Home | History | Annotate | Download | only in lib
      1 /*
      2  * Itanium 2-optimized version of memcpy and copy_user function
      3  *
      4  * Inputs:
      5  * 	in0:	destination address
      6  *	in1:	source address
      7  *	in2:	number of bytes to copy
      8  * Output:
      9  *	for memcpy:    return dest
     10  * 	for copy_user: return 0 if success,
     11  *		       or number of byte NOT copied if error occurred.
     12  *
     13  * Copyright (C) 2002 Intel Corp.
     14  * Copyright (C) 2002 Ken Chen <kenneth.w.chen (at) intel.com>
     15  */
     16 #include <asm/asmmacro.h>
     17 #include <asm/page.h>
     18 
     19 #define EK(y...) EX(y)
     20 
     21 /* McKinley specific optimization */
     22 
     23 #define retval		r8
     24 #define saved_pfs	r31
     25 #define saved_lc	r10
     26 #define saved_pr	r11
     27 #define saved_in0	r14
     28 #define saved_in1	r15
     29 #define saved_in2	r16
     30 
     31 #define src0		r2
     32 #define src1		r3
     33 #define dst0		r17
     34 #define dst1		r18
     35 #define cnt		r9
     36 
     37 /* r19-r30 are temp for each code section */
     38 #define PREFETCH_DIST	8
     39 #define src_pre_mem	r19
     40 #define dst_pre_mem	r20
     41 #define src_pre_l2	r21
     42 #define dst_pre_l2	r22
     43 #define t1		r23
     44 #define t2		r24
     45 #define t3		r25
     46 #define t4		r26
     47 #define t5		t1	// alias!
     48 #define t6		t2	// alias!
     49 #define t7		t3	// alias!
     50 #define n8		r27
     51 #define t9		t5	// alias!
     52 #define t10		t4	// alias!
     53 #define t11		t7	// alias!
     54 #define t12		t6	// alias!
     55 #define t14		t10	// alias!
     56 #define t13		r28
     57 #define t15		r29
     58 #define tmp		r30
     59 
     60 /* defines for long_copy block */
     61 #define	A	0
     62 #define B	(PREFETCH_DIST)
     63 #define C	(B + PREFETCH_DIST)
     64 #define D	(C + 1)
     65 #define N	(D + 1)
     66 #define Nrot	((N + 7) & ~7)
     67 
     68 /* alias */
     69 #define in0		r32
     70 #define in1		r33
     71 #define in2		r34
     72 
     73 GLOBAL_ENTRY(memcpy)
     74 	and	r28=0x7,in0
     75 	and	r29=0x7,in1
     76 	mov	f6=f0
     77 	mov	retval=in0
     78 	br.cond.sptk .common_code
     79 	;;
     80 END(memcpy)
     81 GLOBAL_ENTRY(__copy_user)
     82 	.prologue
     83 // check dest alignment
     84 	and	r28=0x7,in0
     85 	and	r29=0x7,in1
     86 	mov	f6=f1
     87 	mov	saved_in0=in0	// save dest pointer
     88 	mov	saved_in1=in1	// save src pointer
     89 	mov	retval=r0	// initialize return value
     90 	;;
     91 .common_code:
     92 	cmp.gt	p15,p0=8,in2	// check for small size
     93 	cmp.ne	p13,p0=0,r28	// check dest alignment
     94 	cmp.ne	p14,p0=0,r29	// check src alignment
     95 	add	src0=0,in1
     96 	sub	r30=8,r28	// for .align_dest
     97 	mov	saved_in2=in2	// save len
