Home | History | Annotate | Download | only in AST
      1 //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements the ASTContext interface.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/ASTContext.h"
     15 #include "CXXABI.h"
     16 #include "clang/AST/ASTMutationListener.h"
     17 #include "clang/AST/Attr.h"
     18 #include "clang/AST/CharUnits.h"
     19 #include "clang/AST/Comment.h"
     20 #include "clang/AST/CommentCommandTraits.h"
     21 #include "clang/AST/DeclCXX.h"
     22 #include "clang/AST/DeclObjC.h"
     23 #include "clang/AST/DeclTemplate.h"
     24 #include "clang/AST/Expr.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/ExternalASTSource.h"
     27 #include "clang/AST/Mangle.h"
     28 #include "clang/AST/MangleNumberingContext.h"
     29 #include "clang/AST/RecordLayout.h"
     30 #include "clang/AST/RecursiveASTVisitor.h"
     31 #include "clang/AST/TypeLoc.h"
     32 #include "clang/AST/VTableBuilder.h"
     33 #include "clang/Basic/Builtins.h"
     34 #include "clang/Basic/SourceManager.h"
     35 #include "clang/Basic/TargetInfo.h"
     36 #include "llvm/ADT/SmallString.h"
     37 #include "llvm/ADT/StringExtras.h"
     38 #include "llvm/ADT/Triple.h"
     39 #include "llvm/Support/Capacity.h"
     40 #include "llvm/Support/MathExtras.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include <map>
     43 
     44 using namespace clang;
     45 
     46 unsigned ASTContext::NumImplicitDefaultConstructors;
     47 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
     48 unsigned ASTContext::NumImplicitCopyConstructors;
     49 unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
     50 unsigned ASTContext::NumImplicitMoveConstructors;
     51 unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
     52 unsigned ASTContext::NumImplicitCopyAssignmentOperators;
     53 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
     54 unsigned ASTContext::NumImplicitMoveAssignmentOperators;
     55 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
     56 unsigned ASTContext::NumImplicitDestructors;
     57 unsigned ASTContext::NumImplicitDestructorsDeclared;
     58 
     59 enum FloatingRank {
     60   HalfRank, FloatRank, DoubleRank, LongDoubleRank
     61 };
     62 
     63 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
     64   if (!CommentsLoaded && ExternalSource) {
     65     ExternalSource->ReadComments();
     66 
     67 #ifndef NDEBUG
     68     ArrayRef<RawComment *> RawComments = Comments.getComments();
     69     assert(std::is_sorted(RawComments.begin(), RawComments.end(),
     70                           BeforeThanCompare<RawComment>(SourceMgr)));
     71 #endif
     72 
     73     CommentsLoaded = true;
     74   }
     75 
     76   assert(D);
     77 
     78   // User can not attach documentation to implicit declarations.
     79   if (D->isImplicit())
     80     return nullptr;
     81 
     82   // User can not attach documentation to implicit instantiations.
     83   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
     84     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     85       return nullptr;
     86   }
     87 
     88   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
     89     if (VD->isStaticDataMember() &&
     90         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     91       return nullptr;
     92   }
     93 
     94   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
     95     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     96       return nullptr;
     97   }
     98 
     99   if (const ClassTemplateSpecializationDecl *CTSD =
    100           dyn_cast<ClassTemplateSpecializationDecl>(D)) {
    101     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
    102     if (TSK == TSK_ImplicitInstantiation ||
    103         TSK == TSK_Undeclared)
    104       return nullptr;
    105   }
    106 
    107   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
    108     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
    109       return nullptr;
    110   }
    111   if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
    112     // When tag declaration (but not definition!) is part of the
    113     // decl-specifier-seq of some other declaration, it doesn't get comment
    114     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
    115       return nullptr;
    116   }
    117   // TODO: handle comments for function parameters properly.
    118   if (isa<ParmVarDecl>(D))
    119     return nullptr;
    120 
    121   // TODO: we could look up template parameter documentation in the template
    122   // documentation.
    123   if (isa<TemplateTypeParmDecl>(D) ||
    124       isa<NonTypeTemplateParmDecl>(D) ||
    125       isa<TemplateTemplateParmDecl>(D))
    126     return nullptr;
    127 
    128   ArrayRef<RawComment *> RawComments = Comments.getComments();
    129 
    130   // If there are no comments anywhere, we won't find anything.
    131   if (RawComments.empty())
    132     return nullptr;
    133 
    134   // Find declaration location.
    135   // For Objective-C declarations we generally don't expect to have multiple
    136   // declarators, thus use declaration starting location as the "declaration
    137   // location".
    138   // For all other declarations multiple declarators are used quite frequently,
    139   // so we use the location of the identifier as the "declaration location".
    140   SourceLocation DeclLoc;
    141   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
    142       isa<ObjCPropertyDecl>(D) ||
    143       isa<RedeclarableTemplateDecl>(D) ||
    144       isa<ClassTemplateSpecializationDecl>(D))
    145     DeclLoc = D->getLocStart();
    146   else {
    147     DeclLoc = D->getLocation();
    148     if (DeclLoc.isMacroID()) {
    149       if (isa<TypedefDecl>(D)) {
    150         // If location of the typedef name is in a macro, it is because being
    151         // declared via a macro. Try using declaration's starting location as
    152         // the "declaration location".
    153         DeclLoc = D->getLocStart();
    154       } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
    155         // If location of the tag decl is inside a macro, but the spelling of
    156         // the tag name comes from a macro argument, it looks like a special
    157         // macro like NS_ENUM is being used to define the tag decl.  In that
    158         // case, adjust the source location to the expansion loc so that we can
    159         // attach the comment to the tag decl.
    160         if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
    161             TD->isCompleteDefinition())
    162           DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
    163       }
    164     }
    165   }
    166 
    167   // If the declaration doesn't map directly to a location in a file, we
    168   // can't find the comment.
    169   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
    170     return nullptr;
    171 
    172   // Find the comment that occurs just after this declaration.
    173   ArrayRef<RawComment *>::iterator Comment;
    174   {
    175     // When searching for comments during parsing, the comment we are looking
    176     // for is usually among the last two comments we parsed -- check them
    177     // first.
    178     RawComment CommentAtDeclLoc(
    179         SourceMgr, SourceRange(DeclLoc), false,
    180         LangOpts.CommentOpts.ParseAllComments);
    181     BeforeThanCompare<RawComment> Compare(SourceMgr);
    182     ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
    183     bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
    184     if (!Found && RawComments.size() >= 2) {
    185       MaybeBeforeDecl--;
    186       Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
    187     }
    188 
    189     if (Found) {
    190       Comment = MaybeBeforeDecl + 1;
    191       assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
    192                                          &CommentAtDeclLoc, Compare));
    193     } else {
    194       // Slow path.
    195       Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
    196                                  &CommentAtDeclLoc, Compare);
    197     }
    198   }
    199 
    200   // Decompose the location for the declaration and find the beginning of the
    201   // file buffer.
    202   std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
    203 
    204   // First check whether we have a trailing comment.
    205   if (Comment != RawComments.end() &&
    206       (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
    207       (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
    208        isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
    209     std::pair<FileID, unsigned> CommentBeginDecomp
    210       = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
    211     // Check that Doxygen trailing comment comes after the declaration, starts
    212     // on the same line and in the same file as the declaration.
    213     if (DeclLocDecomp.first == CommentBeginDecomp.first &&
    214         SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
    215           == SourceMgr.getLineNumber(CommentBeginDecomp.first,
    216                                      CommentBeginDecomp.second)) {
    217       return *Comment;
    218     }
    219   }
    220 
    221   // The comment just after the declaration was not a trailing comment.
    222   // Let's look at the previous comment.
    223   if (Comment == RawComments.begin())
    224     return nullptr;
    225   --Comment;
    226 
    227   // Check that we actually have a non-member Doxygen comment.
    228   if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
    229     return nullptr;
    230 
    231   // Decompose the end of the comment.
    232   std::pair<FileID, unsigned> CommentEndDecomp
    233     = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
    234 
    235   // If the comment and the declaration aren't in the same file, then they
    236   // aren't related.
    237   if (DeclLocDecomp.first != CommentEndDecomp.first)
    238     return nullptr;
    239 
    240   // Get the corresponding buffer.
    241   bool Invalid = false;
    242   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
    243                                                &Invalid).data();
    244   if (Invalid)
    245     return nullptr;
    246 
    247   // Extract text between the comment and declaration.
    248   StringRef Text(Buffer + CommentEndDecomp.second,
    249                  DeclLocDecomp.second - CommentEndDecomp.second);
    250 
    251   // There should be no other declarations or preprocessor directives between
    252   // comment and declaration.
    253   if (Text.find_first_of(";{}#@") != StringRef::npos)
    254     return nullptr;
    255 
    256   return *Comment;
    257 }
    258 
    259 namespace {
    260 /// If we have a 'templated' declaration for a template, adjust 'D' to
    261 /// refer to the actual template.
    262 /// If we have an implicit instantiation, adjust 'D' to refer to template.
    263 const Decl *adjustDeclToTemplate(const Decl *D) {
    264   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    265     // Is this function declaration part of a function template?
    266     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
    267       return FTD;
    268 
    269     // Nothing to do if function is not an implicit instantiation.
    270     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
    271       return D;
    272 
    273     // Function is an implicit instantiation of a function template?
    274     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
    275       return FTD;
    276 
    277     // Function is instantiated from a member definition of a class template?
    278     if (const FunctionDecl *MemberDecl =
    279             FD->getInstantiatedFromMemberFunction())
    280       return MemberDecl;
    281 
    282     return D;
    283   }
    284   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    285     // Static data member is instantiated from a member definition of a class
    286     // template?
    287     if (VD->isStaticDataMember())
    288       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
    289         return MemberDecl;
    290 
    291     return D;
    292   }
    293   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
    294     // Is this class declaration part of a class template?
    295     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
    296       return CTD;
    297 
    298     // Class is an implicit instantiation of a class template or partial
    299     // specialization?
    300     if (const ClassTemplateSpecializationDecl *CTSD =
    301             dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
    302       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
    303         return D;
    304       llvm::PointerUnion<ClassTemplateDecl *,
    305                          ClassTemplatePartialSpecializationDecl *>
    306           PU = CTSD->getSpecializedTemplateOrPartial();
    307       return PU.is<ClassTemplateDecl*>() ?
    308           static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
    309           static_cast<const Decl*>(
    310               PU.get<ClassTemplatePartialSpecializationDecl *>());
    311     }
    312 
    313     // Class is instantiated from a member definition of a class template?
    314     if (const MemberSpecializationInfo *Info =
    315                    CRD->getMemberSpecializationInfo())
    316       return Info->getInstantiatedFrom();
    317 
    318     return D;
    319   }
    320   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
    321     // Enum is instantiated from a member definition of a class template?
    322     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
    323       return MemberDecl;
    324 
    325     return D;
    326   }
    327   // FIXME: Adjust alias templates?
    328   return D;
    329 }
    330 } // unnamed namespace
    331 
    332 const RawComment *ASTContext::getRawCommentForAnyRedecl(
    333                                                 const Decl *D,
    334                                                 const Decl **OriginalDecl) const {
    335   D = adjustDeclToTemplate(D);
    336 
    337   // Check whether we have cached a comment for this declaration already.
    338   {
    339     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
    340         RedeclComments.find(D);
    341     if (Pos != RedeclComments.end()) {
    342       const RawCommentAndCacheFlags &Raw = Pos->second;
    343       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
    344         if (OriginalDecl)
    345           *OriginalDecl = Raw.getOriginalDecl();
    346         return Raw.getRaw();
    347       }
    348     }
    349   }
    350 
    351   // Search for comments attached to declarations in the redeclaration chain.
    352   const RawComment *RC = nullptr;
    353   const Decl *OriginalDeclForRC = nullptr;
    354   for (auto I : D->redecls()) {
    355     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
    356         RedeclComments.find(I);
    357     if (Pos != RedeclComments.end()) {
    358       const RawCommentAndCacheFlags &Raw = Pos->second;
    359       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
    360         RC = Raw.getRaw();
    361         OriginalDeclForRC = Raw.getOriginalDecl();
    362         break;
    363       }
    364     } else {
    365       RC = getRawCommentForDeclNoCache(I);
    366       OriginalDeclForRC = I;
    367       RawCommentAndCacheFlags Raw;
    368       if (RC) {
    369         Raw.setRaw(RC);
    370         Raw.setKind(RawCommentAndCacheFlags::FromDecl);
    371       } else
    372         Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
    373       Raw.setOriginalDecl(I);
    374       RedeclComments[I] = Raw;
    375       if (RC)
    376         break;
    377     }
    378   }
    379 
    380   // If we found a comment, it should be a documentation comment.
    381   assert(!RC || RC->isDocumentation());
    382 
    383   if (OriginalDecl)
    384     *OriginalDecl = OriginalDeclForRC;
    385 
    386   // Update cache for every declaration in the redeclaration chain.
    387   RawCommentAndCacheFlags Raw;
    388   Raw.setRaw(RC);
    389   Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
    390   Raw.setOriginalDecl(OriginalDeclForRC);
    391 
    392   for (auto I : D->redecls()) {
    393     RawCommentAndCacheFlags &R = RedeclComments[I];
    394     if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
    395       R = Raw;
    396   }
    397 
    398   return RC;
    399 }
    400 
    401 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
    402                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
    403   const DeclContext *DC = ObjCMethod->getDeclContext();
    404   if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
    405     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
    406     if (!ID)
    407       return;
    408     // Add redeclared method here.
    409     for (const auto *Ext : ID->known_extensions()) {
    410       if (ObjCMethodDecl *RedeclaredMethod =
    411             Ext->getMethod(ObjCMethod->getSelector(),
    412                                   ObjCMethod->isInstanceMethod()))
    413         Redeclared.push_back(RedeclaredMethod);
    414     }
    415   }
    416 }
    417 
    418 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
    419                                                     const Decl *D) const {
    420   comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
    421   ThisDeclInfo->CommentDecl = D;
    422   ThisDeclInfo->IsFilled = false;
    423   ThisDeclInfo->fill();
    424   ThisDeclInfo->CommentDecl = FC->getDecl();
    425   if (!ThisDeclInfo->TemplateParameters)
    426     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
    427   comments::FullComment *CFC =
    428     new (*this) comments::FullComment(FC->getBlocks(),
    429                                       ThisDeclInfo);
    430   return CFC;
    431 
    432 }
    433 
    434 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
    435   const RawComment *RC = getRawCommentForDeclNoCache(D);
    436   return RC ? RC->parse(*this, nullptr, D) : nullptr;
    437 }
    438 
    439 comments::FullComment *ASTContext::getCommentForDecl(
    440                                               const Decl *D,
    441                                               const Preprocessor *PP) const {
    442   if (D->isInvalidDecl())
    443     return nullptr;
    444   D = adjustDeclToTemplate(D);
    445 
    446   const Decl *Canonical = D->getCanonicalDecl();
    447   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
    448       ParsedComments.find(Canonical);
    449 
    450   if (Pos != ParsedComments.end()) {
    451     if (Canonical != D) {
    452       comments::FullComment *FC = Pos->second;
    453       comments::FullComment *CFC = cloneFullComment(FC, D);
    454       return CFC;
    455     }
    456     return Pos->second;
    457   }
    458 
    459   const Decl *OriginalDecl;
    460 
    461   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
    462   if (!RC) {
    463     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
    464       SmallVector<const NamedDecl*, 8> Overridden;
    465       const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
    466       if (OMD && OMD->isPropertyAccessor())
    467         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
    468           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
    469             return cloneFullComment(FC, D);
    470       if (OMD)
    471         addRedeclaredMethods(OMD, Overridden);
    472       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
    473       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
    474         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
    475           return cloneFullComment(FC, D);
    476     }
    477     else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
    478       // Attach any tag type's documentation to its typedef if latter
    479       // does not have one of its own.
    480       QualType QT = TD->getUnderlyingType();
    481       if (const TagType *TT = QT->getAs<TagType>())
    482         if (const Decl *TD = TT->getDecl())
    483           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
    484             return cloneFullComment(FC, D);
    485     }
    486     else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
    487       while (IC->getSuperClass()) {
    488         IC = IC->getSuperClass();
    489         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
    490           return cloneFullComment(FC, D);
    491       }
    492     }
    493     else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
    494       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
    495         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
    496           return cloneFullComment(FC, D);
    497     }
    498     else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
    499       if (!(RD = RD->getDefinition()))
    500         return nullptr;
    501       // Check non-virtual bases.
    502       for (const auto &I : RD->bases()) {
    503         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
    504           continue;
    505         QualType Ty = I.getType();
    506         if (Ty.isNull())
    507           continue;
    508         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
    509           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
    510             continue;
    511 
    512           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
    513             return cloneFullComment(FC, D);
    514         }
    515       }
    516       // Check virtual bases.
    517       for (const auto &I : RD->vbases()) {
    518         if (I.getAccessSpecifier() != AS_public)
    519           continue;
    520         QualType Ty = I.getType();
    521         if (Ty.isNull())
    522           continue;
    523         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
    524           if (!(VirtualBase= VirtualBase->getDefinition()))
    525             continue;
    526           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
    527             return cloneFullComment(FC, D);
    528         }
    529       }
    530     }
    531     return nullptr;
    532   }
    533 
    534   // If the RawComment was attached to other redeclaration of this Decl, we
    535   // should parse the comment in context of that other Decl.  This is important
    536   // because comments can contain references to parameter names which can be
    537   // different across redeclarations.
    538   if (D != OriginalDecl)
    539     return getCommentForDecl(OriginalDecl, PP);
    540 
    541   comments::FullComment *FC = RC->parse(*this, PP, D);
    542   ParsedComments[Canonical] = FC;
    543   return FC;
    544 }
    545 
    546 void
    547 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
    548                                                TemplateTemplateParmDecl *Parm) {
    549   ID.AddInteger(Parm->getDepth());
    550   ID.AddInteger(Parm->getPosition());
    551   ID.AddBoolean(Parm->isParameterPack());
    552 
    553   TemplateParameterList *Params = Parm->getTemplateParameters();
    554   ID.AddInteger(Params->size());
    555   for (TemplateParameterList::const_iterator P = Params->begin(),
    556                                           PEnd = Params->end();
    557        P != PEnd; ++P) {
    558     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
    559       ID.AddInteger(0);
    560       ID.AddBoolean(TTP->isParameterPack());
    561       continue;
    562     }
    563 
    564     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
    565       ID.AddInteger(1);
    566       ID.AddBoolean(NTTP->isParameterPack());
    567       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
    568       if (NTTP->isExpandedParameterPack()) {
    569         ID.AddBoolean(true);
    570         ID.AddInteger(NTTP->getNumExpansionTypes());
    571         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
    572           QualType T = NTTP->getExpansionType(I);
    573           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
    574         }
    575       } else
    576         ID.AddBoolean(false);
    577       continue;
    578     }
    579 
    580     TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
    581     ID.AddInteger(2);
    582     Profile(ID, TTP);
    583   }
    584 }
    585 
    586 TemplateTemplateParmDecl *
    587 ASTContext::getCanonicalTemplateTemplateParmDecl(
    588                                           TemplateTemplateParmDecl *TTP) const {
    589   // Check if we already have a canonical template template parameter.
