1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the MC-JIT runtime dynamic linker. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ExecutionEngine/RuntimeDyld.h" 15 #include "JITRegistrar.h" 16 #include "ObjectImageCommon.h" 17 #include "RuntimeDyldELF.h" 18 #include "RuntimeDyldImpl.h" 19 #include "RuntimeDyldMachO.h" 20 #include "llvm/Object/ELF.h" 21 #include "llvm/Support/MathExtras.h" 22 #include "llvm/Support/MutexGuard.h" 23 24 using namespace llvm; 25 using namespace llvm::object; 26 27 #define DEBUG_TYPE "dyld" 28 29 // Empty out-of-line virtual destructor as the key function. 30 RuntimeDyldImpl::~RuntimeDyldImpl() {} 31 32 // Pin the JITRegistrar's and ObjectImage*'s vtables to this file. 33 void JITRegistrar::anchor() {} 34 void ObjectImage::anchor() {} 35 void ObjectImageCommon::anchor() {} 36 37 namespace llvm { 38 39 void RuntimeDyldImpl::registerEHFrames() {} 40 41 void RuntimeDyldImpl::deregisterEHFrames() {} 42 43 // Resolve the relocations for all symbols we currently know about. 44 void RuntimeDyldImpl::resolveRelocations() { 45 MutexGuard locked(lock); 46 47 // First, resolve relocations associated with external symbols. 48 resolveExternalSymbols(); 49 50 // Just iterate over the sections we have and resolve all the relocations 51 // in them. Gross overkill, but it gets the job done. 52 for (int i = 0, e = Sections.size(); i != e; ++i) { 53 // The Section here (Sections[i]) refers to the section in which the 54 // symbol for the relocation is located. The SectionID in the relocation 55 // entry provides the section to which the relocation will be applied. 56 uint64_t Addr = Sections[i].LoadAddress; 57 DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t" 58 << format("%p", (uint8_t *)Addr) << "\n"); 59 resolveRelocationList(Relocations[i], Addr); 60 Relocations.erase(i); 61 } 62 } 63 64 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, 65 uint64_t TargetAddress) { 66 MutexGuard locked(lock); 67 for (unsigned i = 0, e = Sections.size(); i != e; ++i) { 68 if (Sections[i].Address == LocalAddress) { 69 reassignSectionAddress(i, TargetAddress); 70 return; 71 } 72 } 73 llvm_unreachable("Attempting to remap address of unknown section!"); 74 } 75 76 static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) { 77 uint64_t Address; 78 if (std::error_code EC = Sym.getAddress(Address)) 79 return EC; 80 81 if (Address == UnknownAddressOrSize) { 82 Result = UnknownAddressOrSize; 83 return object_error::success; 84 } 85 86 const ObjectFile *Obj = Sym.getObject(); 87 section_iterator SecI(Obj->section_begin()); 88 if (std::error_code EC = Sym.getSection(SecI)) 89 return EC; 90 91 if (SecI == Obj->section_end()) { 92 Result = UnknownAddressOrSize; 93 return object_error::success; 94 } 95 96 uint64_t SectionAddress; 97 if (std::error_code EC = SecI->getAddress(SectionAddress)) 98 return EC; 99 100 Result = Address - SectionAddress; 101 return object_error::success; 102 } 103 104 ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) { 105 MutexGuard locked(lock); 106 107 std::unique_ptr<ObjectImage> Obj(InputObject); 108 if (!Obj) 109 return nullptr; 110 111 // Save information about our target 112 Arch = (Triple::ArchType)Obj->getArch(); 113 IsTargetLittleEndian = Obj->getObjectFile()->isLittleEndian(); 114 115 // Compute the memory size required to load all sections to be loaded 116 // and pass this information to the memory manager 117 if (MemMgr->needsToReserveAllocationSpace()) { 118 uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0; 119 computeTotalAllocSize(*Obj, CodeSize, DataSizeRO, DataSizeRW); 120 MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW); 121 } 122 123 // Symbols found in this object 124 StringMap<SymbolLoc> LocalSymbols; 125 // Used sections from the object file 126 ObjSectionToIDMap LocalSections; 127 128 // Common symbols requiring allocation, with their sizes and alignments 129 CommonSymbolMap CommonSymbols; 130 // Maximum required total memory to allocate all common symbols 131 uint64_t CommonSize = 0; 132 133 // Parse symbols 134 DEBUG(dbgs() << "Parse symbols:\n"); 135 for (symbol_iterator I = Obj->begin_symbols(), E = Obj->end_symbols(); I != E; 136 ++I) { 137 object::SymbolRef::Type SymType; 138 StringRef Name; 139 Check(I->getType(SymType)); 140 Check(I->getName(Name)); 141 142 uint32_t Flags = I->getFlags(); 143 144 bool IsCommon = Flags & SymbolRef::SF_Common; 145 if (IsCommon) { 146 // Add the common symbols to a list. We'll allocate them all below. 