     98 	;;
     99 	add	dst0=0,in0
    100 	add	dst1=1,in0	// dest odd index
    101 	cmp.le	p6,p0 = 1,r30	// for .align_dest
    102 (p15)	br.cond.dpnt .memcpy_short
    103 (p13)	br.cond.dpnt .align_dest
    104 (p14)	br.cond.dpnt .unaligned_src
    105 	;;
    106 
    107 // both dest and src are aligned on 8-byte boundary
    108 .aligned_src:
    109 	.save ar.pfs, saved_pfs
    110 	alloc	saved_pfs=ar.pfs,3,Nrot-3,0,Nrot
    111 	.save pr, saved_pr
    112 	mov	saved_pr=pr
    113 
    114 	shr.u	cnt=in2,7	// this much cache line
    115 	;;
    116 	cmp.lt	p6,p0=2*PREFETCH_DIST,cnt
    117 	cmp.lt	p7,p8=1,cnt
    118 	.save ar.lc, saved_lc
    119 	mov	saved_lc=ar.lc
    120 	.body
    121 	add	cnt=-1,cnt
    122 	add	src_pre_mem=0,in1	// prefetch src pointer
    123 	add	dst_pre_mem=0,in0	// prefetch dest pointer
    124 	;;
    125 (p7)	mov	ar.lc=cnt	// prefetch count
    126 (p8)	mov	ar.lc=r0
    127 (p6)	br.cond.dpnt .long_copy
    128 	;;
    129 
    130 .prefetch:
    131 	lfetch.fault	  [src_pre_mem], 128
    132 	lfetch.fault.excl [dst_pre_mem], 128
    133 	br.cloop.dptk.few .prefetch
    134 	;;
    135 
    136 .medium_copy:
    137 	and	tmp=31,in2	// copy length after iteration
    138 	shr.u	r29=in2,5	// number of 32-byte iteration
    139 	add	dst1=8,dst0	// 2nd dest pointer
    140 	;;
    141 	add	cnt=-1,r29	// ctop iteration adjustment
    142 	cmp.eq	p10,p0=r29,r0	// do we really need to loop?
    143 	add	src1=8,src0	// 2nd src pointer
    144 	cmp.le	p6,p0=8,tmp
    145 	;;
    146 	cmp.le	p7,p0=16,tmp
    147 	mov	ar.lc=cnt	// loop setup
    148 	cmp.eq	p16,p17 = r0,r0
    149 	mov	ar.ec=2
    150 (p10)	br.dpnt.few .aligned_src_tail
    151 	;;
    152 	TEXT_ALIGN(32)
    153 1:
    154 EX(.ex_handler, (p16)	ld8	r34=[src0],16)
    155 EK(.ex_handler, (p16)	ld8	r38=[src1],16)
    156 EX(.ex_handler, (p17)	st8	[dst0]=r33,16)
    157 EK(.ex_handler, (p17)	st8	[dst1]=r37,16)
    158 	;;
    159 EX(.ex_handler, (p16)	ld8	r32=[src0],16)
    160 EK(.ex_handler, (p16)	ld8	r36=[src1],16)
    161 EX(.ex_handler, (p16)	st8	[dst0]=r34,16)
    162 EK(.ex_handler, (p16)	st8	[dst1]=r38,16)
    163 	br.ctop.dptk.few 1b
    164 	;;
    165 
    166 .aligned_src_tail:
    167 EX(.ex_handler, (p6)	ld8	t1=[src0])
    168 	mov	ar.lc=saved_lc
    169 	mov	ar.pfs=saved_pfs
    170 EX(.ex_hndlr_s, (p7)	ld8	t2=[src1],8)
    171 	cmp.le	p8,p0=24,tmp
    172 	and	r21=-8,tmp
    173 	;;
    174 EX(.ex_hndlr_s, (p8)	ld8	t3=[src1])
    175 EX(.ex_handler, (p6)	st8	[dst0]=t1)	// store byte 1
    176 	and	in2=7,tmp	// remaining length
    177 EX(.ex_hndlr_d, (p7)	st8	[dst1]=t2,8)	// store byte 2
    178 	add	src0=src0,r21	// setting up src pointer
    179 	add	dst0=dst0,r21	// setting up dest pointer
    180 	;;
    181 EX(.ex_handler, (p8)	st8	[dst1]=t3)	// store byte 3
    182 	mov	pr=saved_pr,-1
    183 	br.dptk.many .memcpy_short
    184 	;;