    590   llvm::FoldingSetNodeID ID;
    591   CanonicalTemplateTemplateParm::Profile(ID, TTP);
    592   void *InsertPos = nullptr;
    593   CanonicalTemplateTemplateParm *Canonical
    594     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
    595   if (Canonical)
    596     return Canonical->getParam();
    597 
    598   // Build a canonical template parameter list.
    599   TemplateParameterList *Params = TTP->getTemplateParameters();
    600   SmallVector<NamedDecl *, 4> CanonParams;
    601   CanonParams.reserve(Params->size());
    602   for (TemplateParameterList::const_iterator P = Params->begin(),
    603                                           PEnd = Params->end();
    604        P != PEnd; ++P) {
    605     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
    606       CanonParams.push_back(
    607                   TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
    608                                                SourceLocation(),
    609                                                SourceLocation(),
    610                                                TTP->getDepth(),
    611                                                TTP->getIndex(), nullptr, false,
    612                                                TTP->isParameterPack()));
    613     else if (NonTypeTemplateParmDecl *NTTP
    614              = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
    615       QualType T = getCanonicalType(NTTP->getType());
    616       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
    617       NonTypeTemplateParmDecl *Param;
    618       if (NTTP->isExpandedParameterPack()) {
    619         SmallVector<QualType, 2> ExpandedTypes;
    620         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
    621         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
    622           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
    623           ExpandedTInfos.push_back(
    624                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
    625         }
    626 
    627         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
    628                                                 SourceLocation(),
    629                                                 SourceLocation(),
    630                                                 NTTP->getDepth(),
    631                                                 NTTP->getPosition(), nullptr,
    632                                                 T,
    633                                                 TInfo,
    634                                                 ExpandedTypes.data(),
    635                                                 ExpandedTypes.size(),
    636                                                 ExpandedTInfos.data());
    637       } else {
    638         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
    639                                                 SourceLocation(),
    640                                                 SourceLocation(),
    641                                                 NTTP->getDepth(),
    642                                                 NTTP->getPosition(), nullptr,
    643                                                 T,
    644                                                 NTTP->isParameterPack(),
    645                                                 TInfo);
    646       }
    647       CanonParams.push_back(Param);
    648 
    649     } else
    650       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
    651                                            cast<TemplateTemplateParmDecl>(*P)));
    652   }
    653 
    654   TemplateTemplateParmDecl *CanonTTP
    655     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
    656                                        SourceLocation(), TTP->getDepth(),
    657                                        TTP->getPosition(),
    658                                        TTP->isParameterPack(),
    659                                        nullptr,
    660                          TemplateParameterList::Create(*this, SourceLocation(),
    661                                                        SourceLocation(),
    662                                                        CanonParams.data(),
    663                                                        CanonParams.size(),
    664                                                        SourceLocation()));
    665 
    666   // Get the new insert position for the node we care about.
    667   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
    668   assert(!Canonical && "Shouldn't be in the map!");
    669   (void)Canonical;
    670 
    671   // Create the canonical template template parameter entry.
    672   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
    673   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
    674   return CanonTTP;
    675 }
    676 
    677 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
    678   if (!LangOpts.CPlusPlus) return nullptr;
    679 
    680   switch (T.getCXXABI().getKind()) {
    681   case TargetCXXABI::GenericARM: // Same as Itanium at this level
    682   case TargetCXXABI::iOS:
    683   case TargetCXXABI::iOS64:
    684   case TargetCXXABI::GenericAArch64:
    685   case TargetCXXABI::GenericItanium:
    686     return CreateItaniumCXXABI(*this);
    687   case TargetCXXABI::Microsoft:
    688     return CreateMicrosoftCXXABI(*this);
    689   }
    690   llvm_unreachable("Invalid CXXABI type!");
    691 }
    692 
    693 static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
    694                                              const LangOptions &LOpts) {
    695   if (LOpts.FakeAddressSpaceMap) {
    696     // The fake address space map must have a distinct entry for each
    697     // language-specific address space.
    698     static const unsigned FakeAddrSpaceMap[] = {
    699       1, // opencl_global
    700       2, // opencl_local
    701       3, // opencl_constant
    702       4, // cuda_device
    703       5, // cuda_constant
    704       6  // cuda_shared
    705     };
    706     return &FakeAddrSpaceMap;
    707   } else {
    708     return &T.getAddressSpaceMap();
    709   }
    710 }
    711 
    712 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
    713                                           const LangOptions &LangOpts) {
    714   switch (LangOpts.getAddressSpaceMapMangling()) {
    715   case LangOptions::ASMM_Target:
    716     return TI.useAddressSpaceMapMangling();
    717   case LangOptions::ASMM_On:
    718     return true;
    719   case LangOptions::ASMM_Off:
    720     return false;
    721   }
    722   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
    723 }
    724 
    725 ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
    726                        IdentifierTable &idents, SelectorTable &sels,
    727                        Builtin::Context &builtins)
    728   : FunctionProtoTypes(this_()),
    729     TemplateSpecializationTypes(this_()),
    730     DependentTemplateSpecializationTypes(this_()),
    731     SubstTemplateTemplateParmPacks(this_()),
    732     GlobalNestedNameSpecifier(nullptr),
    733     Int128Decl(nullptr), UInt128Decl(nullptr), Float128StubDecl(nullptr),
    734     BuiltinVaListDecl(nullptr),
    735     ObjCIdDecl(nullptr), ObjCSelDecl(nullptr), ObjCClassDecl(nullptr),
    736     ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr),
    737     CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr),
    738     FILEDecl(nullptr),
    739     jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr), ucontext_tDecl(nullptr),
    740     BlockDescriptorType(nullptr), BlockDescriptorExtendedType(nullptr),
    741     cudaConfigureCallDecl(nullptr),
    742     NullTypeSourceInfo(QualType()),
    743     FirstLocalImport(), LastLocalImport(),
    744     SourceMgr(SM), LangOpts(LOpts),
    745     AddrSpaceMap(nullptr), Target(nullptr), PrintingPolicy(LOpts),
    746     Idents(idents), Selectors(sels),
    747     BuiltinInfo(builtins),
    748     DeclarationNames(*this),
    749     ExternalSource(nullptr), Listener(nullptr),
    750     Comments(SM), CommentsLoaded(false),
    751     CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
    752     LastSDM(nullptr, 0)
    753 {
    754   TUDecl = TranslationUnitDecl::Create(*this);
    755 }
    756 
    757 ASTContext::~ASTContext() {
    758   ReleaseParentMapEntries();
    759 
    760   // Release the DenseMaps associated with DeclContext objects.
    761   // FIXME: Is this the ideal solution?
    762   ReleaseDeclContextMaps();
    763 
    764   // Call all of the deallocation functions on all of their targets.
    765   for (DeallocationMap::const_iterator I = Deallocations.begin(),
    766            E = Deallocations.end(); I != E; ++I)
    767     for (unsigned J = 0, N = I->second.size(); J != N; ++J)
    768       (I->first)((I->second)[J]);
    769 
    770   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
    771   // because they can contain DenseMaps.
    772   for (llvm::DenseMap<const ObjCContainerDecl*,
    773        const ASTRecordLayout*>::iterator
    774        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
    775     // Increment in loop to prevent using deallocated memory.
    776     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
    777       R->Destroy(*this);
    778 
    779   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
    780        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
    781     // Increment in loop to prevent using deallocated memory.
    782     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
    783       R->Destroy(*this);
    784   }
    785 
    786   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
    787                                                     AEnd = DeclAttrs.end();
    788        A != AEnd; ++A)
    789     A->second->~AttrVec();
    790 
    791   llvm::DeleteContainerSeconds(MangleNumberingContexts);
    792 }
    793 
    794 void ASTContext::ReleaseParentMapEntries() {
    795   if (!AllParents) return;
    796   for (const auto &Entry : *AllParents) {
    797     if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
    798       delete Entry.second.get<ast_type_traits::DynTypedNode *>();
    799     } else {
    800       assert(Entry.second.is<ParentVector *>());
    801       delete Entry.second.get<ParentVector *>();
    802     }
    803   }
    804 }
    805 
    806 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
    807   Deallocations[Callback].push_back(Data);
    808 }
    809 
    810 void
    811 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
    812   ExternalSource = Source;
    813 }
    814 
    815 void ASTContext::PrintStats() const {
    816   llvm::errs() << "\n*** AST Context Stats:\n";
    817   llvm::errs() << "  " << Types.size() << " types total.\n";
    818 
    819   unsigned counts[] = {
    820 #define TYPE(Name, Parent) 0,
    821 #define ABSTRACT_TYPE(Name, Parent)
    822 #include "clang/AST/TypeNodes.def"
    823     0 // Extra
    824   };
    825 
    826   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
    827     Type *T = Types[i];
    828     counts[(unsigned)T->getTypeClass()]++;
    829   }
    830 
    831   unsigned Idx = 0;
    832   unsigned TotalBytes = 0;
    833 #define TYPE(Name, Parent)                                              \
    834   if (counts[Idx])                                                      \
    835     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
    836                  << " types\n";                                         \
    837   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
    838   ++Idx;
    839 #define ABSTRACT_TYPE(Name, Parent)
    840 #include "clang/AST/TypeNodes.def"
    841 
    842   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
    843 
    844   // Implicit special member functions.
    845   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
    846                << NumImplicitDefaultConstructors
    847                << " implicit default constructors created\n";
    848   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
    849                << NumImplicitCopyConstructors
    850                << " implicit copy constructors created\n";
    851   if (getLangOpts().CPlusPlus)
    852     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
    853                  << NumImplicitMoveConstructors
    854                  << " implicit move constructors created\n";
    855   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
    856                << NumImplicitCopyAssignmentOperators
    857                << " implicit copy assignment operators created\n";
    858   if (getLangOpts().CPlusPlus)
    859     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
    860                  << NumImplicitMoveAssignmentOperators
    861                  << " implicit move assignment operators created\n";
    862   llvm::errs() << NumImplicitDestructorsDeclared << "/"
    863                << NumImplicitDestructors
    864                << " implicit destructors created\n";
    865 
    866   if (ExternalSource) {
    867     llvm::errs() << "\n";
    868     ExternalSource->PrintStats();
    869   }
    870 
    871   BumpAlloc.PrintStats();
    872 }
    873 
    874 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
    875                                             RecordDecl::TagKind TK) const {
    876   SourceLocation Loc;
    877   RecordDecl *NewDecl;
    878   if (getLangOpts().CPlusPlus)
    879     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
    880                                     Loc, &Idents.get(Name));
    881   else
    882     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
    883                                  &Idents.get(Name));
    884   NewDecl->setImplicit();
    885   return NewDecl;
    886 }
    887 
    888 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
    889                                               StringRef Name) const {
    890   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
    891   TypedefDecl *NewDecl = TypedefDecl::Create(
    892       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
    893       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
    894   NewDecl->setImplicit();
    895   return NewDecl;
    896 }
    897 
    898 TypedefDecl *ASTContext::getInt128Decl() const {
    899   if (!Int128Decl)
    900     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
    901   return Int128Decl;
    902 }
    903 
    904 TypedefDecl *ASTContext::getUInt128Decl() const {
    905   if (!UInt128Decl)
    906     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
    907   return UInt128Decl;
    908 }
    909 
    910 TypeDecl *ASTContext::getFloat128StubType() const {
    911   assert(LangOpts.CPlusPlus && "should only be called for c++");
    912   if (!Float128StubDecl)
    913     Float128StubDecl = buildImplicitRecord("__float128");
    914 
    915   return Float128StubDecl;
    916 }
    917 
    918 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
    919   BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
    920   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
    921   Types.push_back(Ty);
    922 }
    923 
    924 void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
    925   assert((!this->Target || this->Target == &Target) &&
    926          "Incorrect target reinitialization");
    927   assert(VoidTy.isNull() && "Context reinitialized?");
    928 
    929   this->Target = &Target;
    930 
    931   ABI.reset(createCXXABI(Target));
    932   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
    933   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
    934 
    935   // C99 6.2.5p19.
    936   InitBuiltinType(VoidTy,              BuiltinType::Void);
    937 
    938   // C99 6.2.5p2.
    939   InitBuiltinType(BoolTy,              BuiltinType::Bool);
    940   // C99 6.2.5p3.
    941   if (LangOpts.CharIsSigned)
    942     InitBuiltinType(CharTy,            BuiltinType::Char_S);
    943   else
    944     InitBuiltinType(CharTy,            BuiltinType::Char_U);
    945   // C99 6.2.5p4.
    946   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
    947   InitBuiltinType(ShortTy,             BuiltinType::Short);
    948   InitBuiltinType(IntTy,               BuiltinType::Int);
    949   InitBuiltinType(LongTy,              BuiltinType::Long);
    950   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
    951 
    952   // C99 6.2.5p6.
    953   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
    954   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
    955   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
    956   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
    957   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
    958 
    959   // C99 6.2.5p10.
    960   InitBuiltinType(FloatTy,             BuiltinType::Float);
    961   InitBuiltinType(DoubleTy,            BuiltinType::Double);
    962   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
    963 
    964   // GNU extension, 128-bit integers.
    965   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
    966   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
    967 
    968   // C++ 3.9.1p5
    969   if (TargetInfo::isTypeSigned(Target.getWCharType()))
    970     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
    971   else  // -fshort-wchar makes wchar_t be unsigned.
    972     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
    973   if (LangOpts.CPlusPlus && LangOpts.WChar)
    974     WideCharTy = WCharTy;
    975   else {
    976     // C99 (or C++ using -fno-wchar).
    977     WideCharTy = getFromTargetType(Target.getWCharType());
    978   }
    979 
    980   WIntTy = getFromTargetType(Target.getWIntType());
    981 
    982   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
    983     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
    984   else // C99
    985     Char16Ty = getFromTargetType(Target.getChar16Type());
    986 
    987   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
    988     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
    989   else // C99
    990     Char32Ty = getFromTargetType(Target.getChar32Type());
    991 
    992   // Placeholder type for type-dependent expressions whose type is
    993   // completely unknown. No code should ever check a type against
    994   // DependentTy and users should never see it; however, it is here to
    995   // help diagnose failures to properly check for type-dependent
    996   // expressions.
    997   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
    998 
    999   // Placeholder type for functions.
   1000   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
   1001 
   1002   // Placeholder type for bound members.
   1003   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
   1004 
   1005   // Placeholder type for pseudo-objects.
   1006   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
   1007 
   1008   // "any" type; useful for debugger-like clients.
   1009   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
   1010 
   1011   // Placeholder type for unbridged ARC casts.
   1012   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
   1013 
   1014   // Placeholder type for builtin functions.
   1015   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
   1016 
   1017   // C99 6.2.5p11.
   1018   FloatComplexTy      = getComplexType(FloatTy);
   1019   DoubleComplexTy     = getComplexType(DoubleTy);
   1020   LongDoubleComplexTy = getComplexType(LongDoubleTy);
   1021 
   1022   // Builtin types for 'id', 'Class', and 'SEL'.
   1023   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
   1024   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
   1025   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
   1026 
   1027   if (LangOpts.OpenCL) {
   1028     InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
   1029     InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
   1030     InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
   1031     InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
   1032     InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
   1033     InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
   1034 
   1035     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
   1036     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
   1037   }
   1038 
   1039   // Builtin type for __objc_yes and __objc_no
   1040   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
   1041                        SignedCharTy : BoolTy);
   1042 
   1043   ObjCConstantStringType = QualType();
   1044 
   1045   ObjCSuperType = QualType();
   1046 
   1047   // void * type
   1048   VoidPtrTy = getPointerType(VoidTy);
   1049 
   1050   // nullptr type (C++0x 2.14.7)
   1051   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
   1052 
   1053   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
   1054   InitBuiltinType(HalfTy, BuiltinType::Half);
   1055 
   1056   // Builtin type used to help define __builtin_va_list.
   1057   VaListTagTy = QualType();
   1058 }
   1059 
   1060 DiagnosticsEngine &ASTContext::getDiagnostics() const {
   1061   return SourceMgr.getDiagnostics();
   1062 }
   1063 
   1064 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
   1065   AttrVec *&Result = DeclAttrs[D];
   1066   if (!Result) {
   1067     void *Mem = Allocate(sizeof(AttrVec));
   1068     Result = new (Mem) AttrVec;
   1069   }
   1070 
   1071   return *Result;
   1072 }
   1073 
   1074 /// \brief Erase the attributes corresponding to the given declaration.
   1075 void ASTContext::eraseDeclAttrs(const Decl *D) {
   1076   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
   1077   if (Pos != DeclAttrs.end()) {
   1078     Pos->second->~AttrVec();
   1079     DeclAttrs.erase(Pos);
   1080   }
   1081 }
   1082 
   1083 // FIXME: Remove ?