147 if (!GlobalSymbolTable.count(Name)) { 148 uint32_t Align; 149 Check(I->getAlignment(Align)); 150 uint64_t Size = 0; 151 Check(I->getSize(Size)); 152 CommonSize += Size + Align; 153 CommonSymbols[*I] = CommonSymbolInfo(Size, Align); 154 } 155 } else { 156 if (SymType == object::SymbolRef::ST_Function || 157 SymType == object::SymbolRef::ST_Data || 158 SymType == object::SymbolRef::ST_Unknown) { 159 uint64_t SectOffset; 160 StringRef SectionData; 161 bool IsCode; 162 section_iterator SI = Obj->end_sections(); 163 Check(getOffset(*I, SectOffset)); 164 Check(I->getSection(SI)); 165 if (SI == Obj->end_sections()) 166 continue; 167 Check(SI->getContents(SectionData)); 168 Check(SI->isText(IsCode)); 169 unsigned SectionID = 170 findOrEmitSection(*Obj, *SI, IsCode, LocalSections); 171 LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset); 172 DEBUG(dbgs() << "\tOffset: " << format("%p", (uintptr_t)SectOffset) 173 << " flags: " << Flags << " SID: " << SectionID); 174 GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset); 175 } 176 } 177 DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n"); 178 } 179 180 // Allocate common symbols 181 if (CommonSize != 0) 182 emitCommonSymbols(*Obj, CommonSymbols, CommonSize, GlobalSymbolTable); 183 184 // Parse and process relocations 185 DEBUG(dbgs() << "Parse relocations:\n"); 186 for (section_iterator SI = Obj->begin_sections(), SE = Obj->end_sections(); 187 SI != SE; ++SI) { 188 unsigned SectionID = 0; 189 StubMap Stubs; 190 section_iterator RelocatedSection = SI->getRelocatedSection(); 191 192 relocation_iterator I = SI->relocation_begin(); 193 relocation_iterator E = SI->relocation_end(); 194 195 if (I == E && !ProcessAllSections) 196 continue; 197 198 bool IsCode = false; 199 Check(RelocatedSection->isText(IsCode)); 200 SectionID = 201 findOrEmitSection(*Obj, *RelocatedSection, IsCode, LocalSections); 202 DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); 203 204 for (; I != E;) 205 I = processRelocationRef(SectionID, I, *Obj, LocalSections, LocalSymbols, 206 Stubs); 207 } 208 209 // Give the subclasses a chance to tie-up any loose ends. 210 finalizeLoad(*Obj, LocalSections); 211 212 return Obj.release(); 213 } 214 215 // A helper method for computeTotalAllocSize. 216 // Computes the memory size required to allocate sections with the given sizes, 217 // assuming that all sections are allocated with the given alignment 218 static uint64_t 219 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, 220 uint64_t Alignment) { 221 uint64_t TotalSize = 0; 222 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { 223 uint64_t AlignedSize = 224 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; 225 TotalSize += AlignedSize; 226 } 227 return TotalSize; 228 } 229 230 // Compute an upper bound of the memory size that is required to load all 231 // sections 232 void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj, 233 uint64_t &CodeSize, 234 uint64_t &DataSizeRO, 235 uint64_t &DataSizeRW) { 236 // Compute the size of all sections required for execution 237 std::vector<uint64_t> CodeSectionSizes; 238 std::vector<uint64_t> ROSectionSizes; 239 std::vector<uint64_t> RWSectionSizes; 240 uint64_t MaxAlignment = sizeof(void *); 241 242 // Collect sizes of all sections to be loaded; 243 // also determine the max alignment of all sections 244 for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections(); 245 SI != SE; ++SI) { 246 const SectionRef &Section = *SI; 247 248 bool IsRequired; 249 Check(Section.isRequiredForExecution(IsRequired)); 250 251 // Consider