    185 
    186 /* code taken from copy_page_mck */
    187 .long_copy:
    188 	.rotr v[2*PREFETCH_DIST]
    189 	.rotp p[N]
    190 
    191 	mov src_pre_mem = src0
    192 	mov pr.rot = 0x10000
    193 	mov ar.ec = 1				// special unrolled loop
    194 
    195 	mov dst_pre_mem = dst0
    196 
    197 	add src_pre_l2 = 8*8, src0
    198 	add dst_pre_l2 = 8*8, dst0
    199 	;;
    200 	add src0 = 8, src_pre_mem		// first t1 src
    201 	mov ar.lc = 2*PREFETCH_DIST - 1
    202 	shr.u cnt=in2,7				// number of lines
    203 	add src1 = 3*8, src_pre_mem		// first t3 src
    204 	add dst0 = 8, dst_pre_mem		// first t1 dst
    205 	add dst1 = 3*8, dst_pre_mem		// first t3 dst
    206 	;;
    207 	and tmp=127,in2				// remaining bytes after this block
    208 	add cnt = -(2*PREFETCH_DIST) - 1, cnt
    209 	// same as .line_copy loop, but with all predicated-off instructions removed:
    210 .prefetch_loop:
    211 EX(.ex_hndlr_lcpy_1, (p[A])	ld8 v[A] = [src_pre_mem], 128)		// M0
    212 EK(.ex_hndlr_lcpy_1, (p[B])	st8 [dst_pre_mem] = v[B], 128)		// M2
    213 	br.ctop.sptk .prefetch_loop
    214 	;;
    215 	cmp.eq p16, p0 = r0, r0			// reset p16 to 1
    216 	mov ar.lc = cnt
    217 	mov ar.ec = N				// # of stages in pipeline
    218 	;;
    219 .line_copy:
    220 EX(.ex_handler,	(p[D])	ld8 t2 = [src0], 3*8)			// M0
    221 EK(.ex_handler,	(p[D])	ld8 t4 = [src1], 3*8)			// M1
    222 EX(.ex_handler_lcpy,	(p[B])	st8 [dst_pre_mem] = v[B], 128)		// M2 prefetch dst from memory
    223 EK(.ex_handler_lcpy,	(p[D])	st8 [dst_pre_l2] = n8, 128)		// M3 prefetch dst from L2
    224 	;;
    225 EX(.ex_handler_lcpy,	(p[A])	ld8 v[A] = [src_pre_mem], 128)		// M0 prefetch src from memory
    226 EK(.ex_handler_lcpy,	(p[C])	ld8 n8 = [src_pre_l2], 128)		// M1 prefetch src from L2
    227 EX(.ex_handler,	(p[D])	st8 [dst0] =  t1, 8)			// M2
    228 EK(.ex_handler,	(p[D])	st8 [dst1] =  t3, 8)			// M3
    229 	;;
    230 EX(.ex_handler,	(p[D])	ld8  t5 = [src0], 8)
    231 EK(.ex_handler,	(p[D])	ld8  t7 = [src1], 3*8)
    232 EX(.ex_handler,	(p[D])	st8 [dst0] =  t2, 3*8)
    233 EK(.ex_handler,	(p[D])	st8 [dst1] =  t4, 3*8)
    234 	;;
    235 EX(.ex_handler,	(p[D])	ld8  t6 = [src0], 3*8)
    236 EK(.ex_handler,	(p[D])	ld8 t10 = [src1], 8)
    237 EX(.ex_handler,	(p[D])	st8 [dst0] =  t5, 8)
    238 EK(.ex_handler,	(p[D])	st8 [dst1] =  t7, 3*8)
    239 	;;
    240 EX(.ex_handler,	(p[D])	ld8  t9 = [src0], 3*8)
    241 EK(.ex_handler,	(p[D])	ld8 t11 = [src1], 3*8)
    242 EX(.ex_handler,	(p[D])	st8 [dst0] =  t6, 3*8)
    243 EK(.ex_handler,	(p[D])	st8 [dst1] = t10, 8)
    244 	;;
    245 EX(.ex_handler,	(p[D])	ld8 t12 = [src0], 8)
    246 EK(.ex_handler,	(p[D])	ld8 t14 = [src1], 8)
    247 EX(.ex_handler,	(p[D])	st8 [dst0] =  t9, 3*8)
    248 EK(.ex_handler,	(p[D])	st8 [dst1] = t11, 3*8)
    249 	;;
    250 EX(.ex_handler,	(p[D])	ld8 t13 = [src0], 4*8)