   1084 MemberSpecializationInfo *
   1085 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
   1086   assert(Var->isStaticDataMember() && "Not a static data member");
   1087   return getTemplateOrSpecializationInfo(Var)
   1088       .dyn_cast<MemberSpecializationInfo *>();
   1089 }
   1090 
   1091 ASTContext::TemplateOrSpecializationInfo
   1092 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
   1093   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
   1094       TemplateOrInstantiation.find(Var);
   1095   if (Pos == TemplateOrInstantiation.end())
   1096     return TemplateOrSpecializationInfo();
   1097 
   1098   return Pos->second;
   1099 }
   1100 
   1101 void
   1102 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
   1103                                                 TemplateSpecializationKind TSK,
   1104                                           SourceLocation PointOfInstantiation) {
   1105   assert(Inst->isStaticDataMember() && "Not a static data member");
   1106   assert(Tmpl->isStaticDataMember() && "Not a static data member");
   1107   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
   1108                                             Tmpl, TSK, PointOfInstantiation));
   1109 }
   1110 
   1111 void
   1112 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
   1113                                             TemplateOrSpecializationInfo TSI) {
   1114   assert(!TemplateOrInstantiation[Inst] &&
   1115          "Already noted what the variable was instantiated from");
   1116   TemplateOrInstantiation[Inst] = TSI;
   1117 }
   1118 
   1119 FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
   1120                                                      const FunctionDecl *FD){
   1121   assert(FD && "Specialization is 0");
   1122   llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
   1123     = ClassScopeSpecializationPattern.find(FD);
   1124   if (Pos == ClassScopeSpecializationPattern.end())
   1125     return nullptr;
   1126 
   1127   return Pos->second;
   1128 }
   1129 
   1130 void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
   1131                                         FunctionDecl *Pattern) {
   1132   assert(FD && "Specialization is 0");
   1133   assert(Pattern && "Class scope specialization pattern is 0");
   1134   ClassScopeSpecializationPattern[FD] = Pattern;
   1135 }
   1136 
   1137 NamedDecl *
   1138 ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
   1139   llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
   1140     = InstantiatedFromUsingDecl.find(UUD);
   1141   if (Pos == InstantiatedFromUsingDecl.end())
   1142     return nullptr;
   1143 
   1144   return Pos->second;
   1145 }
   1146 
   1147 void
   1148 ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
   1149   assert((isa<UsingDecl>(Pattern) ||
   1150           isa<UnresolvedUsingValueDecl>(Pattern) ||
   1151           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
   1152          "pattern decl is not a using decl");
   1153   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
   1154   InstantiatedFromUsingDecl[Inst] = Pattern;
   1155 }
   1156 
   1157 UsingShadowDecl *
   1158 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
   1159   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
   1160     = InstantiatedFromUsingShadowDecl.find(Inst);
   1161   if (Pos == InstantiatedFromUsingShadowDecl.end())
   1162     return nullptr;
   1163 
   1164   return Pos->second;
   1165 }
   1166 
   1167 void
   1168 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
   1169                                                UsingShadowDecl *Pattern) {
   1170   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
   1171   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
   1172 }
   1173 
   1174 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
   1175   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
   1176     = InstantiatedFromUnnamedFieldDecl.find(Field);
   1177   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
   1178     return nullptr;
   1179 
   1180   return Pos->second;
   1181 }
   1182 
   1183 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
   1184                                                      FieldDecl *Tmpl) {
   1185   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
   1186   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
   1187   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
   1188          "Already noted what unnamed field was instantiated from");
   1189 
   1190   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
   1191 }
   1192 
   1193 ASTContext::overridden_cxx_method_iterator
   1194 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
   1195   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
   1196     = OverriddenMethods.find(Method->getCanonicalDecl());
   1197   if (Pos == OverriddenMethods.end())
   1198     return nullptr;
   1199 
   1200   return Pos->second.begin();
   1201 }
   1202 
   1203 ASTContext::overridden_cxx_method_iterator
   1204 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
   1205   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
   1206     = OverriddenMethods.find(Method->getCanonicalDecl());
   1207   if (Pos == OverriddenMethods.end())
   1208     return nullptr;
   1209 
   1210   return Pos->second.end();
   1211 }
   1212 
   1213 unsigned
   1214 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
   1215   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
   1216     = OverriddenMethods.find(Method->getCanonicalDecl());
   1217   if (Pos == OverriddenMethods.end())
   1218     return 0;
   1219 
   1220   return Pos->second.size();
   1221 }
   1222 
   1223 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
   1224                                      const CXXMethodDecl *Overridden) {
   1225   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
   1226   OverriddenMethods[Method].push_back(Overridden);
   1227 }
   1228 
   1229 void ASTContext::getOverriddenMethods(
   1230                       const NamedDecl *D,
   1231                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
   1232   assert(D);
   1233 
   1234   if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
   1235     Overridden.append(overridden_methods_begin(CXXMethod),
   1236                       overridden_methods_end(CXXMethod));
   1237     return;
   1238   }
   1239 
   1240   const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
   1241   if (!Method)
   1242     return;
   1243 
   1244   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
   1245   Method->getOverriddenMethods(OverDecls);
   1246   Overridden.append(OverDecls.begin(), OverDecls.end());
   1247 }
   1248 
   1249 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
   1250   assert(!Import->NextLocalImport && "Import declaration already in the chain");
   1251   assert(!Import->isFromASTFile() && "Non-local import declaration");
   1252   if (!FirstLocalImport) {
   1253     FirstLocalImport = Import;
   1254     LastLocalImport = Import;
   1255     return;
   1256   }
   1257 
   1258   LastLocalImport->NextLocalImport = Import;
   1259   LastLocalImport = Import;
   1260 }
   1261 
   1262 //===----------------------------------------------------------------------===//
   1263 //                         Type Sizing and Analysis
   1264 //===----------------------------------------------------------------------===//
   1265 
   1266 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
   1267 /// scalar floating point type.
   1268 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
   1269   const BuiltinType *BT = T->getAs<BuiltinType>();
   1270   assert(BT && "Not a floating point type!");
   1271   switch (BT->getKind()) {
   1272   default: llvm_unreachable("Not a floating point type!");
   1273   case BuiltinType::Half:       return Target->getHalfFormat();
   1274   case BuiltinType::Float:      return Target->getFloatFormat();
   1275   case BuiltinType::Double:     return Target->getDoubleFormat();
   1276   case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
   1277   }
   1278 }
   1279 
   1280 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
   1281   unsigned Align = Target->getCharWidth();
   1282 
   1283   bool UseAlignAttrOnly = false;
   1284   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
   1285     Align = AlignFromAttr;
   1286 
   1287     // __attribute__((aligned)) can increase or decrease alignment
   1288     // *except* on a struct or struct member, where it only increases
   1289     // alignment unless 'packed' is also specified.
   1290     //
   1291     // It is an error for alignas to decrease alignment, so we can
   1292     // ignore that possibility;  Sema should diagnose it.
   1293     if (isa<FieldDecl>(D)) {
   1294       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
   1295         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
   1296     } else {
   1297       UseAlignAttrOnly = true;
   1298     }
   1299   }
   1300   else if (isa<FieldDecl>(D))
   1301       UseAlignAttrOnly =
   1302         D->hasAttr<PackedAttr>() ||
   1303         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
   1304 
   1305   // If we're using the align attribute only, just ignore everything
   1306   // else about the declaration and its type.
   1307   if (UseAlignAttrOnly) {
   1308     // do nothing
   1309 
   1310   } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
   1311     QualType T = VD->getType();
   1312     if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
   1313       if (ForAlignof)
   1314         T = RT->getPointeeType();
   1315       else
   1316         T = getPointerType(RT->getPointeeType());
   1317     }
   1318     QualType BaseT = getBaseElementType(T);
   1319     if (!BaseT->isIncompleteType() && !T->isFunctionType()) {
   1320       // Adjust alignments of declarations with array type by the
   1321       // large-array alignment on the target.
   1322       if (const ArrayType *arrayType = getAsArrayType(T)) {
   1323         unsigned MinWidth = Target->getLargeArrayMinWidth();
   1324         if (!ForAlignof && MinWidth) {
   1325           if (isa<VariableArrayType>(arrayType))
   1326             Align = std::max(Align, Target->getLargeArrayAlign());
   1327           else if (isa<ConstantArrayType>(arrayType) &&
   1328                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
   1329             Align = std::max(Align, Target->getLargeArrayAlign());
   1330         }
   1331       }
   1332       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
   1333       if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1334         if (VD->hasGlobalStorage())
   1335           Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
   1336       }
   1337     }
   1338 
   1339     // Fields can be subject to extra alignment constraints, like if
   1340     // the field is packed, the struct is packed, or the struct has a
   1341     // a max-field-alignment constraint (#pragma pack).  So calculate
   1342     // the actual alignment of the field within the struct, and then
   1343     // (as we're expected to) constrain that by the alignment of the type.
   1344     if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
   1345       const RecordDecl *Parent = Field->getParent();
   1346       // We can only produce a sensible answer if the record is valid.
   1347       if (!Parent->isInvalidDecl()) {
   1348         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
   1349 
   1350         // Start with the record's overall alignment.
   1351         unsigned FieldAlign = toBits(Layout.getAlignment());
   1352 
   1353         // Use the GCD of that and the offset within the record.
   1354         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
   1355         if (Offset > 0) {
   1356           // Alignment is always a power of 2, so the GCD will be a power of 2,
   1357           // which means we get to do this crazy thing instead of Euclid's.
   1358           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
   1359           if (LowBitOfOffset < FieldAlign)
   1360             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
   1361         }
   1362 
   1363         Align = std::min(Align, FieldAlign);
   1364       }
   1365     }
   1366   }
   1367 
   1368   return toCharUnitsFromBits(Align);
   1369 }
   1370 
   1371 // getTypeInfoDataSizeInChars - Return the size of a type, in
   1372 // chars. If the type is a record, its data size is returned.  This is
   1373 // the size of the memcpy that's performed when assigning this type
   1374 // using a trivial copy/move assignment operator.
   1375 std::pair<CharUnits, CharUnits>
   1376 ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
   1377   std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
   1378 
   1379   // In C++, objects can sometimes be allocated into the tail padding
   1380   // of a base-class subobject.  We decide whether that's possible
   1381   // during class layout, so here we can just trust the layout results.
   1382   if (getLangOpts().CPlusPlus) {
   1383     if (const RecordType *RT = T->getAs<RecordType>()) {
   1384       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
   1385       sizeAndAlign.first = layout.getDataSize();
   1386     }
   1387   }
   1388 
   1389   return sizeAndAlign;
   1390 }
   1391 
   1392 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
   1393 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
   1394 std::pair<CharUnits, CharUnits>
   1395 static getConstantArrayInfoInChars(const ASTContext &Context,
   1396                                    const ConstantArrayType *CAT) {
   1397   std::pair<CharUnits, CharUnits> EltInfo =
   1398       Context.getTypeInfoInChars(CAT->getElementType());
   1399   uint64_t Size = CAT->getSize().getZExtValue();
   1400   assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
   1401               (uint64_t)(-1)/Size) &&
   1402          "Overflow in array type char size evaluation");
   1403   uint64_t Width = EltInfo.first.getQuantity() * Size;
   1404   unsigned Align = EltInfo.second.getQuantity();
   1405   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
   1406       Context.getTargetInfo().getPointerWidth(0) == 64)
   1407     Width = llvm::RoundUpToAlignment(Width, Align);
   1408   return std::make_pair(CharUnits::fromQuantity(Width),
   1409                         CharUnits::fromQuantity(Align));
   1410 }
   1411 
   1412 std::pair<CharUnits, CharUnits>
   1413 ASTContext::getTypeInfoInChars(const Type *T) const {
   1414   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
   1415     return getConstantArrayInfoInChars(*this, CAT);
   1416   std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
   1417   return std::make_pair(toCharUnitsFromBits(Info.first),
   1418                         toCharUnitsFromBits(Info.second));
   1419 }
   1420 
   1421 std::pair<CharUnits, CharUnits>
   1422 ASTContext::getTypeInfoInChars(QualType T) const {
   1423   return getTypeInfoInChars(T.getTypePtr());
   1424 }
   1425 
   1426 std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
   1427   TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
   1428   if (it != MemoizedTypeInfo.end())
   1429     return it->second;
   1430 
   1431   std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
   1432   MemoizedTypeInfo.insert(std::make_pair(T, Info));
   1433   return Info;
   1434 }
   1435 
   1436 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
   1437 /// method does not work on incomplete types.
   1438 ///
   1439 /// FIXME: Pointers into different addr spaces could have different sizes and
   1440 /// alignment requirements: getPointerInfo should take an AddrSpace, this
   1441 /// should take a QualType, &c.
   1442 std::pair<uint64_t, unsigned>
   1443 ASTContext::getTypeInfoImpl(const Type *T) const {
   1444   uint64_t Width=0;
   1445   unsigned Align=8;
   1446   switch (T->getTypeClass()) {
   1447 #define TYPE(Class, Base)
   1448 #define ABSTRACT_TYPE(Class, Base)
   1449 #define NON_CANONICAL_TYPE(Class, Base)
   1450 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   1451 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
   1452   case Type::Class:                                                            \
   1453   assert(!T->isDependentType() && "should not see dependent types here");      \
   1454   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
   1455 #include "clang/AST/TypeNodes.def"
   1456     llvm_unreachable("Should not see dependent types");
   1457 
   1458   case Type::FunctionNoProto:
   1459   case Type::FunctionProto:
   1460     // GCC extension: alignof(function) = 32 bits
   1461     Width = 0;
   1462     Align = 32;
   1463     break;
   1464 
   1465   case Type::IncompleteArray:
   1466   case Type::VariableArray:
   1467     Width = 0;
   1468     Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
   1469     break;
   1470 
   1471   case Type::ConstantArray: {
   1472     const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
   1473 
   1474     std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
   1475     uint64_t Size = CAT->getSize().getZExtValue();
   1476     assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
   1477            "Overflow in array type bit size evaluation");
   1478     Width = EltInfo.first*Size;
   1479     Align = EltInfo.second;
   1480     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
   1481         getTargetInfo().getPointerWidth(0) == 64)
   1482       Width = llvm::RoundUpToAlignment(Width, Align);
   1483     break;
   1484   }
   1485   case Type::ExtVector:
   1486   case Type::Vector: {
   1487     const VectorType *VT = cast<VectorType>(T);
   1488     std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
   1489     Width = EltInfo.first*VT->getNumElements();
   1490     Align = Width;
   1491     // If the alignment is not a power of 2, round up to the next power of 2.
   1492     // This happens for non-power-of-2 length vectors.
   1493     if (Align & (Align-1)) {
   1494       Align = llvm::NextPowerOf2(Align);
   1495       Width = llvm::RoundUpToAlignment(Width, Align);
   1496     }
   1497     // Adjust the alignment based on the target max.
   1498     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
   1499     if (TargetVectorAlign && TargetVectorAlign < Align)
   1500       Align = TargetVectorAlign;
   1501     break;
   1502   }
   1503 
   1504   case Type::Builtin:
   1505     switch (cast<BuiltinType>(T)->getKind()) {
   1506     default: llvm_unreachable("Unknown builtin type!");
   1507     case BuiltinType::Void:
   1508       // GCC extension: alignof(void) = 8 bits.
   1509       Width = 0;
   1510       Align = 8;
   1511       break;
   1512 
   1513     case BuiltinType::Bool:
   1514       Width = Target->getBoolWidth();
   1515       Align = Target->getBoolAlign();
   1516       break;
   1517     case BuiltinType::Char_S:
   1518     case BuiltinType::Char_U:
   1519     case BuiltinType::UChar:
   1520     case BuiltinType::SChar:
   1521       Width = Target->getCharWidth();
   1522       Align = Target->getCharAlign();
   1523       break;
   1524     case BuiltinType::WChar_S:
   1525     case BuiltinType::WChar_U:
   1526       Width = Target->getWCharWidth();
   1527       Align = Target->getWCharAlign();
   1528       break;
   1529     case BuiltinType::Char16:
   1530       Width = Target->getChar16Width();
   1531       Align = Target->getChar16Align();
   1532       break;
   1533     case BuiltinType::Char32:
   1534       Width = Target->getChar32Width();
   1535       Align = Target->getChar32Align();
   1536       break;
   1537     case BuiltinType::UShort:
   1538     case BuiltinType::Short:
   1539       Width = Target->getShortWidth();
   1540       Align = Target->getShortAlign();
   1541       break;
   1542     case BuiltinType::UInt:
   1543     case BuiltinType::Int:
   1544       Width = Target->getIntWidth();
   1545       Align = Target->getIntAlign();
   1546       break;
   1547     case BuiltinType::ULong:
   1548     case BuiltinType::Long:
   1549       Width = Target->getLongWidth();
   1550       Align = Target->getLongAlign();
   1551       break;
   1552     case BuiltinType::ULongLong:
   1553     case BuiltinType::LongLong:
   1554       Width = Target->getLongLongWidth();
   1555       Align = Target->getLongLongAlign();
   1556       break;
   1557     case BuiltinType::Int128:
   1558     case BuiltinType::UInt128:
   1559       Width = 128;
   1560       Align = 128; // int128_t is 128-bit aligned on all targets.
   1561       break;
   1562     case BuiltinType::Half:
   1563       Width = Target->getHalfWidth();
   1564       Align = Target->getHalfAlign();
   1565       break;
   1566     case BuiltinType::Float:
   1567       Width = Target->getFloatWidth();
   1568       Align = Target->getFloatAlign();
   1569       break;
   1570     case BuiltinType::Double:
   1571       Width = Target->getDoubleWidth();
   1572       Align = Target->getDoubleAlign();
   1573       break;
   1574     case BuiltinType::LongDouble:
   1575       Width = Target->getLongDoubleWidth();
   1576       Align = Target->getLongDoubleAlign();
   1577       break;
   1578     case BuiltinType::NullPtr:
   1579       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
   1580       Align = Target->getPointerAlign(0); //   == sizeof(void*)
   1581       break;
   1582     case BuiltinType::ObjCId:
   1583     case BuiltinType::ObjCClass:
   1584     case BuiltinType::ObjCSel:
   1585       Width = Target->getPointerWidth(0);
   1586       Align = Target->getPointerAlign(0);
   1587       break;
   1588     case BuiltinType::OCLSampler:
   1589       // Samplers are modeled as integers.
   1590       Width = Target->getIntWidth();
   1591       Align = Target->getIntAlign();
   1592       break;
   1593     case BuiltinType::OCLEvent:
   1594     case BuiltinType::OCLImage1d:
   1595     case BuiltinType::OCLImage1dArray:
   1596     case BuiltinType::OCLImage1dBuffer:
   1597     case BuiltinType::OCLImage2d:
   1598     case BuiltinType::OCLImage2dArray:
   1599     case BuiltinType::OCLImage3d:
   1600       // Currently these types are pointers to opaque types.
   1601       Width = Target->getPointerWidth(0);
   1602       Align = Target->getPointerAlign(0);
   1603       break;
   1604     }
   1605     break;
   1606   case Type::ObjCObjectPointer:
   1607     Width = Target->getPointerWidth(0);
   1608     Align = Target->getPointerAlign(0);
   1609     break;
   1610   case Type::BlockPointer: {
   1611     unsigned AS = getTargetAddressSpace(
   1612         cast<BlockPointerType>(T)->getPointeeType());
   1613     Width = Target->getPointerWidth(AS);
   1614     Align = Target->getPointerAlign(AS);
   1615     break;
   1616   }
   1617   case Type::LValueReference:
   1618   case Type::RValueReference: {
   1619     // alignof and sizeof should never enter this code path here, so we go
   1620     // the pointer route.