only the sections that are required to be loaded for execution 252 if (IsRequired) { 253 uint64_t DataSize = 0; 254 uint64_t Alignment64 = 0; 255 bool IsCode = false; 256 bool IsReadOnly = false; 257 StringRef Name; 258 Check(Section.getSize(DataSize)); 259 Check(Section.getAlignment(Alignment64)); 260 Check(Section.isText(IsCode)); 261 Check(Section.isReadOnlyData(IsReadOnly)); 262 Check(Section.getName(Name)); 263 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 264 265 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); 266 uint64_t SectionSize = DataSize + StubBufSize; 267 268 // The .eh_frame section (at least on Linux) needs an extra four bytes 269 // padded 270 // with zeroes added at the end. For MachO objects, this section has a 271 // slightly different name, so this won't have any effect for MachO 272 // objects. 273 if (Name == ".eh_frame") 274 SectionSize += 4; 275 276 if (SectionSize > 0) { 277 // save the total size of the section 278 if (IsCode) { 279 CodeSectionSizes.push_back(SectionSize); 280 } else if (IsReadOnly) { 281 ROSectionSizes.push_back(SectionSize); 282 } else { 283 RWSectionSizes.push_back(SectionSize); 284 } 285 // update the max alignment 286 if (Alignment > MaxAlignment) { 287 MaxAlignment = Alignment; 288 } 289 } 290 } 291 } 292 293 // Compute the size of all common symbols 294 uint64_t CommonSize = 0; 295 for (symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols(); I != E; 296 ++I) { 297 uint32_t Flags = I->getFlags(); 298 if (Flags & SymbolRef::SF_Common) { 299 // Add the common symbols to a list. We'll allocate them all below. 300 uint64_t Size = 0; 301 Check(I->getSize(Size)); 302 CommonSize += Size; 303 } 304 } 305 if (CommonSize != 0) { 306 RWSectionSizes.push_back(CommonSize); 307 } 308 309 // Compute the required allocation space for each different type of sections 310 // (code, read-only data, read-write data) assuming that all sections are 311 // allocated with the max alignment. Note that we cannot compute with the 312 // individual alignments of the sections, because then the required size 313 // depends on the order, in which the sections are allocated. 314 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment); 315 DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment); 316 DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment); 317 } 318 319 // compute stub buffer size for the given section 320 unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj, 321 const SectionRef &Section) { 322 unsigned StubSize = getMaxStubSize(); 323 if (StubSize == 0) { 324 return 0; 325 } 326 // FIXME: this is an inefficient way to handle this. We should computed the 327 // necessary section allocation size in loadObject by walking all the sections 328 // once. 329 unsigned StubBufSize = 0; 330 for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections(); 331 SI != SE; ++SI) { 332 section_iterator RelSecI = SI->getRelocatedSection(); 333 if (!(RelSecI == Section)) 334 continue; 335 336 for (const RelocationRef &Reloc : SI->relocations()) { 337 (void)Reloc; 338 StubBufSize += StubSize; 339 } 340 } 341 342 // Get section data size and alignment 343 uint64_t Alignment64; 344 uint64_t DataSize; 345 Check(Section.getSize(DataSize)); 346 Check(Section.getAlignment(Alignment64)); 347 348 // Add stubbuf size alignment 349 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 350 unsigned StubAlignment = getStubAlignment(); 351 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); 352 if (StubAlignment > EndAlignment) 353 StubBufSize += StubAlignment - EndAlignment; 354 return StubBufSize; 355 } 356 357 void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj, 358 const CommonSymbolMap &CommonSymbols, 359 uint64_t TotalSize, 360 SymbolTableMap &SymbolTable) { 361 // Allocate memory for the section 362 unsigned SectionID = Sections.size(); 363 uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void *), 364 SectionID, StringRef(), false); 365 if (!Addr) 366 report_fatal_error("Unable to allocate memory