    251 EK(.ex_handler,	(p[D])	ld8 t15 = [src1], 4*8)
    252 EX(.ex_handler,	(p[D])	st8 [dst0] = t12, 8)
    253 EK(.ex_handler,	(p[D])	st8 [dst1] = t14, 8)
    254 	;;
    255 EX(.ex_handler,	(p[C])	ld8  t1 = [src0], 8)
    256 EK(.ex_handler,	(p[C])	ld8  t3 = [src1], 8)
    257 EX(.ex_handler,	(p[D])	st8 [dst0] = t13, 4*8)
    258 EK(.ex_handler,	(p[D])	st8 [dst1] = t15, 4*8)
    259 	br.ctop.sptk .line_copy
    260 	;;
    261 
    262 	add dst0=-8,dst0
    263 	add src0=-8,src0
    264 	mov in2=tmp
    265 	.restore sp
    266 	br.sptk.many .medium_copy
    267 	;;
    268 
    269 #define BLOCK_SIZE	128*32
    270 #define blocksize	r23
    271 #define curlen		r24
    272 
    273 // dest is on 8-byte boundary, src is not. We need to do
    274 // ld8-ld8, shrp, then st8.  Max 8 byte copy per cycle.
    275 .unaligned_src:
    276 	.prologue
    277 	.save ar.pfs, saved_pfs
    278 	alloc	saved_pfs=ar.pfs,3,5,0,8
    279 	.save ar.lc, saved_lc
    280 	mov	saved_lc=ar.lc
    281 	.save pr, saved_pr
    282 	mov	saved_pr=pr
    283 	.body
    284 .4k_block:
    285 	mov	saved_in0=dst0	// need to save all input arguments
    286 	mov	saved_in2=in2
    287 	mov	blocksize=BLOCK_SIZE
    288 	;;
    289 	cmp.lt	p6,p7=blocksize,in2
    290 	mov	saved_in1=src0
    291 	;;
    292 (p6)	mov	in2=blocksize
    293 	;;
    294 	shr.u	r21=in2,7	// this much cache line
    295 	shr.u	r22=in2,4	// number of 16-byte iteration
    296 	and	curlen=15,in2	// copy length after iteration
    297 	and	r30=7,src0	// source alignment
    298 	;;
    299 	cmp.lt	p7,p8=1,r21
    300 	add	cnt=-1,r21
    301 	;;
    302 
    303 	add	src_pre_mem=0,src0	// prefetch src pointer
    304 	add	dst_pre_mem=0,dst0	// prefetch dest pointer
    305 	and	src0=-8,src0		// 1st src pointer
    306 (p7)	mov	ar.lc = cnt
    307 (p8)	mov	ar.lc = r0
    308 	;;
    309 	TEXT_ALIGN(32)
    310 1:	lfetch.fault	  [src_pre_mem], 128
    311 	lfetch.fault.excl [dst_pre_mem], 128
    312 	br.cloop.dptk.few 1b
    313 	;;
    314 
    315 	shladd	dst1=r22,3,dst0	// 2nd dest pointer
    316 	shladd	src1=r22,3,src0	// 2nd src pointer
    317 	cmp.eq	p8,p9=r22,r0	// do we really need to loop?
    318 	cmp.le	p6,p7=8,curlen;	// have at least 8 byte remaining?
    319 	add	cnt=-1,r22	// ctop iteration adjustment
    320 	;;
    321 EX(.ex_handler, (p9)	ld8	r33=[src0],8)	// loop primer
    322 EK(.ex_handler, (p9)	ld8	r37=[src1],8)
    323 (p8)	br.dpnt.few .noloop
    324 	;;
    325 
    326 // The jump address is calculated based on src alignment. The COPYU
    327 // macro below need to confine its size to power of two, so an entry
    328 // can be caulated using shl instead of an expensive multiply. The
    329 // size is then hard coded by the following #define to match the
    330 // actual size.  This make it somewhat tedious when COPYU macro gets
    331 // changed and this need to be adjusted to match.