   1621     unsigned AS = getTargetAddressSpace(
   1622         cast<ReferenceType>(T)->getPointeeType());
   1623     Width = Target->getPointerWidth(AS);
   1624     Align = Target->getPointerAlign(AS);
   1625     break;
   1626   }
   1627   case Type::Pointer: {
   1628     unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
   1629     Width = Target->getPointerWidth(AS);
   1630     Align = Target->getPointerAlign(AS);
   1631     break;
   1632   }
   1633   case Type::MemberPointer: {
   1634     const MemberPointerType *MPT = cast<MemberPointerType>(T);
   1635     std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
   1636     break;
   1637   }
   1638   case Type::Complex: {
   1639     // Complex types have the same alignment as their elements, but twice the
   1640     // size.
   1641     std::pair<uint64_t, unsigned> EltInfo =
   1642       getTypeInfo(cast<ComplexType>(T)->getElementType());
   1643     Width = EltInfo.first*2;
   1644     Align = EltInfo.second;
   1645     break;
   1646   }
   1647   case Type::ObjCObject:
   1648     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
   1649   case Type::Adjusted:
   1650   case Type::Decayed:
   1651     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
   1652   case Type::ObjCInterface: {
   1653     const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
   1654     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
   1655     Width = toBits(Layout.getSize());
   1656     Align = toBits(Layout.getAlignment());
   1657     break;
   1658   }
   1659   case Type::Record:
   1660   case Type::Enum: {
   1661     const TagType *TT = cast<TagType>(T);
   1662 
   1663     if (TT->getDecl()->isInvalidDecl()) {
   1664       Width = 8;
   1665       Align = 8;
   1666       break;
   1667     }
   1668 
   1669     if (const EnumType *ET = dyn_cast<EnumType>(TT))
   1670       return getTypeInfo(ET->getDecl()->getIntegerType());
   1671 
   1672     const RecordType *RT = cast<RecordType>(TT);
   1673     const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
   1674     Width = toBits(Layout.getSize());
   1675     Align = toBits(Layout.getAlignment());
   1676     break;
   1677   }
   1678 
   1679   case Type::SubstTemplateTypeParm:
   1680     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
   1681                        getReplacementType().getTypePtr());
   1682 
   1683   case Type::Auto: {
   1684     const AutoType *A = cast<AutoType>(T);
   1685     assert(!A->getDeducedType().isNull() &&
   1686            "cannot request the size of an undeduced or dependent auto type");
   1687     return getTypeInfo(A->getDeducedType().getTypePtr());
   1688   }
   1689 
   1690   case Type::Paren:
   1691     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
   1692 
   1693   case Type::Typedef: {
   1694     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
   1695     std::pair<uint64_t, unsigned> Info
   1696       = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
   1697     // If the typedef has an aligned attribute on it, it overrides any computed
   1698     // alignment we have.  This violates the GCC documentation (which says that
   1699     // attribute(aligned) can only round up) but matches its implementation.
   1700     if (unsigned AttrAlign = Typedef->getMaxAlignment())
   1701       Align = AttrAlign;
   1702     else
   1703       Align = Info.second;
   1704     Width = Info.first;
   1705     break;
   1706   }
   1707 
   1708   case Type::Elaborated:
   1709     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
   1710 
   1711   case Type::Attributed:
   1712     return getTypeInfo(
   1713                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
   1714 
   1715   case Type::Atomic: {
   1716     // Start with the base type information.
   1717     std::pair<uint64_t, unsigned> Info
   1718       = getTypeInfo(cast<AtomicType>(T)->getValueType());
   1719     Width = Info.first;
   1720     Align = Info.second;
   1721 
   1722     // If the size of the type doesn't exceed the platform's max
   1723     // atomic promotion width, make the size and alignment more
   1724     // favorable to atomic operations:
   1725     if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
   1726       // Round the size up to a power of 2.
   1727       if (!llvm::isPowerOf2_64(Width))
   1728         Width = llvm::NextPowerOf2(Width);
   1729 
   1730       // Set the alignment equal to the size.
   1731       Align = static_cast<unsigned>(Width);
   1732     }
   1733   }
   1734 
   1735   }
   1736 
   1737   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
   1738   return std::make_pair(Width, Align);
   1739 }
   1740 
   1741 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
   1742 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
   1743   return CharUnits::fromQuantity(BitSize / getCharWidth());
   1744 }
   1745 
   1746 /// toBits - Convert a size in characters to a size in characters.
   1747 int64_t ASTContext::toBits(CharUnits CharSize) const {
   1748   return CharSize.getQuantity() * getCharWidth();
   1749 }
   1750 
   1751 /// getTypeSizeInChars - Return the size of the specified type, in characters.
   1752 /// This method does not work on incomplete types.
   1753 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
   1754   return getTypeInfoInChars(T).first;
   1755 }
   1756 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
   1757   return getTypeInfoInChars(T).first;
   1758 }
   1759 
   1760 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
   1761 /// characters. This method does not work on incomplete types.
   1762 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
   1763   return toCharUnitsFromBits(getTypeAlign(T));
   1764 }
   1765 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
   1766   return toCharUnitsFromBits(getTypeAlign(T));
   1767 }
   1768 
   1769 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
   1770 /// type for the current target in bits.  This can be different than the ABI
   1771 /// alignment in cases where it is beneficial for performance to overalign
   1772 /// a data type.
   1773 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
   1774   unsigned ABIAlign = getTypeAlign(T);
   1775 
   1776   if (Target->getTriple().getArch() == llvm::Triple::xcore)
   1777     return ABIAlign;  // Never overalign on XCore.
   1778 
   1779   const TypedefType *TT = T->getAs<TypedefType>();
   1780 
   1781   // Double and long long should be naturally aligned if possible.
   1782   T = T->getBaseElementTypeUnsafe();
   1783   if (const ComplexType *CT = T->getAs<ComplexType>())
   1784     T = CT->getElementType().getTypePtr();
   1785   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
   1786       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
   1787       T->isSpecificBuiltinType(BuiltinType::ULongLong))
   1788     // Don't increase the alignment if an alignment attribute was specified on a
   1789     // typedef declaration.
   1790     if (!TT || !TT->getDecl()->getMaxAlignment())
   1791       return std::max(ABIAlign, (unsigned)getTypeSize(T));
   1792 
   1793   return ABIAlign;
   1794 }
   1795 
   1796 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
   1797 /// to a global variable of the specified type.
   1798 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
   1799   return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
   1800 }
   1801 
   1802 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
   1803 /// should be given to a global variable of the specified type.
   1804 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
   1805   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
   1806 }
   1807 
   1808 /// DeepCollectObjCIvars -
   1809 /// This routine first collects all declared, but not synthesized, ivars in
   1810 /// super class and then collects all ivars, including those synthesized for
   1811 /// current class. This routine is used for implementation of current class
   1812 /// when all ivars, declared and synthesized are known.
   1813 ///
   1814 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
   1815                                       bool leafClass,
   1816                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
   1817   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
   1818     DeepCollectObjCIvars(SuperClass, false, Ivars);
   1819   if (!leafClass) {
   1820     for (const auto *I : OI->ivars())
   1821       Ivars.push_back(I);
   1822   } else {
   1823     ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
   1824     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
   1825          Iv= Iv->getNextIvar())
   1826       Ivars.push_back(Iv);
   1827   }
   1828 }
   1829 
   1830 /// CollectInheritedProtocols - Collect all protocols in current class and
   1831 /// those inherited by it.
   1832 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
   1833                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
   1834   if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
   1835     // We can use protocol_iterator here instead of
   1836     // all_referenced_protocol_iterator since we are walking all categories.
   1837     for (auto *Proto : OI->all_referenced_protocols()) {
   1838       Protocols.insert(Proto->getCanonicalDecl());
   1839       for (auto *P : Proto->protocols()) {
   1840         Protocols.insert(P->getCanonicalDecl());
   1841         CollectInheritedProtocols(P, Protocols);
   1842       }
   1843     }
   1844 
   1845     // Categories of this Interface.
   1846     for (const auto *Cat : OI->visible_categories())
   1847       CollectInheritedProtocols(Cat, Protocols);
   1848 
   1849     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
   1850       while (SD) {
   1851         CollectInheritedProtocols(SD, Protocols);
   1852         SD = SD->getSuperClass();
   1853       }
   1854   } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
   1855     for (auto *Proto : OC->protocols()) {
   1856       Protocols.insert(Proto->getCanonicalDecl());
   1857       for (const auto *P : Proto->protocols())
   1858         CollectInheritedProtocols(P, Protocols);
   1859     }
   1860   } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
   1861     for (auto *Proto : OP->protocols()) {
   1862       Protocols.insert(Proto->getCanonicalDecl());
   1863       for (const auto *P : Proto->protocols())
   1864         CollectInheritedProtocols(P, Protocols);
   1865     }
   1866   }
   1867 }
   1868 
   1869 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
   1870   unsigned count = 0;
   1871   // Count ivars declared in class extension.
   1872   for (const auto *Ext : OI->known_extensions())
   1873     count += Ext->ivar_size();
   1874 
   1875   // Count ivar defined in this class's implementation.  This
   1876   // includes synthesized ivars.
   1877   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
   1878     count += ImplDecl->ivar_size();
   1879 
   1880   return count;
   1881 }
   1882 
   1883 bool ASTContext::isSentinelNullExpr(const Expr *E) {
   1884   if (!E)
   1885     return false;
   1886 
   1887   // nullptr_t is always treated as null.
   1888   if (E->getType()->isNullPtrType()) return true;
   1889 
   1890   if (E->getType()->isAnyPointerType() &&
   1891       E->IgnoreParenCasts()->isNullPointerConstant(*this,
   1892                                                 Expr::NPC_ValueDependentIsNull))
   1893     return true;
   1894 
   1895   // Unfortunately, __null has type 'int'.
   1896   if (isa<GNUNullExpr>(E)) return true;
   1897 
   1898   return false;
   1899 }
   1900 
   1901 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
   1902 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
   1903   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
   1904     I = ObjCImpls.find(D);
   1905   if (I != ObjCImpls.end())
   1906     return cast<ObjCImplementationDecl>(I->second);
   1907   return nullptr;
   1908 }
   1909 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
   1910 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
   1911   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
   1912     I = ObjCImpls.find(D);
   1913   if (I != ObjCImpls.end())
   1914     return cast<ObjCCategoryImplDecl>(I->second);
   1915   return nullptr;
   1916 }
   1917 
   1918 /// \brief Set the implementation of ObjCInterfaceDecl.
   1919 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
   1920                            ObjCImplementationDecl *ImplD) {
   1921   assert(IFaceD && ImplD && "Passed null params");
   1922   ObjCImpls[IFaceD] = ImplD;
   1923 }
   1924 /// \brief Set the implementation of ObjCCategoryDecl.
   1925 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
   1926                            ObjCCategoryImplDecl *ImplD) {
   1927   assert(CatD && ImplD && "Passed null params");
   1928   ObjCImpls[CatD] = ImplD;
   1929 }
   1930 
   1931 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
   1932                                               const NamedDecl *ND) const {
   1933   if (const ObjCInterfaceDecl *ID =
   1934           dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
   1935     return ID;
   1936   if (const ObjCCategoryDecl *CD =
   1937           dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
   1938     return CD->getClassInterface();
   1939   if (const ObjCImplDecl *IMD =
   1940           dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
   1941     return IMD->getClassInterface();
   1942 
   1943   return nullptr;
   1944 }
   1945 
   1946 /// \brief Get the copy initialization expression of VarDecl,or NULL if
   1947 /// none exists.
   1948 Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
   1949   assert(VD && "Passed null params");
   1950   assert(VD->hasAttr<BlocksAttr>() &&
   1951          "getBlockVarCopyInits - not __block var");
   1952   llvm::DenseMap<const VarDecl*, Expr*>::iterator
   1953     I = BlockVarCopyInits.find(VD);
   1954   return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr;
   1955 }
   1956 
   1957 /// \brief Set the copy inialization expression of a block var decl.
   1958 void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
   1959   assert(VD && Init && "Passed null params");
   1960   assert(VD->hasAttr<BlocksAttr>() &&
   1961          "setBlockVarCopyInits - not __block var");
   1962   BlockVarCopyInits[VD] = Init;
   1963 }
   1964 
   1965 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
   1966                                                  unsigned DataSize) const {
   1967   if (!DataSize)
   1968     DataSize = TypeLoc::getFullDataSizeForType(T);
   1969   else
   1970     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
   1971            "incorrect data size provided to CreateTypeSourceInfo!");
   1972 
   1973   TypeSourceInfo *TInfo =
   1974     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
   1975   new (TInfo) TypeSourceInfo(T);
   1976   return TInfo;
   1977 }
   1978 
   1979 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
   1980                                                      SourceLocation L) const {
   1981   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
   1982   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
   1983   return DI;
   1984 }
   1985 
   1986 const ASTRecordLayout &
   1987 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
   1988   return getObjCLayout(D, nullptr);
   1989 }
   1990 
   1991 const ASTRecordLayout &
   1992 ASTContext::getASTObjCImplementationLayout(
   1993                                         const ObjCImplementationDecl *D) const {
   1994   return getObjCLayout(D->getClassInterface(), D);
   1995 }
   1996 
   1997 //===----------------------------------------------------------------------===//
   1998 //                   Type creation/memoization methods
   1999 //===----------------------------------------------------------------------===//
   2000 
   2001 QualType
   2002 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
   2003   unsigned fastQuals = quals.getFastQualifiers();
   2004   quals.removeFastQualifiers();
   2005 
   2006   // Check if we've already instantiated this type.
   2007   llvm::FoldingSetNodeID ID;
   2008   ExtQuals::Profile(ID, baseType, quals);
   2009   void *insertPos = nullptr;
   2010   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
   2011     assert(eq->getQualifiers() == quals);
   2012     return QualType(eq, fastQuals);
   2013   }
   2014 
   2015   // If the base type is not canonical, make the appropriate canonical type.
   2016   QualType canon;
   2017   if (!baseType->isCanonicalUnqualified()) {
   2018     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
   2019     canonSplit.Quals.addConsistentQualifiers(quals);
   2020     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
   2021 
   2022     // Re-find the insert position.
   2023     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
   2024   }
   2025 
   2026   ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
   2027   ExtQualNodes.InsertNode(eq, insertPos);
   2028   return QualType(eq, fastQuals);
   2029 }
   2030 
   2031 QualType
   2032 ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
   2033   QualType CanT = getCanonicalType(T);
   2034   if (CanT.getAddressSpace() == AddressSpace)
   2035     return T;
   2036 
   2037   // If we are composing extended qualifiers together, merge together
   2038   // into one ExtQuals node.
   2039   QualifierCollector Quals;
   2040   const Type *TypeNode = Quals.strip(T);
   2041 
   2042   // If this type already has an address space specified, it cannot get
   2043   // another one.
   2044   assert(!Quals.hasAddressSpace() &&
   2045          "Type cannot be in multiple addr spaces!");
   2046   Quals.addAddressSpace(AddressSpace);
   2047 
   2048   return getExtQualType(TypeNode, Quals);
   2049 }
   2050 
   2051 QualType ASTContext::getObjCGCQualType(QualType T,
   2052                                        Qualifiers::GC GCAttr) const {
   2053   QualType CanT = getCanonicalType(T);
   2054   if (CanT.getObjCGCAttr() == GCAttr)
   2055     return T;
   2056 
   2057   if (const PointerType *ptr = T->getAs<PointerType>()) {
   2058     QualType Pointee = ptr->getPointeeType();
   2059     if (Pointee->isAnyPointerType()) {
   2060       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
   2061       return getPointerType(ResultType);
   2062     }
   2063   }
   2064 
   2065   // If we are composing extended qualifiers together, merge together
   2066   // into one ExtQuals node.
   2067   QualifierCollector Quals;
   2068   const Type *TypeNode = Quals.strip(T);
   2069 
   2070   // If this type already has an ObjCGC specified, it cannot get
   2071   // another one.
   2072   assert(!Quals.hasObjCGCAttr() &&
   2073          "Type cannot have multiple ObjCGCs!");
   2074   Quals.addObjCGCAttr(GCAttr);
   2075 
   2076   return getExtQualType(TypeNode, Quals);
   2077 }
   2078 
   2079 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
   2080                                                    FunctionType::ExtInfo Info) {
   2081   if (T->getExtInfo() == Info)
   2082     return T;
   2083 
   2084   QualType Result;
   2085   if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
   2086     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
   2087   } else {
   2088     const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
   2089     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   2090     EPI.ExtInfo = Info;
   2091     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
   2092   }
   2093 
   2094   return cast<FunctionType>(Result.getTypePtr());
   2095 }
   2096 
   2097 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
   2098                                                  QualType ResultType) {
   2099   FD = FD->getMostRecentDecl();
   2100   while (true) {
   2101     const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
   2102     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   2103     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
   2104     if (FunctionDecl *Next = FD->getPreviousDecl())
   2105       FD = Next;
   2106     else
   2107       break;
   2108   }
   2109   if (ASTMutationListener *L = getASTMutationListener())
   2110     L->DeducedReturnType(FD, ResultType);
   2111 }
   2112 
   2113 /// getComplexType - Return the uniqued reference to the type for a complex
   2114 /// number with the specified element type.
   2115 QualType ASTContext::getComplexType(QualType T) const {
   2116   // Unique pointers, to guarantee there is only one pointer of a particular
   2117   // structure.
   2118   llvm::FoldingSetNodeID ID;
   2119   ComplexType::Profile(ID, T);
   2120 
   2121   void *InsertPos = nullptr;
   2122   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
   2123     return QualType(CT, 0);
   2124 
   2125   // If the pointee type isn't canonical, this won't be a canonical type either,
   2126   // so fill in the canonical type field.
   2127   QualType Canonical;
   2128   if (!T.isCanonical()) {
   2129     Canonical = getComplexType(getCanonicalType(T));
   2130 
   2131     // Get the new insert position for the node we care about.
   2132     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
   2133     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2134   }
   2135   ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
   2136   Types.push_back(New);
   2137   ComplexTypes.InsertNode(New, InsertPos);
   2138   return QualType(New, 0);
   2139 }
   2140 
   2141 /// getPointerType - Return the uniqued reference to the type for a pointer to
   2142 /// the specified type.