for common symbols!"); 367 uint64_t Offset = 0; 368 Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0)); 369 memset(Addr, 0, TotalSize); 370 371 DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: " 372 << format("%p", Addr) << " DataSize: " << TotalSize << "\n"); 373 374 // Assign the address of each symbol 375 for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(), 376 itEnd = CommonSymbols.end(); it != itEnd; ++it) { 377 uint64_t Size = it->second.first; 378 uint64_t Align = it->second.second; 379 StringRef Name; 380 it->first.getName(Name); 381 if (Align) { 382 // This symbol has an alignment requirement. 383 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align); 384 Addr += AlignOffset; 385 Offset += AlignOffset; 386 DEBUG(dbgs() << "Allocating common symbol " << Name << " address " 387 << format("%p\n", Addr)); 388 } 389 Obj.updateSymbolAddress(it->first, (uint64_t)Addr); 390 SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset); 391 Offset += Size; 392 Addr += Size; 393 } 394 } 395 396 unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj, 397 const SectionRef &Section, bool IsCode) { 398 399 StringRef data; 400 uint64_t Alignment64; 401 Check(Section.getContents(data)); 402 Check(Section.getAlignment(Alignment64)); 403 404 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 405 bool IsRequired; 406 bool IsVirtual; 407 bool IsZeroInit; 408 bool IsReadOnly; 409 uint64_t DataSize; 410 unsigned PaddingSize = 0; 411 unsigned StubBufSize = 0; 412 StringRef Name; 413 Check(Section.isRequiredForExecution(IsRequired)); 414 Check(Section.isVirtual(IsVirtual)); 415 Check(Section.isZeroInit(IsZeroInit)); 416 Check(Section.isReadOnlyData(IsReadOnly)); 417 Check(Section.getSize(DataSize)); 418 Check(Section.getName(Name)); 419 420 StubBufSize = computeSectionStubBufSize(Obj, Section); 421 422 // The .eh_frame section (at least on Linux) needs an extra four bytes padded 423 // with zeroes added at the end. For MachO objects, this section has a 424 // slightly different name, so this won't have any effect for MachO objects. 425 if (Name == ".eh_frame") 426 PaddingSize = 4; 427 428 uintptr_t Allocate; 429 unsigned SectionID = Sections.size(); 430 uint8_t *Addr; 431 const char *pData = nullptr; 432 433 // Some sections, such as debug info, don't need to be loaded for execution. 434 // Leave those where they are. 435 if (IsRequired) { 436 Allocate = DataSize + PaddingSize + StubBufSize; 437 Addr = IsCode ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID, 438 Name) 439 : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, 440 Name, IsReadOnly); 441 if (!Addr) 442 report_fatal_error("Unable to allocate section memory!"); 443 444 // Virtual sections have no data in the object image, so leave pData = 0 445 if (!IsVirtual) 446 pData = data.data(); 447 448 // Zero-initialize or copy the data from the image 449 if (IsZeroInit || IsVirtual) 450 memset(Addr, 0, DataSize); 451 else 452 memcpy(Addr, pData, DataSize); 453 454 // Fill in any extra bytes we allocated for padding 455 if (PaddingSize != 0) { 456 memset(Addr + DataSize, 0, PaddingSize); 457 // Update the DataSize variable so that the stub offset is set correctly. 458 DataSize += PaddingSize; 459 } 460 461 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 462 << " obj addr: " << format("%p", pData) 463 << " new addr: " << format("%p", Addr) 464 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 465 << " Allocate: " << Allocate << "\n"); 466 Obj.updateSectionAddress(Section, (uint64_t)Addr); 467 } else { 468 // Even if we didn't load the section, we need to record an entry for it 469 // to handle later processing (and by 'handle' I mean don't do anything 470 // with these sections). 