    332 #define LOOP_SIZE 6
    333 1:
    334 	mov	r29=ip		// jmp_table thread
    335 	mov	ar.lc=cnt
    336 	;;
    337 	add	r29=.jump_table - 1b - (.jmp1-.jump_table), r29
    338 	shl	r28=r30, LOOP_SIZE	// jmp_table thread
    339 	mov	ar.ec=2		// loop setup
    340 	;;
    341 	add	r29=r29,r28		// jmp_table thread
    342 	cmp.eq	p16,p17=r0,r0
    343 	;;
    344 	mov	b6=r29			// jmp_table thread
    345 	;;
    346 	br.cond.sptk.few b6
    347 
    348 // for 8-15 byte case
    349 // We will skip the loop, but need to replicate the side effect
    350 // that the loop produces.
    351 .noloop:
    352 EX(.ex_handler, (p6)	ld8	r37=[src1],8)
    353 	add	src0=8,src0
    354 (p6)	shl	r25=r30,3
    355 	;;
    356 EX(.ex_handler, (p6)	ld8	r27=[src1])
    357 (p6)	shr.u	r28=r37,r25
    358 (p6)	sub	r26=64,r25
    359 	;;
    360 (p6)	shl	r27=r27,r26
    361 	;;
    362 (p6)	or	r21=r28,r27
    363 
    364 .unaligned_src_tail:
    365 /* check if we have more than blocksize to copy, if so go back */
    366 	cmp.gt	p8,p0=saved_in2,blocksize
    367 	;;
    368 (p8)	add	dst0=saved_in0,blocksize
    369 (p8)	add	src0=saved_in1,blocksize
    370 (p8)	sub	in2=saved_in2,blocksize
    371 (p8)	br.dpnt	.4k_block
    372 	;;
    373 
    374 /* we have up to 15 byte to copy in the tail.
    375  * part of work is already done in the jump table code
    376  * we are at the following state.
    377  * src side:
    378  *
    379  *   xxxxxx xx                   <----- r21 has xxxxxxxx already
    380  * -------- -------- --------
    381  * 0        8        16
    382  *          ^
    383  *          |
    384  *          src1
    385  *
    386  * dst
    387  * -------- -------- --------
    388  * ^
    389  * |
    390  * dst1
    391  */
    392 EX(.ex_handler, (p6)	st8	[dst1]=r21,8)	// more than 8 byte to copy
    393 (p6)	add	curlen=-8,curlen	// update length
    394 	mov	ar.pfs=saved_pfs
    395 	;;
    396 	mov	ar.lc=saved_lc
    397 	mov	pr=saved_pr,-1
    398 	mov	in2=curlen	// remaining length
    399 	mov	dst0=dst1	// dest pointer
    400 	add	src0=src1,r30	// forward by src alignment
    401 	;;
    402 
    403 // 7 byte or smaller.