   2143 QualType ASTContext::getPointerType(QualType T) const {
   2144   // Unique pointers, to guarantee there is only one pointer of a particular
   2145   // structure.
   2146   llvm::FoldingSetNodeID ID;
   2147   PointerType::Profile(ID, T);
   2148 
   2149   void *InsertPos = nullptr;
   2150   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   2151     return QualType(PT, 0);
   2152 
   2153   // If the pointee type isn't canonical, this won't be a canonical type either,
   2154   // so fill in the canonical type field.
   2155   QualType Canonical;
   2156   if (!T.isCanonical()) {
   2157     Canonical = getPointerType(getCanonicalType(T));
   2158 
   2159     // Get the new insert position for the node we care about.
   2160     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   2161     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2162   }
   2163   PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
   2164   Types.push_back(New);
   2165   PointerTypes.InsertNode(New, InsertPos);
   2166   return QualType(New, 0);
   2167 }
   2168 
   2169 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
   2170   llvm::FoldingSetNodeID ID;
   2171   AdjustedType::Profile(ID, Orig, New);
   2172   void *InsertPos = nullptr;
   2173   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
   2174   if (AT)
   2175     return QualType(AT, 0);
   2176 
   2177   QualType Canonical = getCanonicalType(New);
   2178 
   2179   // Get the new insert position for the node we care about.
   2180   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
   2181   assert(!AT && "Shouldn't be in the map!");
   2182 
   2183   AT = new (*this, TypeAlignment)
   2184       AdjustedType(Type::Adjusted, Orig, New, Canonical);
   2185   Types.push_back(AT);
   2186   AdjustedTypes.InsertNode(AT, InsertPos);
   2187   return QualType(AT, 0);
   2188 }
   2189 
   2190 QualType ASTContext::getDecayedType(QualType T) const {
   2191   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
   2192 
   2193   QualType Decayed;
   2194 
   2195   // C99 6.7.5.3p7:
   2196   //   A declaration of a parameter as "array of type" shall be
   2197   //   adjusted to "qualified pointer to type", where the type
   2198   //   qualifiers (if any) are those specified within the [ and ] of
   2199   //   the array type derivation.
   2200   if (T->isArrayType())
   2201     Decayed = getArrayDecayedType(T);
   2202 
   2203   // C99 6.7.5.3p8:
   2204   //   A declaration of a parameter as "function returning type"
   2205   //   shall be adjusted to "pointer to function returning type", as
   2206   //   in 6.3.2.1.
   2207   if (T->isFunctionType())
   2208     Decayed = getPointerType(T);
   2209 
   2210   llvm::FoldingSetNodeID ID;
   2211   AdjustedType::Profile(ID, T, Decayed);
   2212   void *InsertPos = nullptr;
   2213   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
   2214   if (AT)
   2215     return QualType(AT, 0);
   2216 
   2217   QualType Canonical = getCanonicalType(Decayed);
   2218 
   2219   // Get the new insert position for the node we care about.
   2220   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
   2221   assert(!AT && "Shouldn't be in the map!");
   2222 
   2223   AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
   2224   Types.push_back(AT);
   2225   AdjustedTypes.InsertNode(AT, InsertPos);
   2226   return QualType(AT, 0);
   2227 }
   2228 
   2229 /// getBlockPointerType - Return the uniqued reference to the type for
   2230 /// a pointer to the specified block.
   2231 QualType ASTContext::getBlockPointerType(QualType T) const {
   2232   assert(T->isFunctionType() && "block of function types only");
   2233   // Unique pointers, to guarantee there is only one block of a particular
   2234   // structure.
   2235   llvm::FoldingSetNodeID ID;
   2236   BlockPointerType::Profile(ID, T);
   2237 
   2238   void *InsertPos = nullptr;
   2239   if (BlockPointerType *PT =
   2240         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   2241     return QualType(PT, 0);
   2242 
   2243   // If the block pointee type isn't canonical, this won't be a canonical
   2244   // type either so fill in the canonical type field.
   2245   QualType Canonical;
   2246   if (!T.isCanonical()) {
   2247     Canonical = getBlockPointerType(getCanonicalType(T));
   2248 
   2249     // Get the new insert position for the node we care about.
   2250     BlockPointerType *NewIP =
   2251       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   2252     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2253   }
   2254   BlockPointerType *New
   2255     = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
   2256   Types.push_back(New);
   2257   BlockPointerTypes.InsertNode(New, InsertPos);
   2258   return QualType(New, 0);
   2259 }
   2260 
   2261 /// getLValueReferenceType - Return the uniqued reference to the type for an
   2262 /// lvalue reference to the specified type.
   2263 QualType
   2264 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
   2265   assert(getCanonicalType(T) != OverloadTy &&
   2266          "Unresolved overloaded function type");
   2267 
   2268   // Unique pointers, to guarantee there is only one pointer of a particular
   2269   // structure.
   2270   llvm::FoldingSetNodeID ID;
   2271   ReferenceType::Profile(ID, T, SpelledAsLValue);
   2272 
   2273   void *InsertPos = nullptr;
   2274   if (LValueReferenceType *RT =
   2275         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
   2276     return QualType(RT, 0);
   2277 
   2278   const ReferenceType *InnerRef = T->getAs<ReferenceType>();
   2279 
   2280   // If the referencee type isn't canonical, this won't be a canonical type
   2281   // either, so fill in the canonical type field.
   2282   QualType Canonical;
   2283   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
   2284     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
   2285     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
   2286 
   2287     // Get the new insert position for the node we care about.
   2288     LValueReferenceType *NewIP =
   2289       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
   2290     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2291   }
   2292 
   2293   LValueReferenceType *New
   2294     = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
   2295                                                      SpelledAsLValue);
   2296   Types.push_back(New);
   2297   LValueReferenceTypes.InsertNode(New, InsertPos);
   2298 
   2299   return QualType(New, 0);
   2300 }
   2301 
   2302 /// getRValueReferenceType - Return the uniqued reference to the type for an
   2303 /// rvalue reference to the specified type.
   2304 QualType ASTContext::getRValueReferenceType(QualType T) const {
   2305   // Unique pointers, to guarantee there is only one pointer of a particular
   2306   // structure.
   2307   llvm::FoldingSetNodeID ID;
   2308   ReferenceType::Profile(ID, T, false);
   2309 
   2310   void *InsertPos = nullptr;
   2311   if (RValueReferenceType *RT =
   2312         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
   2313     return QualType(RT, 0);
   2314 
   2315   const ReferenceType *InnerRef = T->getAs<ReferenceType>();
   2316 
   2317   // If the referencee type isn't canonical, this won't be a canonical type
   2318   // either, so fill in the canonical type field.
   2319   QualType Canonical;
   2320   if (InnerRef || !T.isCanonical()) {
   2321     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
   2322     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
   2323 
   2324     // Get the new insert position for the node we care about.
   2325     RValueReferenceType *NewIP =
   2326       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
   2327     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2328   }
   2329 
   2330   RValueReferenceType *New
   2331     = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
   2332   Types.push_back(New);
   2333   RValueReferenceTypes.InsertNode(New, InsertPos);
   2334   return QualType(New, 0);
   2335 }
   2336 
   2337 /// getMemberPointerType - Return the uniqued reference to the type for a
   2338 /// member pointer to the specified type, in the specified class.
   2339 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
   2340   // Unique pointers, to guarantee there is only one pointer of a particular
   2341   // structure.
   2342   llvm::FoldingSetNodeID ID;
   2343   MemberPointerType::Profile(ID, T, Cls);
   2344 
   2345   void *InsertPos = nullptr;
   2346   if (MemberPointerType *PT =
   2347       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   2348     return QualType(PT, 0);
   2349 
   2350   // If the pointee or class type isn't canonical, this won't be a canonical
   2351   // type either, so fill in the canonical type field.
   2352   QualType Canonical;
   2353   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
   2354     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
   2355 
   2356     // Get the new insert position for the node we care about.
   2357     MemberPointerType *NewIP =
   2358       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   2359     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2360   }
   2361   MemberPointerType *New
   2362     = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
   2363   Types.push_back(New);
   2364   MemberPointerTypes.InsertNode(New, InsertPos);
   2365   return QualType(New, 0);
   2366 }
   2367 
   2368 /// getConstantArrayType - Return the unique reference to the type for an
   2369 /// array of the specified element type.
   2370 QualType ASTContext::getConstantArrayType(QualType EltTy,
   2371                                           const llvm::APInt &ArySizeIn,
   2372                                           ArrayType::ArraySizeModifier ASM,
   2373                                           unsigned IndexTypeQuals) const {
   2374   assert((EltTy->isDependentType() ||
   2375           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
   2376          "Constant array of VLAs is illegal!");
   2377 
   2378   // Convert the array size into a canonical width matching the pointer size for
   2379   // the target.
   2380   llvm::APInt ArySize(ArySizeIn);
   2381   ArySize =
   2382     ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
   2383 
   2384   llvm::FoldingSetNodeID ID;
   2385   ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
   2386 
   2387   void *InsertPos = nullptr;
   2388   if (ConstantArrayType *ATP =
   2389       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
   2390     return QualType(ATP, 0);
   2391 
   2392   // If the element type isn't canonical or has qualifiers, this won't
   2393   // be a canonical type either, so fill in the canonical type field.
   2394   QualType Canon;
   2395   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
   2396     SplitQualType canonSplit = getCanonicalType(EltTy).split();
   2397     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
   2398                                  ASM, IndexTypeQuals);
   2399     Canon = getQualifiedType(Canon, canonSplit.Quals);
   2400 
   2401     // Get the new insert position for the node we care about.
   2402     ConstantArrayType *NewIP =
   2403       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
   2404     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2405   }
   2406 
   2407   ConstantArrayType *New = new(*this,TypeAlignment)
   2408     ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
   2409   ConstantArrayTypes.InsertNode(New, InsertPos);
   2410   Types.push_back(New);
   2411   return QualType(New, 0);
   2412 }
   2413 
   2414 /// getVariableArrayDecayedType - Turns the given type, which may be
   2415 /// variably-modified, into the corresponding type with all the known
   2416 /// sizes replaced with [*].
   2417 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
   2418   // Vastly most common case.
   2419   if (!type->isVariablyModifiedType()) return type;
   2420 
   2421   QualType result;
   2422 
   2423   SplitQualType split = type.getSplitDesugaredType();
   2424   const Type *ty = split.Ty;
   2425   switch (ty->getTypeClass()) {
   2426 #define TYPE(Class, Base)
   2427 #define ABSTRACT_TYPE(Class, Base)
   2428 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   2429 #include "clang/AST/TypeNodes.def"
   2430     llvm_unreachable("didn't desugar past all non-canonical types?");
   2431 
   2432   // These types should never be variably-modified.
   2433   case Type::Builtin:
   2434   case Type::Complex:
   2435   case Type::Vector:
   2436   case Type::ExtVector:
   2437   case Type::DependentSizedExtVector:
   2438   case Type::ObjCObject:
   2439   case Type::ObjCInterface:
   2440   case Type::ObjCObjectPointer:
   2441   case Type::Record:
   2442   case Type::Enum:
   2443   case Type::UnresolvedUsing:
   2444   case Type::TypeOfExpr:
   2445   case Type::TypeOf:
   2446   case Type::Decltype:
   2447   case Type::UnaryTransform:
   2448   case Type::DependentName:
   2449   case Type::InjectedClassName:
   2450   case Type::TemplateSpecialization:
   2451   case Type::DependentTemplateSpecialization:
   2452   case Type::TemplateTypeParm:
   2453   case Type::SubstTemplateTypeParmPack:
   2454   case Type::Auto:
   2455   case Type::PackExpansion:
   2456     llvm_unreachable("type should never be variably-modified");
   2457 
   2458   // These types can be variably-modified but should never need to
   2459   // further decay.
   2460   case Type::FunctionNoProto:
   2461   case Type::FunctionProto:
   2462   case Type::BlockPointer:
   2463   case Type::MemberPointer:
   2464     return type;
   2465 
   2466   // These types can be variably-modified.  All these modifications
   2467   // preserve structure except as noted by comments.
   2468   // TODO: if we ever care about optimizing VLAs, there are no-op
   2469   // optimizations available here.
   2470   case Type::Pointer:
   2471     result = getPointerType(getVariableArrayDecayedType(
   2472                               cast<PointerType>(ty)->getPointeeType()));
   2473     break;
   2474 
   2475   case Type::LValueReference: {
   2476     const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
   2477     result = getLValueReferenceType(
   2478                  getVariableArrayDecayedType(lv->getPointeeType()),
   2479                                     lv->isSpelledAsLValue());
   2480     break;
   2481   }
   2482 
   2483   case Type::RValueReference: {
   2484     const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
   2485     result = getRValueReferenceType(
   2486                  getVariableArrayDecayedType(lv->getPointeeType()));
   2487     break;
   2488   }
   2489 
   2490   case Type::Atomic: {
   2491     const AtomicType *at = cast<AtomicType>(ty);
   2492     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
   2493     break;
   2494   }
   2495 
   2496   case Type::ConstantArray: {
   2497     const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
   2498     result = getConstantArrayType(
   2499                  getVariableArrayDecayedType(cat->getElementType()),
   2500                                   cat->getSize(),
   2501                                   cat->getSizeModifier(),
   2502                                   cat->getIndexTypeCVRQualifiers());
   2503     break;
   2504   }
   2505 
   2506   case Type::DependentSizedArray: {
   2507     const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
   2508     result = getDependentSizedArrayType(
   2509                  getVariableArrayDecayedType(dat->getElementType()),
   2510                                         dat->getSizeExpr(),
   2511                                         dat->getSizeModifier(),
   2512                                         dat->getIndexTypeCVRQualifiers(),
   2513                                         dat->getBracketsRange());
   2514     break;
   2515   }
   2516 
   2517   // Turn incomplete types into [*] types.
   2518   case Type::IncompleteArray: {
   2519     const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
   2520     result = getVariableArrayType(
   2521                  getVariableArrayDecayedType(iat->getElementType()),
   2522                                   /*size*/ nullptr,
   2523                                   ArrayType::Normal,
   2524                                   iat->getIndexTypeCVRQualifiers(),
   2525                                   SourceRange());
   2526     break;
   2527   }
   2528 
   2529   // Turn VLA types into [*] types.
   2530   case Type::VariableArray: {
   2531     const VariableArrayType *vat = cast<VariableArrayType>(ty);
   2532     result = getVariableArrayType(
   2533                  getVariableArrayDecayedType(vat->getElementType()),
   2534                                   /*size*/ nullptr,
   2535                                   ArrayType::Star,
   2536                                   vat->getIndexTypeCVRQualifiers(),
   2537                                   vat->getBracketsRange());
   2538     break;
   2539   }
   2540   }
   2541 
   2542   // Apply the top-level qualifiers from the original.
   2543   return getQualifiedType(result, split.Quals);
   2544 }
   2545 
   2546 /// getVariableArrayType - Returns a non-unique reference to the type for a
   2547 /// variable array of the specified element type.
   2548 QualType ASTContext::getVariableArrayType(QualType EltTy,
   2549                                           Expr *NumElts,
   2550                                           ArrayType::ArraySizeModifier ASM,
   2551                                           unsigned IndexTypeQuals,
   2552                                           SourceRange Brackets) const {
   2553   // Since we don't unique expressions, it isn't possible to unique VLA's
   2554   // that have an expression provided for their size.
   2555   QualType Canon;
   2556 
   2557   // Be sure to pull qualifiers off the element type.
   2558   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
   2559     SplitQualType canonSplit = getCanonicalType(EltTy).split();
   2560     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
   2561                                  IndexTypeQuals, Brackets);
   2562     Canon = getQualifiedType(Canon, canonSplit.Quals);
   2563   }
   2564 
   2565   VariableArrayType *New = new(*this, TypeAlignment)
   2566     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
   2567 
   2568   VariableArrayTypes.push_back(New);
   2569   Types.push_back(New);
   2570   return QualType(New, 0);
   2571 }
   2572 
   2573 /// getDependentSizedArrayType - Returns a non-unique reference to
   2574 /// the type for a dependently-sized array of the specified element
   2575 /// type.
   2576 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
   2577                                                 Expr *numElements,
   2578                                                 ArrayType::ArraySizeModifier ASM,
   2579                                                 unsigned elementTypeQuals,
   2580                                                 SourceRange brackets) const {
   2581   assert((!numElements || numElements->isTypeDependent() ||
   2582           numElements->isValueDependent()) &&
   2583          "Size must be type- or value-dependent!");
   2584 
   2585   // Dependently-sized array types that do not have a specified number
   2586   // of elements will have their sizes deduced from a dependent
   2587   // initializer.  We do no canonicalization here at all, which is okay
   2588   // because they can't be used in most locations.
   2589   if (!numElements) {
   2590     DependentSizedArrayType *newType
   2591       = new (*this, TypeAlignment)
   2592           DependentSizedArrayType(*this, elementType, QualType(),
   2593                                   numElements, ASM, elementTypeQuals,
   2594                                   brackets);
   2595     Types.push_back(newType);
   2596     return QualType(newType, 0);
   2597   }
   2598 
   2599   // Otherwise, we actually build a new type every time, but we
   2600   // also build a canonical type.
   2601 
   2602   SplitQualType canonElementType = getCanonicalType(elementType).split();
   2603 
   2604   void *insertPos = nullptr;
   2605   llvm::FoldingSetNodeID ID;
   2606   DependentSizedArrayType::Profile(ID, *this,
   2607                                    QualType(canonElementType.Ty, 0),
   2608                                    ASM, elementTypeQuals, numElements);
   2609 
   2610   // Look for an existing type with these properties.
   2611   DependentSizedArrayType *canonTy =
   2612     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
   2613 
   2614   // If we don't have one, build one.
   2615   if (!canonTy) {
   2616     canonTy = new (*this, TypeAlignment)
   2617       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
   2618                               QualType(), numElements, ASM, elementTypeQuals,
   2619                               brackets);
   2620     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
   2621     Types.push_back(canonTy);
   2622   }
   2623 
   2624   // Apply qualifiers from the element type to the array.
   2625   QualType canon = getQualifiedType(QualType(canonTy,0),
   2626                                     canonElementType.Quals);
   2627 
   2628   // If we didn't need extra canonicalization for the element type,
   2629   // then just use that as our result.