471 Allocate = 0; 472 Addr = nullptr; 473 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 474 << " obj addr: " << format("%p", data.data()) << " new addr: 0" 475 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 476 << " Allocate: " << Allocate << "\n"); 477 } 478 479 Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData)); 480 return SectionID; 481 } 482 483 unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj, 484 const SectionRef &Section, 485 bool IsCode, 486 ObjSectionToIDMap &LocalSections) { 487 488 unsigned SectionID = 0; 489 ObjSectionToIDMap::iterator i = LocalSections.find(Section); 490 if (i != LocalSections.end()) 491 SectionID = i->second; 492 else { 493 SectionID = emitSection(Obj, Section, IsCode); 494 LocalSections[Section] = SectionID; 495 } 496 return SectionID; 497 } 498 499 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, 500 unsigned SectionID) { 501 Relocations[SectionID].push_back(RE); 502 } 503 504 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, 505 StringRef SymbolName) { 506 // Relocation by symbol. If the symbol is found in the global symbol table, 507 // create an appropriate section relocation. Otherwise, add it to 508 // ExternalSymbolRelocations. 509 SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(SymbolName); 510 if (Loc == GlobalSymbolTable.end()) { 511 ExternalSymbolRelocations[SymbolName].push_back(RE); 512 } else { 513 // Copy the RE since we want to modify its addend. 514 RelocationEntry RECopy = RE; 515 RECopy.Addend += Loc->second.second; 516 Relocations[Loc->second.first].push_back(RECopy); 517 } 518 } 519 520 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) { 521 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be || 522 Arch == Triple::arm64 || Arch == Triple::arm64_be) { 523 // This stub has to be able to access the full address space, 524 // since symbol lookup won't necessarily find a handy, in-range, 525 // PLT stub for functions which could be anywhere. 526 uint32_t *StubAddr = (uint32_t *)Addr; 527 528 // Stub can use ip0 (== x16) to calculate address 529 *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr> 530 StubAddr++; 531 *StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr> 532 StubAddr++; 533 *StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr> 534 StubAddr++; 535 *StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr> 536 StubAddr++; 537 *StubAddr = 0xd61f0200; // br ip0 538 539 return Addr; 540 } else if (Arch == Triple::arm || Arch == Triple::armeb) { 541 // TODO: There is only ARM far stub now. We should add the Thumb stub, 542 // and stubs for branches Thumb - ARM and ARM - Thumb. 543 uint32_t *StubAddr = (uint32_t *)Addr; 544 *StubAddr = 0xe51ff004; // ldr pc,<label> 545 return (uint8_t *)++StubAddr; 546 } else if (Arch == Triple::mipsel || Arch == Triple::mips) { 547 uint32_t *StubAddr = (uint32_t *)Addr; 548 // 0: 3c190000 lui t9,%hi(addr). 549 // 4: 27390000 addiu t9,t9,%lo(addr). 550 // 8: 03200008 jr t9. 551 // c: 00000000 nop. 552 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; 553 const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0; 554 555 *StubAddr = LuiT9Instr; 556 StubAddr++; 557 *StubAddr = AdduiT9Instr; 558 StubAddr++; 559 *StubAddr = JrT9Instr; 560 StubAddr++; 561 *StubAddr = NopInstr; 562 return Addr; 563 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 564 // PowerPC64 stub: the address points to a function descriptor 565 // instead of the function itself. Load the function address 566 // on r11 and sets it to control register. Also loads the function 567 // TOC in r2 and environment pointer to r11. 568 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) 569 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) 570 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 571 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) 572 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) 573 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) 574 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) 575 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) 576 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 577 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) 578 writeInt32BE(Addr+40, 0x4E800420); // bctr 579 580 return Addr; 581 } else if (Arch == Triple::systemz) { 582 