    404 .memcpy_short:
    405 	cmp.le	p8,p9   = 1,in2
    406 	cmp.le	p10,p11 = 2,in2
    407 	cmp.le	p12,p13 = 3,in2
    408 	cmp.le	p14,p15 = 4,in2
    409 	add	src1=1,src0	// second src pointer
    410 	add	dst1=1,dst0	// second dest pointer
    411 	;;
    412 
    413 EX(.ex_handler_short, (p8)	ld1	t1=[src0],2)
    414 EK(.ex_handler_short, (p10)	ld1	t2=[src1],2)
    415 (p9)	br.ret.dpnt rp		// 0 byte copy
    416 	;;
    417 
    418 EX(.ex_handler_short, (p8)	st1	[dst0]=t1,2)
    419 EK(.ex_handler_short, (p10)	st1	[dst1]=t2,2)
    420 (p11)	br.ret.dpnt rp		// 1 byte copy
    421 
    422 EX(.ex_handler_short, (p12)	ld1	t3=[src0],2)
    423 EK(.ex_handler_short, (p14)	ld1	t4=[src1],2)
    424 (p13)	br.ret.dpnt rp		// 2 byte copy
    425 	;;
    426 
    427 	cmp.le	p6,p7   = 5,in2
    428 	cmp.le	p8,p9   = 6,in2
    429 	cmp.le	p10,p11 = 7,in2
    430 
    431 EX(.ex_handler_short, (p12)	st1	[dst0]=t3,2)
    432 EK(.ex_handler_short, (p14)	st1	[dst1]=t4,2)
    433 (p15)	br.ret.dpnt rp		// 3 byte copy
    434 	;;
    435 
    436 EX(.ex_handler_short, (p6)	ld1	t5=[src0],2)
    437 EK(.ex_handler_short, (p8)	ld1	t6=[src1],2)
    438 (p7)	br.ret.dpnt rp		// 4 byte copy
    439 	;;
    440 
    441 EX(.ex_handler_short, (p6)	st1	[dst0]=t5,2)
    442 EK(.ex_handler_short, (p8)	st1	[dst1]=t6,2)
    443 (p9)	br.ret.dptk rp		// 5 byte copy
    444 
    445 EX(.ex_handler_short, (p10)	ld1	t7=[src0],2)
    446 (p11)	br.ret.dptk rp		// 6 byte copy
    447 	;;
    448 
    449 EX(.ex_handler_short, (p10)	st1	[dst0]=t7,2)
    450 	br.ret.dptk rp		// done all cases
    451 
    452 
    453 /* Align dest to nearest 8-byte boundary. We know we have at
    454  * least 7 bytes to copy, enough to crawl to 8-byte boundary.
    455  * Actual number of byte to crawl depend on the dest alignment.
    456  * 7 byte or less is taken care at .memcpy_short
    457 
    458  * src0 - source even index
    459  * src1 - source  odd index
    460  * dst0 - dest even index
    461  * dst1 - dest  odd index
    462  * r30  - distance to 8-byte boundary
    463  */
    464 
    465 .align_dest:
    466 	add	src1=1,in1	// source odd index
    467 	cmp.le	p7,p0 = 2,r30	// for .align_dest
    468 	cmp.le	p8,p0 = 3,r30	// for .align_dest
    469 EX(.ex_handler_short, (p6)	ld1	t1=[src0],2)
    470 	cmp.le	p9,p0 = 4,r30	// for .align_dest
    471 	cmp.le	p10,p0 = 5,r30
    472 	;;
    473 EX(.ex_handler_short, (p7)	ld1	t2=[src1],2)
    474 EK(.ex_handler_short, (p8)	ld1	t3=[src0],2)
    475 	cmp.le	p11,p0 = 6,r30
    476 EX(.ex_handler_short, (p6)	st1	[dst0] = t1,2)
    477 	cmp.le	p12,p0 = 7,r30
    478 	;;
    479 EX(.ex_handler_short, (p9)	ld1	t4=[src1],2)
    480 EK(.ex_handler_short, (p10)	ld1	t5=[src0],2)
    481 EX(.ex_handler_short, (p7)	st1	[dst1] = t2,2)
    482 EK(.ex_handler_short, (p8)	st1	[dst0] = t3,2)
    483 	;;
    484 EX(.ex_handler_short, (p11)	ld1	t6=[src1],2)
    485 EK(.ex_handler_short, (p12)	ld1	t7=[src0],2)
    486 	cmp.eq	p6,p7=r28,r29
    487 EX(.ex_handler_short, (p9)	st1	[dst1] = t4,2)
    488 EK(.ex_handler_short, (p10)	st1	[dst0] = t5,2)
    489 	sub	in2=in2,r30
    490 	;;
    491 EX(.ex_handler_short, (p11)	st1	[dst1] = t6,2)
    492 EK(.ex_handler_short, (p12)	st1	[dst0] = t7)
    493 	add	dst0=in0,r30	// setup arguments
    494 	add	src0=in1,r30
    495 (p6)	br.cond.dptk .aligned_src