   2630   if (QualType(canonElementType.Ty, 0) == elementType)
   2631     return canon;
   2632 
   2633   // Otherwise, we need to build a type which follows the spelling
   2634   // of the element type.
   2635   DependentSizedArrayType *sugaredType
   2636     = new (*this, TypeAlignment)
   2637         DependentSizedArrayType(*this, elementType, canon, numElements,
   2638                                 ASM, elementTypeQuals, brackets);
   2639   Types.push_back(sugaredType);
   2640   return QualType(sugaredType, 0);
   2641 }
   2642 
   2643 QualType ASTContext::getIncompleteArrayType(QualType elementType,
   2644                                             ArrayType::ArraySizeModifier ASM,
   2645                                             unsigned elementTypeQuals) const {
   2646   llvm::FoldingSetNodeID ID;
   2647   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
   2648 
   2649   void *insertPos = nullptr;
   2650   if (IncompleteArrayType *iat =
   2651        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
   2652     return QualType(iat, 0);
   2653 
   2654   // If the element type isn't canonical, this won't be a canonical type
   2655   // either, so fill in the canonical type field.  We also have to pull
   2656   // qualifiers off the element type.
   2657   QualType canon;
   2658 
   2659   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
   2660     SplitQualType canonSplit = getCanonicalType(elementType).split();
   2661     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
   2662                                    ASM, elementTypeQuals);
   2663     canon = getQualifiedType(canon, canonSplit.Quals);
   2664 
   2665     // Get the new insert position for the node we care about.
   2666     IncompleteArrayType *existing =
   2667       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
   2668     assert(!existing && "Shouldn't be in the map!"); (void) existing;
   2669   }
   2670 
   2671   IncompleteArrayType *newType = new (*this, TypeAlignment)
   2672     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
   2673 
   2674   IncompleteArrayTypes.InsertNode(newType, insertPos);
   2675   Types.push_back(newType);
   2676   return QualType(newType, 0);
   2677 }
   2678 
   2679 /// getVectorType - Return the unique reference to a vector type of
   2680 /// the specified element type and size. VectorType must be a built-in type.
   2681 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
   2682                                    VectorType::VectorKind VecKind) const {
   2683   assert(vecType->isBuiltinType());
   2684 
   2685   // Check if we've already instantiated a vector of this type.
   2686   llvm::FoldingSetNodeID ID;
   2687   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
   2688 
   2689   void *InsertPos = nullptr;
   2690   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
   2691     return QualType(VTP, 0);
   2692 
   2693   // If the element type isn't canonical, this won't be a canonical type either,
   2694   // so fill in the canonical type field.
   2695   QualType Canonical;
   2696   if (!vecType.isCanonical()) {
   2697     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
   2698 
   2699     // Get the new insert position for the node we care about.
   2700     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2701     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2702   }
   2703   VectorType *New = new (*this, TypeAlignment)
   2704     VectorType(vecType, NumElts, Canonical, VecKind);
   2705   VectorTypes.InsertNode(New, InsertPos);
   2706   Types.push_back(New);
   2707   return QualType(New, 0);
   2708 }
   2709 
   2710 /// getExtVectorType - Return the unique reference to an extended vector type of
   2711 /// the specified element type and size. VectorType must be a built-in type.
   2712 QualType
   2713 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
   2714   assert(vecType->isBuiltinType() || vecType->isDependentType());
   2715 
   2716   // Check if we've already instantiated a vector of this type.
   2717   llvm::FoldingSetNodeID ID;
   2718   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
   2719                       VectorType::GenericVector);
   2720   void *InsertPos = nullptr;
   2721   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
   2722     return QualType(VTP, 0);
   2723 
   2724   // If the element type isn't canonical, this won't be a canonical type either,
   2725   // so fill in the canonical type field.
   2726   QualType Canonical;
   2727   if (!vecType.isCanonical()) {
   2728     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
   2729 
   2730     // Get the new insert position for the node we care about.
   2731     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2732     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2733   }
   2734   ExtVectorType *New = new (*this, TypeAlignment)
   2735     ExtVectorType(vecType, NumElts, Canonical);
   2736   VectorTypes.InsertNode(New, InsertPos);
   2737   Types.push_back(New);
   2738   return QualType(New, 0);
   2739 }
   2740 
   2741 QualType
   2742 ASTContext::getDependentSizedExtVectorType(QualType vecType,
   2743                                            Expr *SizeExpr,
   2744                                            SourceLocation AttrLoc) const {
   2745   llvm::FoldingSetNodeID ID;
   2746   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
   2747                                        SizeExpr);
   2748 
   2749   void *InsertPos = nullptr;
   2750   DependentSizedExtVectorType *Canon
   2751     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2752   DependentSizedExtVectorType *New;
   2753   if (Canon) {
   2754     // We already have a canonical version of this array type; use it as
   2755     // the canonical type for a newly-built type.
   2756     New = new (*this, TypeAlignment)
   2757       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
   2758                                   SizeExpr, AttrLoc);
   2759   } else {
   2760     QualType CanonVecTy = getCanonicalType(vecType);
   2761     if (CanonVecTy == vecType) {
   2762       New = new (*this, TypeAlignment)
   2763         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
   2764                                     AttrLoc);
   2765 
   2766       DependentSizedExtVectorType *CanonCheck
   2767         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2768       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
   2769       (void)CanonCheck;
   2770       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
   2771     } else {
   2772       QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
   2773                                                       SourceLocation());
   2774       New = new (*this, TypeAlignment)
   2775         DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
   2776     }
   2777   }
   2778 
   2779   Types.push_back(New);
   2780   return QualType(New, 0);
   2781 }
   2782 
   2783 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
   2784 ///
   2785 QualType
   2786 ASTContext::getFunctionNoProtoType(QualType ResultTy,
   2787                                    const FunctionType::ExtInfo &Info) const {
   2788   const CallingConv CallConv = Info.getCC();
   2789 
   2790   // Unique functions, to guarantee there is only one function of a particular
   2791   // structure.
   2792   llvm::FoldingSetNodeID ID;
   2793   FunctionNoProtoType::Profile(ID, ResultTy, Info);
   2794 
   2795   void *InsertPos = nullptr;
   2796   if (FunctionNoProtoType *FT =
   2797         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
   2798     return QualType(FT, 0);
   2799 
   2800   QualType Canonical;
   2801   if (!ResultTy.isCanonical()) {
   2802     Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info);
   2803 
   2804     // Get the new insert position for the node we care about.
   2805     FunctionNoProtoType *NewIP =
   2806       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
   2807     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2808   }
   2809 
   2810   FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
   2811   FunctionNoProtoType *New = new (*this, TypeAlignment)
   2812     FunctionNoProtoType(ResultTy, Canonical, newInfo);
   2813   Types.push_back(New);
   2814   FunctionNoProtoTypes.InsertNode(New, InsertPos);
   2815   return QualType(New, 0);
   2816 }
   2817 
   2818 /// \brief Determine whether \p T is canonical as the result type of a function.
   2819 static bool isCanonicalResultType(QualType T) {
   2820   return T.isCanonical() &&
   2821          (T.getObjCLifetime() == Qualifiers::OCL_None ||
   2822           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
   2823 }
   2824 
   2825 QualType
   2826 ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
   2827                             const FunctionProtoType::ExtProtoInfo &EPI) const {
   2828   size_t NumArgs = ArgArray.size();
   2829 
   2830   // Unique functions, to guarantee there is only one function of a particular
   2831   // structure.
   2832   llvm::FoldingSetNodeID ID;
   2833   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
   2834                              *this);
   2835 
   2836   void *InsertPos = nullptr;
   2837   if (FunctionProtoType *FTP =
   2838         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
   2839     return QualType(FTP, 0);
   2840 
   2841   // Determine whether the type being created is already canonical or not.
   2842   bool isCanonical =
   2843     EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
   2844     !EPI.HasTrailingReturn;
   2845   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
   2846     if (!ArgArray[i].isCanonicalAsParam())
   2847       isCanonical = false;
   2848 
   2849   // If this type isn't canonical, get the canonical version of it.
   2850   // The exception spec is not part of the canonical type.
   2851   QualType Canonical;
   2852   if (!isCanonical) {
   2853     SmallVector<QualType, 16> CanonicalArgs;
   2854     CanonicalArgs.reserve(NumArgs);
   2855     for (unsigned i = 0; i != NumArgs; ++i)
   2856       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
   2857 
   2858     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
   2859     CanonicalEPI.HasTrailingReturn = false;
   2860     CanonicalEPI.ExceptionSpecType = EST_None;
   2861     CanonicalEPI.NumExceptions = 0;
   2862 
   2863     // Result types do not have ARC lifetime qualifiers.
   2864     QualType CanResultTy = getCanonicalType(ResultTy);
   2865     if (ResultTy.getQualifiers().hasObjCLifetime()) {
   2866       Qualifiers Qs = CanResultTy.getQualifiers();
   2867       Qs.removeObjCLifetime();
   2868       CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
   2869     }
   2870 
   2871     Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
   2872 
   2873     // Get the new insert position for the node we care about.
   2874     FunctionProtoType *NewIP =
   2875       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
   2876     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2877   }
   2878 
   2879   // FunctionProtoType objects are allocated with extra bytes after
   2880   // them for three variable size arrays at the end:
   2881   //  - parameter types
   2882   //  - exception types
   2883   //  - consumed-arguments flags
   2884   // Instead of the exception types, there could be a noexcept
   2885   // expression, or information used to resolve the exception
   2886   // specification.
   2887   size_t Size = sizeof(FunctionProtoType) +
   2888                 NumArgs * sizeof(QualType);
   2889   if (EPI.ExceptionSpecType == EST_Dynamic) {
   2890     Size += EPI.NumExceptions * sizeof(QualType);
   2891   } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
   2892     Size += sizeof(Expr*);
   2893   } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
   2894     Size += 2 * sizeof(FunctionDecl*);
   2895   } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
   2896     Size += sizeof(FunctionDecl*);
   2897   }
   2898   if (EPI.ConsumedParameters)
   2899     Size += NumArgs * sizeof(bool);
   2900 
   2901   FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
   2902   FunctionProtoType::ExtProtoInfo newEPI = EPI;
   2903   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
   2904   Types.push_back(FTP);
   2905   FunctionProtoTypes.InsertNode(FTP, InsertPos);
   2906   return QualType(FTP, 0);
   2907 }
   2908 
   2909 #ifndef NDEBUG
   2910 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
   2911   if (!isa<CXXRecordDecl>(D)) return false;
   2912   const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
   2913   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
   2914     return true;
   2915   if (RD->getDescribedClassTemplate() &&
   2916       !isa<ClassTemplateSpecializationDecl>(RD))
   2917     return true;
   2918   return false;
   2919 }
   2920 #endif
   2921 
   2922 /// getInjectedClassNameType - Return the unique reference to the
   2923 /// injected class name type for the specified templated declaration.
   2924 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
   2925                                               QualType TST) const {
   2926   assert(NeedsInjectedClassNameType(Decl));
   2927   if (Decl->TypeForDecl) {
   2928     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
   2929   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
   2930     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
   2931     Decl->TypeForDecl = PrevDecl->TypeForDecl;
   2932     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
   2933   } else {
   2934     Type *newType =
   2935       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
   2936     Decl->TypeForDecl = newType;
   2937     Types.push_back(newType);
   2938   }
   2939   return QualType(Decl->TypeForDecl, 0);
   2940 }
   2941 
   2942 /// getTypeDeclType - Return the unique reference to the type for the
   2943 /// specified type declaration.
   2944 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
   2945   assert(Decl && "Passed null for Decl param");
   2946   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
   2947 
   2948   if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
   2949     return getTypedefType(Typedef);
   2950 
   2951   assert(!isa<TemplateTypeParmDecl>(Decl) &&
   2952          "Template type parameter types are always available.");
   2953 
   2954   if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
   2955     assert(Record->isFirstDecl() && "struct/union has previous declaration");
   2956     assert(!NeedsInjectedClassNameType(Record));
   2957     return getRecordType(Record);
   2958   } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
   2959     assert(Enum->isFirstDecl() && "enum has previous declaration");
   2960     return getEnumType(Enum);
   2961   } else if (const UnresolvedUsingTypenameDecl *Using =
   2962                dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
   2963     Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
   2964     Decl->TypeForDecl = newType;
   2965     Types.push_back(newType);
   2966   } else
   2967     llvm_unreachable("TypeDecl without a type?");
   2968 
   2969   return QualType(Decl->TypeForDecl, 0);
   2970 }
   2971 
   2972 /// getTypedefType - Return the unique reference to the type for the
   2973 /// specified typedef name decl.
   2974 QualType
   2975 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
   2976                            QualType Canonical) const {
   2977   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   2978 
   2979   if (Canonical.isNull())
   2980     Canonical = getCanonicalType(Decl->getUnderlyingType());
   2981   TypedefType *newType = new(*this, TypeAlignment)
   2982     TypedefType(Type::Typedef, Decl, Canonical);
   2983   Decl->TypeForDecl = newType;
   2984   Types.push_back(newType);
   2985   return QualType(newType, 0);
   2986 }
   2987 
   2988 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
   2989   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   2990 
   2991   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
   2992     if (PrevDecl->TypeForDecl)
   2993       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
   2994 
   2995   RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
   2996   Decl->TypeForDecl = newType;
   2997   Types.push_back(newType);
   2998   return QualType(newType, 0);
   2999 }
   3000 
   3001 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
   3002   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   3003 
   3004   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
   3005     if (PrevDecl->TypeForDecl)
   3006       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
   3007 
   3008   EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
   3009   Decl->TypeForDecl = newType;
   3010   Types.push_back(newType);
   3011   return QualType(newType, 0);
   3012 }
   3013 
   3014 QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
   3015                                        QualType modifiedType,
   3016                                        QualType equivalentType) {
   3017   llvm::FoldingSetNodeID id;
   3018   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
   3019 
   3020   void *insertPos = nullptr;
   3021   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
   3022   if (type) return QualType(type, 0);
   3023 
   3024   QualType canon = getCanonicalType(equivalentType);
   3025   type = new (*this, TypeAlignment)
   3026            AttributedType(canon, attrKind, modifiedType, equivalentType);
   3027 
   3028   Types.push_back(type);
   3029   AttributedTypes.InsertNode(type, insertPos);
   3030 
   3031   return QualType(type, 0);
   3032 }
   3033 
   3034 
   3035 /// \brief Retrieve a substitution-result type.
   3036 QualType
   3037 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
   3038                                          QualType Replacement) const {
   3039   assert(Replacement.isCanonical()
   3040          && "replacement types must always be canonical");
   3041 
   3042   llvm::FoldingSetNodeID ID;
   3043   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
   3044   void *InsertPos = nullptr;
   3045   SubstTemplateTypeParmType *SubstParm
   3046     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
   3047 
   3048   if (!SubstParm) {
   3049     SubstParm = new (*this, TypeAlignment)
   3050       SubstTemplateTypeParmType(Parm, Replacement);
   3051     Types.push_back(SubstParm);
   3052     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
   3053   }
   3054 
   3055   return QualType(SubstParm, 0);
   3056 }
   3057 
   3058 /// \brief Retrieve a
   3059 QualType ASTContext::getSubstTemplateTypeParmPackType(
   3060                                           const TemplateTypeParmType *Parm,
   3061                                               const TemplateArgument &ArgPack) {
   3062 #ifndef NDEBUG
   3063   for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
   3064                                     PEnd = ArgPack.pack_end();
   3065        P != PEnd; ++P) {
   3066     assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
   3067     assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
   3068   }
   3069 #endif
   3070 
   3071   llvm::FoldingSetNodeID ID;
   3072   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
   3073   void *InsertPos = nullptr;
   3074   if (SubstTemplateTypeParmPackType *SubstParm
   3075         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
   3076     return QualType(SubstParm, 0);
   3077 
   3078   QualType Canon;
   3079   if (!Parm->isCanonicalUnqualified()) {
   3080     Canon = getCanonicalType(QualType(Parm, 0));
   3081     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
   3082                                              ArgPack);
   3083     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
   3084   }
   3085 
   3086   SubstTemplateTypeParmPackType *SubstParm
   3087     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
   3088                                                                ArgPack);
   3089   Types.push_back(SubstParm);
   3090   SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
   3091   return QualType(SubstParm, 0);
   3092 }
   3093 
   3094 /// \brief Retrieve the template type parameter type for a template
   3095 /// parameter or parameter pack with the given depth, index, and (optionally)
   3096 /// name.
   3097 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
   3098                                              bool ParameterPack,
   3099                                              TemplateTypeParmDecl *TTPDecl) const {
   3100   llvm::FoldingSetNodeID ID;
   3101   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
   3102   void *InsertPos = nullptr;
   3103   TemplateTypeParmType *TypeParm
   3104     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
   3105 
   3106   if (TypeParm)
   3107     return QualType(TypeParm, 0);
   3108 
   3109   if (TTPDecl) {
   3110     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
   3111     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
   3112 
   3113     TemplateTypeParmType *TypeCheck
   3114       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
   3115     assert(!TypeCheck && "Template type parameter canonical type broken");
   3116     (void)TypeCheck;
   3117   } else
   3118     TypeParm = new (*this, TypeAlignment)
   3119       TemplateTypeParmType(Depth, Index, ParameterPack);
   3120 
   3121   Types.push_back(TypeParm);
   3122   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
   3123 
   3124   return QualType(TypeParm, 0);
   3125 }
   3126 
   3127 TypeSourceInfo *
   3128 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
   3129                                               SourceLocation NameLoc,
   3130                                         const TemplateArgumentListInfo &Args,
   3131                                               QualType Underlying) const {
   3132   assert(!Name.getAsDependentTemplateName() &&
   3133          "No dependent template names here!");
   3134   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
   3135 
   3136   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
   3137   TemplateSpecializationTypeLoc TL =
   3138       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
   3139   TL.setTemplateKeywordLoc(SourceLocation());
   3140   TL.setTemplateNameLoc(NameLoc);
   3141   TL.setLAngleLoc(Args.getLAngleLoc());
   3142   TL.setRAngleLoc(Args.getRAngleLoc());
   3143   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
   3144     TL.setArgLocInfo(i, Args[i].getLocInfo());
   3145   return DI;
   3146 }
   3147 
   3148 QualType
   3149 ASTContext::getTemplateSpecializationType(TemplateName Template,
   3150                                           const TemplateArgumentListInfo &Args,
   3151                                           QualType Underlying) const {
   3152   assert(!Template.getAsDependentTemplateName() &&
   3153          "No dependent template names here!");
   3154 
   3155   unsigned NumArgs = Args.size();
   3156 
   3157   SmallVector<TemplateArgument, 4> ArgVec;
   3158   ArgVec.reserve(NumArgs);
   3159   for (unsigned i = 0; i != NumArgs; ++i)
   3160     ArgVec.push_back(Args[i].getArgument());
   3161 
   3162   return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
   3163                                        Underlying);
   3164 }
   3165 
   3166 #ifndef NDEBUG
   3167 static bool hasAnyPackExpansions(const TemplateArgument *Args,
   3168                                  unsigned NumArgs) {
   3169   for (unsigned I = 0; I != NumArgs; ++I)
   3170     if (Args[I].isPackExpansion())
   3171       return true;
   3172 
   3173   return true;
   3174 }
   3175 #endif
   3176 
   3177 QualType
   3178 ASTContext::getTemplateSpecializationType(TemplateName Template,
   3179                                           const TemplateArgument *Args,
   3180                                           unsigned NumArgs,
   3181                                           QualType Underlying) const {
   3182   assert(!Template.getAsDependentTemplateName() &&
   3183          "No dependent template names here!");
   3184   // Look through qualified template names.
