that new alloca, preserving as much type information as possible, and
   3103 /// rewrite the uses of the old alloca to point at the new one and have the
   3104 /// appropriate new offsets. It also evaluates how successful the rewrite was
   3105 /// at enabling promotion and if it was successful queues the alloca to be
   3106 /// promoted.
   3107 bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S,
   3108                             AllocaSlices::iterator B, AllocaSlices::iterator E,
   3109                             int64_t BeginOffset, int64_t EndOffset,
   3110                             ArrayRef<AllocaSlices::iterator> SplitUses) {
   3111   assert(BeginOffset < EndOffset);
   3112   uint64_t SliceSize = EndOffset - BeginOffset;
   3113 
   3114   // Try to compute a friendly type for this partition of the alloca. This
   3115   // won't always succeed, in which case we fall back to a legal integer type
   3116   // or an i8 array of an appropriate size.
   3117   Type *SliceTy = nullptr;
   3118   if (Type *CommonUseTy = findCommonType(B, E, EndOffset))
   3119     if (DL->getTypeAllocSize(CommonUseTy) >= SliceSize)
   3120       SliceTy = CommonUseTy;
   3121   if (!SliceTy)
   3122     if (