    496 (p7)	br.cond.dpnt .unaligned_src
    497 	;;
    498 
    499 /* main loop body in jump table format */
    500 #define COPYU(shift)									\
    501 1:											\
    502 EX(.ex_handler,  (p16)	ld8	r32=[src0],8);		/* 1 */				\
    503 EK(.ex_handler,  (p16)	ld8	r36=[src1],8);						\
    504 		 (p17)	shrp	r35=r33,r34,shift;;	/* 1 */				\
    505 EX(.ex_handler,  (p6)	ld8	r22=[src1]);	/* common, prime for tail section */	\
    506 		 nop.m	0;								\
    507 		 (p16)	shrp	r38=r36,r37,shift;					\
    508 EX(.ex_handler,  (p17)	st8	[dst0]=r35,8);		/* 1 */				\
    509 EK(.ex_handler,  (p17)	st8	[dst1]=r39,8);						\
    510 		 br.ctop.dptk.few 1b;;							\
    511 		 (p7)	add	src1=-8,src1;	/* back out for <8 byte case */		\
    512 		 shrp	r21=r22,r38,shift;	/* speculative work */			\
    513 		 br.sptk.few .unaligned_src_tail /* branch out of jump table */		\
    514 		 ;;
    515 	TEXT_ALIGN(32)
    516 .jump_table:
    517 	COPYU(8)	// unaligned cases
    518 .jmp1:
    519 	COPYU(16)
    520 	COPYU(24)
    521 	COPYU(32)
    522 	COPYU(40)
    523 	COPYU(48)
    524 	COPYU(56)
    525 
    526 #undef A
    527 #undef B
    528 #undef C
    529 #undef D
    530 
    531 /*
    532  * Due to lack of local tag support in gcc 2.x assembler, it is not clear which
    533  * instruction failed in the bundle.  The exception algorithm is that we
    534  * first figure out the faulting address, then detect if there is any
    535  * progress made on the copy, if so, redo the copy from last known copied
    536  * location up to the faulting address (exclusive). In the copy_from_user
    537  * case, remaining byte in kernel buffer will be zeroed.
    538  *
    539  * Take copy_from_user as an example, in the code there are multiple loads
    540  * in a bundle and those multiple loads could span over two pages, the
    541  * faulting address is calculated as page_round_down(max(src0, src1)).
    542  * This is based on knowledge that if we can access one byte in a page, we
    543  * can access any byte in that page.
    544  *
    545  * predicate used in the exception handler:
    546  * p6-p7: direction
    547  * p10-p11: src faulting addr calculation
    548  * p12-p13: dst faulting addr calculation
    549  */
    550 
    551 #define A	r19
    552 #define B	r20
    553 #define C	r21
    554 #define D	r22
    555 #define F	r28
    556 
    557 #define memset_arg0	r32
    558 #define memset_arg2	r33
    559 
    560 #define saved_retval	loc0
    561 #define saved_rtlink	loc1
    562 #define saved_pfs_stack	loc2
    563 
    564 .ex_hndlr_s:
    565 	add	src0=8,src0
    566 	br.sptk .ex_handler
    567 	;;
    568 .ex_hndlr_d:
    569 	add	dst0=8,dst0
    570 	br.sptk .ex_handler
    571 	;;
    572 .ex_hndlr_lcpy_1:
    573 	mov	src1=src_pre_mem
    574 	mov	dst1=dst_pre_mem
    575 	cmp.gtu	p10,p11=src_pre_mem,saved_in1
    576 	cmp.gtu	p12,p13=dst_pre_mem,saved_in0
    577 	;;
    578 (p10)	add	src0=8,saved_in1
    579 (p11)	mov	src0=saved_in1
    580 (p12)	add	dst0=8,saved_in0
    581 (p13)	mov	dst0=saved_in0
    582 	br.sptk	.ex_handler
    583 .ex_handler_lcpy:
    584 	// in line_copy block, the preload addresses should always ahead
    585 	// of the other two src/dst pointers.  Furthermore, src1/dst1 should
    586 	// always ahead of src0/dst0.