   3185   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
   3186     Template = TemplateName(QTN->getTemplateDecl());
   3187 
   3188   bool IsTypeAlias =
   3189     Template.getAsTemplateDecl() &&
   3190     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
   3191   QualType CanonType;
   3192   if (!Underlying.isNull())
   3193     CanonType = getCanonicalType(Underlying);
   3194   else {
   3195     // We can get here with an alias template when the specialization contains
   3196     // a pack expansion that does not match up with a parameter pack.
   3197     assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
   3198            "Caller must compute aliased type");
   3199     IsTypeAlias = false;
   3200     CanonType = getCanonicalTemplateSpecializationType(Template, Args,
   3201                                                        NumArgs);
   3202   }
   3203 
   3204   // Allocate the (non-canonical) template specialization type, but don't
   3205   // try to unique it: these types typically have location information that
   3206   // we don't unique and don't want to lose.
   3207   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
   3208                        sizeof(TemplateArgument) * NumArgs +
   3209                        (IsTypeAlias? sizeof(QualType) : 0),
   3210                        TypeAlignment);
   3211   TemplateSpecializationType *Spec
   3212     = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
   3213                                          IsTypeAlias ? Underlying : QualType());
   3214 
   3215   Types.push_back(Spec);
   3216   return QualType(Spec, 0);
   3217 }
   3218 
   3219 QualType
   3220 ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
   3221                                                    const TemplateArgument *Args,
   3222                                                    unsigned NumArgs) const {
   3223   assert(!Template.getAsDependentTemplateName() &&
   3224          "No dependent template names here!");
   3225 
   3226   // Look through qualified template names.
   3227   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
   3228     Template = TemplateName(QTN->getTemplateDecl());
   3229 
   3230   // Build the canonical template specialization type.
   3231   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
   3232   SmallVector<TemplateArgument, 4> CanonArgs;
   3233   CanonArgs.reserve(NumArgs);
   3234   for (unsigned I = 0; I != NumArgs; ++I)
   3235     CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
   3236 
   3237   // Determine whether this canonical template specialization type already
   3238   // exists.
   3239   llvm::FoldingSetNodeID ID;
   3240   TemplateSpecializationType::Profile(ID, CanonTemplate,
   3241                                       CanonArgs.data(), NumArgs, *this);
   3242 
   3243   void *InsertPos = nullptr;
   3244   TemplateSpecializationType *Spec
   3245     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
   3246 
   3247   if (!Spec) {
   3248     // Allocate a new canonical template specialization type.
   3249     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
   3250                           sizeof(TemplateArgument) * NumArgs),
   3251                          TypeAlignment);
   3252     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
   3253                                                 CanonArgs.data(), NumArgs,
   3254                                                 QualType(), QualType());
   3255     Types.push_back(Spec);
   3256     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
   3257   }
   3258 
   3259   assert(Spec->isDependentType() &&
   3260          "Non-dependent template-id type must have a canonical type");
   3261   return QualType(Spec, 0);
   3262 }
   3263 
   3264 QualType
   3265 ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
   3266                               NestedNameSpecifier *NNS,
   3267                               QualType NamedType) const {
   3268   llvm::FoldingSetNodeID ID;
   3269   ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
   3270 
   3271   void *InsertPos = nullptr;
   3272   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
   3273   if (T)
   3274     return QualType(T, 0);
   3275 
   3276   QualType Canon = NamedType;
   3277   if (!Canon.isCanonical()) {
   3278     Canon = getCanonicalType(NamedType);
   3279     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
   3280     assert(!CheckT && "Elaborated canonical type broken");
   3281     (void)CheckT;
   3282   }
   3283 
   3284   T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
   3285   Types.push_back(T);
   3286   ElaboratedTypes.InsertNode(T, InsertPos);
   3287   return QualType(T, 0);
   3288 }
   3289 
   3290 QualType
   3291 ASTContext::getParenType(QualType InnerType) const {
   3292   llvm::FoldingSetNodeID ID;
   3293   ParenType::Profile(ID, InnerType);
   3294 
   3295   void *InsertPos = nullptr;
   3296   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
   3297   if (T)
   3298     return QualType(T, 0);
   3299 
   3300   QualType Canon = InnerType;
   3301   if (!Canon.isCanonical()) {
   3302     Canon = getCanonicalType(InnerType);
   3303     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
   3304     assert(!CheckT && "Paren canonical type broken");
   3305     (void)CheckT;
   3306   }
   3307 
   3308   T = new (*this) ParenType(InnerType, Canon);
   3309   Types.push_back(T);
   3310   ParenTypes.InsertNode(T, InsertPos);
   3311   return QualType(T, 0);
   3312 }
   3313 
   3314 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
   3315                                           NestedNameSpecifier *NNS,
   3316                                           const IdentifierInfo *Name,
   3317                                           QualType Canon) const {
   3318   if (Canon.isNull()) {
   3319     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   3320     ElaboratedTypeKeyword CanonKeyword = Keyword;
   3321     if (Keyword == ETK_None)
   3322       CanonKeyword = ETK_Typename;
   3323 
   3324     if (CanonNNS != NNS || CanonKeyword != Keyword)
   3325       Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
   3326   }
   3327 
   3328   llvm::FoldingSetNodeID ID;
   3329   DependentNameType::Profile(ID, Keyword, NNS, Name);
   3330 
   3331   void *InsertPos = nullptr;
   3332   DependentNameType *T
   3333     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
   3334   if (T)
   3335     return QualType(T, 0);
   3336 
   3337   T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
   3338   Types.push_back(T);
   3339   DependentNameTypes.InsertNode(T, InsertPos);
   3340   return QualType(T, 0);
   3341 }
   3342 
   3343 QualType
   3344 ASTContext::getDependentTemplateSpecializationType(
   3345                                  ElaboratedTypeKeyword Keyword,
   3346                                  NestedNameSpecifier *NNS,
   3347                                  const IdentifierInfo *Name,
   3348                                  const TemplateArgumentListInfo &Args) const {
   3349   // TODO: avoid this copy
   3350   SmallVector<TemplateArgument, 16> ArgCopy;
   3351   for (unsigned I = 0, E = Args.size(); I != E; ++I)
   3352     ArgCopy.push_back(Args[I].getArgument());
   3353   return getDependentTemplateSpecializationType(Keyword, NNS, Name,
   3354                                                 ArgCopy.size(),
   3355                                                 ArgCopy.data());
   3356 }
   3357 
   3358 QualType
   3359 ASTContext::getDependentTemplateSpecializationType(
   3360                                  ElaboratedTypeKeyword Keyword,
   3361                                  NestedNameSpecifier *NNS,
   3362                                  const IdentifierInfo *Name,
   3363                                  unsigned NumArgs,
   3364                                  const TemplateArgument *Args) const {
   3365   assert((!NNS || NNS->isDependent()) &&
   3366          "nested-name-specifier must be dependent");
   3367 
   3368   llvm::FoldingSetNodeID ID;
   3369   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
   3370                                                Name, NumArgs, Args);
   3371 
   3372   void *InsertPos = nullptr;
   3373   DependentTemplateSpecializationType *T
   3374     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
   3375   if (T)
   3376     return QualType(T, 0);
   3377 
   3378   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   3379 
   3380   ElaboratedTypeKeyword CanonKeyword = Keyword;
   3381   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
   3382 
   3383   bool AnyNonCanonArgs = false;
   3384   SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
   3385   for (unsigned I = 0; I != NumArgs; ++I) {
   3386     CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
   3387     if (!CanonArgs[I].structurallyEquals(Args[I]))
   3388       AnyNonCanonArgs = true;
   3389   }
   3390 
   3391   QualType Canon;
   3392   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
   3393     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
   3394                                                    Name, NumArgs,
   3395                                                    CanonArgs.data());
   3396 
   3397     // Find the insert position again.
   3398     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
   3399   }
   3400 
   3401   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
   3402                         sizeof(TemplateArgument) * NumArgs),
   3403                        TypeAlignment);
   3404   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
   3405                                                     Name, NumArgs, Args, Canon);
   3406   Types.push_back(T);
   3407   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
   3408   return QualType(T, 0);
   3409 }
   3410 
   3411 QualType ASTContext::getPackExpansionType(QualType Pattern,
   3412                                           Optional<unsigned> NumExpansions) {
   3413   llvm::FoldingSetNodeID ID;
   3414   PackExpansionType::Profile(ID, Pattern, NumExpansions);
   3415 
   3416   assert(Pattern->containsUnexpandedParameterPack() &&
   3417          "Pack expansions must expand one or more parameter packs");
   3418   void *InsertPos = nullptr;
   3419   PackExpansionType *T
   3420     = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
   3421   if (T)
   3422     return QualType(T, 0);
   3423 
   3424   QualType Canon;
   3425   if (!Pattern.isCanonical()) {
   3426     Canon = getCanonicalType(Pattern);
   3427     // The canonical type might not contain an unexpanded parameter pack, if it
   3428     // contains an alias template specialization which ignores one of its
   3429     // parameters.
   3430     if (Canon->containsUnexpandedParameterPack()) {
   3431       Canon = getPackExpansionType(Canon, NumExpansions);
   3432 
   3433       // Find the insert position again, in case we inserted an element into
   3434       // PackExpansionTypes and invalidated our insert position.
   3435       PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
   3436     }
   3437   }
   3438 
   3439   T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
   3440   Types.push_back(T);
   3441   PackExpansionTypes.InsertNode(T, InsertPos);
   3442   return QualType(T, 0);
   3443 }
   3444 
   3445 /// CmpProtocolNames - Comparison predicate for sorting protocols
   3446 /// alphabetically.
   3447 static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
   3448                             const ObjCProtocolDecl *RHS) {
   3449   return LHS->getDeclName() < RHS->getDeclName();
   3450 }
   3451 
   3452 static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
   3453                                 unsigned NumProtocols) {
   3454   if (NumProtocols == 0) return true;
   3455 
   3456   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
   3457     return false;
   3458 
   3459   for (unsigned i = 1; i != NumProtocols; ++i)
   3460     if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
   3461         Protocols[i]->getCanonicalDecl() != Protocols[i])
   3462       return false;
   3463   return true;
   3464 }
   3465 
   3466 static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
   3467                                    unsigned &NumProtocols) {
   3468   ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
   3469 
   3470   // Sort protocols, keyed by name.
   3471   std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
   3472 
   3473   // Canonicalize.
   3474   for (unsigned I = 0, N = NumProtocols; I != N; ++I)
   3475     Protocols[I] = Protocols[I]->getCanonicalDecl();
   3476 
   3477   // Remove duplicates.
   3478   ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
   3479   NumProtocols = ProtocolsEnd-Protocols;
   3480 }
   3481 
   3482 QualType ASTContext::getObjCObjectType(QualType BaseType,
   3483                                        ObjCProtocolDecl * const *Protocols,
   3484                                        unsigned NumProtocols) const {
   3485   // If the base type is an interface and there aren't any protocols
   3486   // to add, then the interface type will do just fine.
   3487   if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
   3488     return BaseType;
   3489 
   3490   // Look in the folding set for an existing type.
   3491   llvm::FoldingSetNodeID ID;
   3492   ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
   3493   void *InsertPos = nullptr;
   3494   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
   3495     return QualType(QT, 0);
   3496 
   3497   // Build the canonical type, which has the canonical base type and
   3498   // a sorted-and-uniqued list of protocols.
   3499   QualType Canonical;
   3500   bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
   3501   if (!ProtocolsSorted || !BaseType.isCanonical()) {
   3502     if (!ProtocolsSorted) {
   3503       SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
   3504                                                      Protocols + NumProtocols);
   3505       unsigned UniqueCount = NumProtocols;
   3506 
   3507       SortAndUniqueProtocols(&Sorted[0], UniqueCount);
   3508       Canonical = getObjCObjectType(getCanonicalType(BaseType),
   3509                                     &Sorted[0], UniqueCount);
   3510     } else {
   3511       Canonical = getObjCObjectType(getCanonicalType(BaseType),
   3512                                     Protocols, NumProtocols);
   3513     }
   3514 
   3515     // Regenerate InsertPos.
   3516     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
   3517   }
   3518 
   3519   unsigned Size = sizeof(ObjCObjectTypeImpl);
   3520   Size += NumProtocols * sizeof(ObjCProtocolDecl *);
   3521   void *Mem = Allocate(Size, TypeAlignment);
   3522   ObjCObjectTypeImpl *T =
   3523     new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
   3524 
   3525   Types.push_back(T);
   3526   ObjCObjectTypes.InsertNode(T, InsertPos);
   3527   return QualType(T, 0);
   3528 }
   3529 
   3530 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
   3531 /// protocol list adopt all protocols in QT's qualified-id protocol
   3532 /// list.
   3533 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
   3534                                                 ObjCInterfaceDecl *IC) {
   3535   if (!QT->isObjCQualifiedIdType())
   3536     return false;
   3537 
   3538   if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) {
   3539     // If both the right and left sides have qualifiers.
   3540     for (auto *Proto : OPT->quals()) {
   3541       if (!IC->ClassImplementsProtocol(Proto, false))
   3542         return false;
   3543     }
   3544     return true;
   3545   }
   3546   return false;
   3547 }
   3548 
   3549 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
   3550 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
   3551 /// of protocols.
   3552 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
   3553                                                 ObjCInterfaceDecl *IDecl) {
   3554   if (!QT->isObjCQualifiedIdType())
   3555     return false;
   3556   const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
   3557   if (!OPT)
   3558     return false;
   3559   if (!IDecl->hasDefinition())
   3560     return false;
   3561   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
   3562   CollectInheritedProtocols(IDecl, InheritedProtocols);
   3563   if (InheritedProtocols.empty())
   3564     return false;
   3565   // Check that if every protocol in list of id<plist> conforms to a protcol
   3566   // of IDecl's, then bridge casting is ok.
   3567   bool Conforms = false;
   3568   for (auto *Proto : OPT->quals()) {
   3569     Conforms = false;
   3570     for (auto *PI : InheritedProtocols) {
   3571       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
   3572         Conforms = true;
   3573         break;
   3574       }
   3575     }
   3576     if (!Conforms)
   3577       break;
   3578   }
   3579   if (Conforms)
   3580     return true;
   3581 
   3582   for (auto *PI : InheritedProtocols) {
   3583     // If both the right and left sides have qualifiers.
   3584     bool Adopts = false;
   3585     for (auto *Proto : OPT->quals()) {
   3586       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
   3587       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
   3588         break;
   3589     }
   3590     if (!Adopts)
   3591       return false;
   3592   }
   3593   return true;
   3594 }
   3595 
   3596 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
   3597 /// the given object type.
   3598 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
   3599   llvm::FoldingSetNodeID ID;
   3600   ObjCObjectPointerType::Profile(ID, ObjectT);
   3601 
   3602   void *InsertPos = nullptr;
   3603   if (ObjCObjectPointerType *QT =
   3604               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   3605     return QualType(QT, 0);
   3606 
   3607   // Find the canonical object type.
   3608   QualType Canonical;
   3609   if (!ObjectT.isCanonical()) {
   3610     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
   3611 
   3612     // Regenerate InsertPos.
   3613     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   3614   }
   3615 
   3616   // No match.
   3617   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
   3618   ObjCObjectPointerType *QType =
   3619     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
   3620 
   3621   Types.push_back(QType);
   3622   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
   3623   return QualType(QType, 0);
   3624 }
   3625 
   3626 /// getObjCInterfaceType - Return the unique reference to the type for the
   3627 /// specified ObjC interface decl. The list of protocols is optional.
   3628 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
   3629                                           ObjCInterfaceDecl *PrevDecl) const {
   3630   if (Decl->TypeForDecl)
   3631     return QualType(Decl->TypeForDecl, 0);
   3632 
   3633   if (PrevDecl) {
   3634     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
   3635     Decl->TypeForDecl = PrevDecl->TypeForDecl;
   3636     return QualType(PrevDecl->TypeForDecl, 0);
   3637   }
   3638 
   3639   // Prefer the definition, if there is one.
   3640   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
   3641     Decl = Def;
   3642 
   3643   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
   3644   ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
   3645   Decl->TypeForDecl = T;
   3646   Types.push_back(T);
   3647   return QualType(T, 0);
   3648 }
   3649 
   3650 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
   3651 /// TypeOfExprType AST's (since expression's are never shared). For example,
   3652 /// multiple declarations that refer to "typeof(x)" all contain different
   3653 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
   3654 /// on canonical type's (which are always unique).
   3655 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
   3656   TypeOfExprType *toe;
   3657   if (tofExpr->isTypeDependent()) {
   3658     llvm::FoldingSetNodeID ID;
   3659     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
   3660 
   3661     void *InsertPos = nullptr;
   3662     DependentTypeOfExprType *Canon
   3663       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
   3664     if (Canon) {
   3665       // We already have a "canonical" version of an identical, dependent
   3666       // typeof(expr) type. Use that as our canonical type.
   3667       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
   3668                                           QualType((TypeOfExprType*)Canon, 0));
   3669     } else {
   3670       // Build a new, canonical typeof(expr) type.
   3671       Canon
   3672         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
   3673       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
   3674       toe = Canon;
   3675     }
   3676   } else {
   3677     QualType Canonical = getCanonicalType(tofExpr->getType());
   3678     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
   3679   }
   3680   Types.push_back(toe);
   3681   return QualType(toe, 0);
   3682 }
   3683 
   3684 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
   3685 /// TypeOfType nodes. The only motivation to unique these nodes would be
   3686 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
   3687 /// an issue. This doesn't affect the type checker, since it operates
   3688 /// on canonical types (which are always unique).
   3689 QualType ASTContext::getTypeOfType(QualType tofType) const {
   3690   QualType Canonical = getCanonicalType(tofType);
   3691   TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
   3692   Types.push_back(tot);
   3693   return QualType(tot, 0);
   3694 }
   3695 
   3696 
   3697 /// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType
   3698 /// nodes. This would never be helpful, since each such type has its own
   3699 /// expression, and would not give a significant memory saving, since there
   3700 /// is an Expr tree under each such type.
   3701 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
   3702   DecltypeType *dt;
   3703 
   3704   // C++11 [temp.type]p2:
   3705   //   If an expression e involves a template parameter, decltype(e) denotes a
   3706   //   unique dependent type. Two such decltype-specifiers refer to the same
   3707   //   type only if their expressions are equivalent (14.5.6.1).
   3708   if (e->isInstantiationDependent()) {
   3709     llvm::FoldingSetNodeID ID;
   3710     DependentDecltypeType::Profile(ID, *this, e);
   3711 
   3712     void *InsertPos = nullptr;
   3713     DependentDecltypeType *Canon
   3714       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
   3715     if (!Canon) {
   3716       // Build a new, canonical typeof(expr) type.
   3717       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
   3718       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
   3719     }
   3720     dt = new (*this, TypeAlignment)
   3721         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
   3722   } else {
   3723     dt = new (*this, TypeAlignment)
   3724         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
   3725   }
   3726   Types.push_back(dt);
   3727   return QualType(dt, 0);
   3728 }
   3729 
   3730 /// getUnaryTransformationType - We don't unique these, since the memory
   3731 /// savings are minimal and these are rare.
   3732 QualType ASTContext::getUnaryTransformType(QualType BaseType,
   3733                                            QualType UnderlyingType,
   3734                                            UnaryTransformType::UTTKind Kind)
   3735     const {
   3736   UnaryTransformType *Ty =
   3737     new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
   3738                                                    Kind,
   3739                                  UnderlyingType->isDependentType() ?
   3740                                  QualType() : getCanonicalType(UnderlyingType));
   3741   Types.push_back(Ty);
   3742   return QualType(Ty, 0);
   3743 }
   3744 
   3745 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
   3746 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
   3747 /// canonical deduced-but-dependent 'auto' type.
   3748 QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
   3749                                  bool IsDependent) const {
   3750   if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
   3751     return getAutoDeductType();
   3752 
   3753   // Look in the folding set for an existing type.
   3754   void *InsertPos = nullptr;
   3755   llvm::FoldingSetNodeID ID;
   3756   AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
   3757   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
   3758     return QualType(AT, 0);
   3759 
   3760   AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
   3761                                                      IsDecltypeAuto,
   3762                                                      IsDependent);
   3763   Types.push_back(AT);
   3764   if (InsertPos)
   3765     AutoTypes.InsertNode(AT, InsertPos);
   3766   return QualType(AT, 0);
   3767 }
   3768 
   3769 /// getAtomicType - Return the uniqued reference to the atomic type for
   3770 /// the given value type.
   3771 QualType ASTContext::getAtomicType(QualType T) const {
   3772   // Unique pointers, to guarantee there is only one pointer of a particular
   3773   // structure.
   3774   llvm::FoldingSetNodeID ID;
   3775   AtomicType::Profile(ID, T);
   3776 
   3777   void *InsertPos = nullptr;
   3778   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
   3779     return QualType(AT, 0);
   3780 
   3781   // If the atomic value type isn't canonical, this won't be a canonical type
   3782   // either, so fill in the canonical type field.
   3783   QualType Canonical;
   3784   if (!T.isCanonical()) {
   3785     Canonical = getAtomicType(getCanonicalType(T));
   3786 
   3787     // Get the new insert position for the node we care about.
   3788     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
   3789     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   3790   }
   3791   AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
   3792   Types.push_back(New);
   3793   AtomicTypes.InsertNode(New, InsertPos);
   3794   return QualType(New, 0);
   3795 }
   3796 
   3797 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
   3798 QualType ASTContext::getAutoDeductType() const {
   3799   if (AutoDeductTy.isNull())
   3800     AutoDeductTy = QualType(
   3801       new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
   3802                                           /*dependent*/false),
   3803       0);
   3804   return AutoDeductTy;
   3805 }
   3806 
   3807 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
   3808 QualType ASTContext::getAutoRRefDeductType() const {
   3809   if (AutoRRefDeductTy.isNull())
   3810     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
   3811   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
   3812   return AutoRRefDeductTy;
   3813 }
   3814 
   3815 /// getTagDeclType - Return the unique reference to the type for the
   3816 /// specified TagDecl (struct/union/class/enum) decl.
   3817 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
   3818   assert (Decl);
   3819   // FIXME: What is the design on getTagDeclType when it requires casting
   3820   // away const?  mutable?
   3821   return getTypeDeclType(const_cast<TagDecl*>(Decl));
   3822 }
   3823 
   3824 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
   3825 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
   3826 /// needs to agree with the definition in <stddef.h>.
   3827 CanQualType ASTContext::getSizeType() const {
   3828   return getFromTargetType(Target->getSizeType());
   3829 }
   3830 
   3831 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
   3832 CanQualType ASTContext::getIntMaxType() const {
   3833   return getFromTargetType(Target->getIntMaxType());
   3834 }
   3835 
   3836 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
   3837 CanQualType ASTContext::getUIntMaxType() const {
   3838   return getFromTargetType(Target->getUIntMaxType());
   3839 }
   3840 
   3841 /// getSignedWCharType - Return the type of "signed wchar_t".
   3842 /// Used when in C++, as a GCC extension.
   3843 QualType ASTContext::getSignedWCharType() const {
   3844   // FIXME: derive from "Target" ?
   3845   return WCharTy;
   3846 }
   3847 
   3848 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
   3849 /// Used when in C++, as a GCC extension.
   3850 QualType ASTContext::getUnsignedWCharType() const {
   3851   // FIXME: derive from "Target" ?
   3852   return UnsignedIntTy;
   3853 }
   3854 
   3855 QualType ASTContext::getIntPtrType() const {
   3856   return getFromTargetType(Target->getIntPtrType());
   3857 }
   3858 
   3859 QualType ASTContext::getUIntPtrType() const {
   3860   return getCorrespondingUnsignedType(getIntPtrType());
   3861 }
   3862 
   3863 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
   3864 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
   3865 QualType ASTContext::getPointerDiffType() const {
   3866   return getFromTargetType(Target->getPtrDiffType(0));
   3867 }
   3868 
   3869 /// \brief Return the unique type for "pid_t" defined in
   3870 /// <sys/types.h>. We need this to compute the correct type for vfork().
   3871 QualType ASTContext::getProcessIDType() const {
   3872   return getFromTargetType(Target->getProcessIDType());
   3873 }
   3874 
   3875 //===----------------------------------------------------------------------===//
   3876 //                              Type Operators
   3877 //===----------------------------------------------------------------------===//
   3878 
   3879 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
   3880   // Push qualifiers into arrays, and then discard any remaining
   3881   // qualifiers.
   3882   T = getCanonicalType(T);
   3883   T = getVariableArrayDecayedType(T);
   3884   const Type *Ty = T.getTypePtr();
   3885   QualType Result;
   3886   if (isa<ArrayType>(Ty)) {
   3887     Result = getArrayDecayedType(QualType(Ty,0));
   3888   } else if (isa<FunctionType>(Ty)) {
   3889     Result = getPointerType(QualType(Ty, 0));
   3890   } else {
   3891     Result = QualType(Ty, 0);
   3892   }
   3893 
   3894   return CanQualType::CreateUnsafe(Result);
   3895 }
   3896 
   3897 QualType ASTContext::getUnqualifiedArrayType(QualType type,
   3898                                              Qualifiers &quals) {
   3899   SplitQualType splitType = type.getSplitUnqualifiedType();
   3900 
   3901   // FIXME: getSplitUnqualifiedType() actually walks all the way to
   3902   // the unqualified desugared type and then drops it on the floor.
   3903   // We then have to strip that sugar back off with
   3904   // getUnqualifiedDesugaredType(), which is silly.
   3905   const ArrayType *AT =
   3906     dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
   3907 
   3908   // If we don't have an array, just use the results in splitType.
   3909   if (!AT) {
   3910     quals = splitType.Quals;
   3911     return QualType(splitType.Ty, 0);
   3912   }
   3913 
   3914   // Otherwise, recurse on the array's element type.
   3915   QualType elementType = AT->getElementType();
   3916   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
   3917 
   3918   // If that didn't change the element type, AT has no qualifiers, so we
   3919   // can just use the results in splitType.
   3920   if (elementType == unqualElementType) {
   3921     assert(quals.empty()); // from the recursive call
   3922     quals = splitType.Quals;
   3923     return QualType(splitType.Ty, 0);
   3924   }
   3925 
   3926   // Otherwise, add in the qualifiers from the outermost type, then
   3927   // build the type back up.
   3928   quals.addConsistentQualifiers(splitType.Quals);
   3929 
   3930   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
   3931     return getConstantArrayType(unqualElementType, CAT->getSize(),
   3932                                 CAT->getSizeModifier(), 0);
   3933   }
   3934 
   3935   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
   3936     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
   3937   }
   3938 
   3939   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
   3940     return getVariableArrayType(unqualElementType,
   3941                                 VAT->getSizeExpr(),
   3942                                 VAT->getSizeModifier(),
   3943                                 VAT->getIndexTypeCVRQualifiers(),
   3944                                 VAT->getBracketsRange());
   3945   }
   3946 
   3947   const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
   3948   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
   3949                                     DSAT->getSizeModifier(), 0,
   3950                                     SourceRange());
   3951 }
   3952 
   3953 /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
   3954 /// may be similar (C++ 4.4), replaces T1 and T2 with the type that
   3955 /// they point to and return true. If T1 and T2 aren't pointer types
   3956 /// or pointer-to-member types, or if they are not similar at this
   3957 /// level, returns false and leaves T1 and T2 unchanged. Top-level
   3958 /// qualifiers on T1 and T2 are ignored. This function will typically
   3959 /// be called in a loop that successively "unwraps" pointer and
   3960 /// pointer-to-member types to compare them at each level.
   3961 bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
   3962   const PointerType *T1PtrType = T1->getAs<PointerType>(),
   3963                     *T2PtrType = T2->getAs<PointerType>();
   3964   if (T1PtrType && T2PtrType) {
   3965     T1 = T1PtrType->getPointeeType();
   3966     T2 = T2PtrType->getPointeeType();
   3967     return true;
   3968   }
   3969 
   3970   const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
   3971                           *T2MPType = T2->getAs<MemberPointerType>();
   3972   if (T1MPType && T2MPType &&
   3973       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
   3974                              QualType(T2MPType->getClass(), 0))) {
   3975     T1 = T1MPType->getPointeeType();
   3976     T2 = T2MPType->getPointeeType();
   3977     return true;
   3978   }
   3979 
   3980   if (getLangOpts().ObjC1) {
   3981     const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
   3982                                 *T2OPType = T2->getAs<ObjCObjectPointerType>();
   3983     if (T1OPType && T2OPType) {
   3984       T1 = T1OPType->getPointeeType();
   3985       T2 = T2OPType->getPointeeType();
   3986       return true;
   3987     }
   3988   }
   3989 
   3990   // FIXME: Block pointers, too?
   3991 
   3992   return false;
   3993 }
   3994 
   3995 DeclarationNameInfo
   3996 ASTContext::getNameForTemplate(TemplateName Name,
   3997                                SourceLocation NameLoc) const {
   3998   switch (Name.getKind()) {
   3999   case TemplateName::QualifiedTemplate:
   4000   case TemplateName::Template:
   4001     // DNInfo work in progress: CHECKME: what about DNLoc?
   4002     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
   4003                                NameLoc);
   4004 
   4005   case TemplateName::OverloadedTemplate: {
   4006     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
   4007     // DNInfo work in progress: CHECKME: what about DNLoc?
   4008     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
   4009   }
   4010 
   4011   case TemplateName::DependentTemplate: {
   4012     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
   4013     DeclarationName DName;
   4014     if (DTN->isIdentifier()) {
   4015       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
   4016       return DeclarationNameInfo(DName, NameLoc);
   4017     } else {
   4018       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
   4019       // DNInfo work in progress: FIXME: source locations?
   4020       DeclarationNameLoc DNLoc;
   4021       DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
   4022       DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
   4023       return DeclarationNameInfo(DName, NameLoc, DNLoc);
   4024     }
   4025   }
   4026 
   4027   case TemplateName::SubstTemplateTemplateParm: {
   4028     SubstTemplateTemplateParmStorage *subst
   4029       = Name.getAsSubstTemplateTemplateParm();
   4030     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
   4031                                NameLoc);
   4032   }
   4033 
   4034   case TemplateName::SubstTemplateTemplateParmPack: {
   4035     SubstTemplateTemplateParmPackStorage *subst
   4036       = Name.getAsSubstTemplateTemplateParmPack();
   4037     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
   4038                                NameLoc);
   4039   }
   4040   }
   4041 
   4042   llvm_unreachable("bad template name kind!");
   4043 }
   4044 
   4045 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
   4046   switch (Name.getKind()) {
   4047   case TemplateName::QualifiedTemplate:
   4048   case TemplateName::Template: {
   4049     TemplateDecl *Template = Name.getAsTemplateDecl();
   4050     if (TemplateTemplateParmDecl *TTP
   4051           = dyn_cast<TemplateTemplateParmDecl>(Template))
   4052       Template = getCanonicalTemplateTemplateParmDecl(TTP);
   4053 
   4054     // The canonical template name is the canonical template declaration.
   4055     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
   4056   }
   4057 
   4058   case TemplateName::OverloadedTemplate:
   4059     llvm_unreachable("cannot canonicalize overloaded template");
   4060 
   4061   case TemplateName::DependentTemplate: {
   4062     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
   4063     assert(DTN && "Non-dependent template names must refer to template decls.");
   4064     return DTN->CanonicalTemplateName;
   4065   }
   4066 
   4067   case TemplateName::SubstTemplateTemplateParm: {
   4068     SubstTemplateTemplateParmStorage *subst
   4069       = Name.getAsSubstTemplateTemplateParm();
   4070     return getCanonicalTemplateName(subst->getReplacement());
   4071   }
   4072 
   4073   case TemplateName::SubstTemplateTemplateParmPack: {
   4074     SubstTemplateTemplateParmPackStorage *subst
   4075                                   = Name.getAsSubstTemplateTemplateParmPack();
   4076     TemplateTemplateParmDecl *canonParameter
   4077       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
   4078     TemplateArgument canonArgPack
   4079       = getCanonicalTemplateArgument(subst->getArgumentPack());
   4080     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
   4081   }
   4082   }
   4083 
   4084   llvm_unreachable("bad template name!");
   4085 }
   4086 
   4087 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
   4088   X = getCanonicalTemplateName(X);
   4089   Y = getCanonicalTemplateName(Y);
   4090   return X.getAsVoidPointer() == Y.getAsVoidPointer();
   4091 }
   4092 
   4093 TemplateArgument
   4094 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
   4095   switch (Arg.getKind()) {
   4096     case TemplateArgument::Null:
   4097       return Arg;
   4098 
   4099     case TemplateArgument::Expression:
   4100       return Arg;
   4101 
   4102     case TemplateArgument::Declaration: {
   4103       ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
   4104       return TemplateArgument(D, Arg.isDeclForReferenceParam());
   4105     }
   4106 
   4107     case TemplateArgument::NullPtr:
   4108       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
   4109                               /*isNullPtr*/true);
   4110 
   4111     case TemplateArgument::Template:
   4112       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
   4113 
   4114     case TemplateArgument::TemplateExpansion:
   4115       return TemplateArgument(getCanonicalTemplateName(
   4116                                          Arg.getAsTemplateOrTemplatePattern()),
   4117                               Arg.getNumTemplateExpansions());
   4118 
   4119     case TemplateArgument::Integral:
   4120       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
   4121 
   4122     case TemplateArgument::Type:
   4123       return TemplateArgument(getCanonicalType(Arg.getAsType()));
   4124 
   4125     case TemplateArgument::Pack: {
   4126       if (Arg.pack_size() == 0)
   4127         return Arg;
   4128 
   4129       TemplateArgument *CanonArgs
   4130         = new (*this) TemplateArgument[Arg.pack_size()];
   4131       unsigned Idx = 0;
   4132       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
   4133                                         AEnd = Arg.pack_end();
   4134            A != AEnd; (void)++A, ++Idx)
   4135         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
   4136 
   4137       return TemplateArgument(CanonArgs, Arg.pack_size());
   4138     }
   4139   }
   4140 
   4141   // Silence GCC warning
   4142   llvm_unreachable("Unhandled template argument kind");
   4143 }
   4144 
   4145 NestedNameSpecifier *
   4146 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
   4147   if (!NNS)
   4148     return nullptr;
   4149 
   4150   switch (NNS->getKind()) {
   4151   case NestedNameSpecifier::Identifier:
   4152     // Canonicalize the prefix but keep the identifier the same.
   4153     return NestedNameSpecifier::Create(*this,
   4154                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
   4155                                        NNS->getAsIdentifier());
   4156 
   4157   case NestedNameSpecifier::Namespace:
   4158     // A namespace is canonical; build a nested-name-specifier with
   4159     // this namespace and no prefix.
   4160     return NestedNameSpecifier::Create(*this, nullptr,
   4161                                  NNS->getAsNamespace()->getOriginalNamespace());
   4162 
   4163   case NestedNameSpecifier::NamespaceAlias:
   4164     // A namespace is canonical; build a nested-name-specifier with
   4165     // this namespace and no prefix.
   4166     return NestedNameSpecifier::Create(*this, nullptr,
   4167                                     NNS->getAsNamespaceAlias()->getNamespace()
   4168                                                       ->getOriginalNamespace());
   4169 
   4170   case NestedNameSpecifier::TypeSpec:
   4171   case NestedNameSpecifier::TypeSpecWithTemplate: {
   4172     QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
   4173 
   4174     // If we have some kind of dependent-named type (e.g., "typename T::type"),
   4175     // break it apart into its prefix and identifier, then reconsititute those
   4176     // as the canonical nested-name-specifier. This is required to canonical