    587 	mov	src1=src_pre_mem
    588 	mov	dst1=dst_pre_mem
    589 .ex_handler:
    590 	mov	pr=saved_pr,-1		// first restore pr, lc, and pfs
    591 	mov	ar.lc=saved_lc
    592 	mov	ar.pfs=saved_pfs
    593 	;;
    594 .ex_handler_short: // fault occurred in these sections didn't change pr, lc, pfs
    595 	cmp.ltu	p6,p7=saved_in0, saved_in1	// get the copy direction
    596 	cmp.ltu	p10,p11=src0,src1
    597 	cmp.ltu	p12,p13=dst0,dst1
    598 	fcmp.eq	p8,p0=f6,f0		// is it memcpy?
    599 	mov	tmp = dst0
    600 	;;
    601 (p11)	mov	src1 = src0		// pick the larger of the two
    602 (p13)	mov	dst0 = dst1		// make dst0 the smaller one
    603 (p13)	mov	dst1 = tmp		// and dst1 the larger one
    604 	;;
    605 (p6)	dep	F = r0,dst1,0,PAGE_SHIFT // usr dst round down to page boundary
    606 (p7)	dep	F = r0,src1,0,PAGE_SHIFT // usr src round down to page boundary
    607 	;;
    608 (p6)	cmp.le	p14,p0=dst0,saved_in0	// no progress has been made on store
    609 (p7)	cmp.le	p14,p0=src0,saved_in1	// no progress has been made on load
    610 	mov	retval=saved_in2
    611 (p8)	ld1	tmp=[src1]		// force an oops for memcpy call
    612 (p8)	st1	[dst1]=r0		// force an oops for memcpy call
    613 (p14)	br.ret.sptk.many rp
    614 
    615 /*
    616  * The remaining byte to copy is calculated as:
    617  *
    618  * A =	(faulting_addr - orig_src)	-> len to faulting ld address
    619  *	or
    620  * 	(faulting_addr - orig_dst)	-> len to faulting st address
    621  * B =	(cur_dst - orig_dst)		-> len copied so far
    622  * C =	A - B				-> len need to be copied
    623  * D =	orig_len - A			-> len need to be zeroed
    624  */
    625 (p6)	sub	A = F, saved_in0
    626 (p7)	sub	A = F, saved_in1
    627 	clrrrb
    628 	;;
    629 	alloc	saved_pfs_stack=ar.pfs,3,3,3,0
    630 	cmp.lt	p8,p0=A,r0
    631 	sub	B = dst0, saved_in0	// how many byte copied so far
    632 	;;
    633 (p8)	mov	A = 0;			// A shouldn't be negative, cap it
    634 	;;
    635 	sub	C = A, B
    636 	sub	D = saved_in2, A
    637 	;;
    638 	cmp.gt	p8,p0=C,r0		// more than 1 byte?
    639 	add	memset_arg0=saved_in0, A
    640 (p6)	mov	memset_arg2=0		// copy_to_user should not call memset
    641 (p7)	mov	memset_arg2=D		// copy_from_user need to have kbuf zeroed
    642 	mov	r8=0
    643 	mov	saved_retval = D
    644 	mov	saved_rtlink = b0
    645 
    646 	add	out0=saved_in0, B
    647 	add	out1=saved_in1, B
    648 	mov	out2=C
    649 (p8)	br.call.sptk.few b0=__copy_user	// recursive call
    650 	;;
    651 
    652 	add	saved_retval=saved_retval,r8	// above might return non-zero value
    653 	cmp.gt	p8,p0=memset_arg2,r0	// more than 1 byte?
    654 	mov	out0=memset_arg0	// *s
    655 	mov	out1=r0			// c
    656 	mov	out2=memset_arg2	// n
    657 (p8)	br.call.sptk.few b0=memset
    658 	;;
    659 
    660 	mov	retval=saved_retval
    661 	mov	ar.pfs=saved_pfs_stack
    662 	mov	b0=saved_rtlink
    663 	br.ret.sptk.many rp
    664 
    665 /* end of McKinley specific optimization */
    666 END(__copy_user)
    667