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 583 writeInt16BE(Addr+2, 0x0000); 584 writeInt16BE(Addr+4, 0x0004); 585 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 586 // 8-byte address stored at Addr + 8 587 return Addr; 588 } else if (Arch == Triple::x86_64) { 589 *Addr = 0xFF; // jmp 590 *(Addr+1) = 0x25; // rip 591 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 592 } else if (Arch == Triple::x86) { 593 *Addr = 0xE9; // 32-bit pc-relative jump. 594 } 595 return Addr; 596 } 597 598 // Assign an address to a symbol name and resolve all the relocations 599 // associated with it. 600 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, 601 uint64_t Addr) { 602 // The address to use for relocation resolution is not 603 // the address of the local section buffer. We must be doing 604 // a remote execution environment of some sort. Relocations can't 605 // be applied until all the sections have been moved. The client must 606 // trigger this with a call to MCJIT::finalize() or 607 // RuntimeDyld::resolveRelocations(). 608 // 609 // Addr is a uint64_t because we can't assume the pointer width 610 // of the target is the same as that of the host. Just use a generic 611 // "big enough" type. 612 Sections[SectionID].LoadAddress = Addr; 613 } 614 615 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, 616 uint64_t Value) { 617 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 618 const RelocationEntry &RE = Relocs[i]; 619 // Ignore relocations for sections that were not loaded 620 if (Sections[RE.SectionID].Address == nullptr) 621 continue; 622 resolveRelocation(RE, Value); 623 } 624 } 625 626 void RuntimeDyldImpl::resolveExternalSymbols() { 627 while (!ExternalSymbolRelocations.empty()) { 628 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); 629 630 StringRef Name = i->first(); 631 if (Name.size() == 0) { 632 // This is an absolute symbol, use an address of zero. 633 DEBUG(dbgs() << "Resolving absolute relocations." 634 << "\n"); 635 RelocationList &Relocs = i->second; 636 resolveRelocationList(Relocs, 0); 637 } else { 638 uint64_t Addr = 0; 639 SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name); 640 if (Loc == GlobalSymbolTable.end()) { 641 // This is an external symbol, try to get its address from 642 // MemoryManager. 643 Addr = MemMgr->getSymbolAddress(Name.data()); 644 // The call to getSymbolAddress may have caused additional modules to 645 // be loaded, which may have added new entries to the 646 // ExternalSymbolRelocations map. Consquently, we need to update our 647 // iterator. This is also why retrieval of the relocation list 648 // associated with this symbol is deferred until below this point. 649 // New entries may have been added to the relocation list. 650 i = ExternalSymbolRelocations.find(Name); 651 } else { 652 // We found the symbol in our global table. It was probably in a 653 // Module that we loaded previously. 654 SymbolLoc SymLoc = Loc->second; 655 Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second; 656 } 657 658 // FIXME: Implement error handling that doesn't kill the host program! 659 if (!Addr) 660 report_fatal_error("Program used external function '" + Name + 661 "' which could not be resolved!"); 662 663 updateGOTEntries(Name, Addr); 664 DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" 665 << format("0x%lx", Addr) << "\n"); 666 // This list may have been updated when we called getSymbolAddress, so 667 // don't change this code to get the list earlier. 668 RelocationList &Relocs = i->second; 669 resolveRelocationList(Relocs, Addr); 670 } 671 672 ExternalSymbolRelocations.erase(i); 673 } 674 } 675 676 //===----------------------------------------------------------------------===// 677 // RuntimeDyld class implementation 678 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) { 679 // FIXME: There's a potential issue lurking here if a single instance of 680 // RuntimeDyld is used to load multiple objects. The current implementation 681 // associates a single memory manager with a RuntimeDyld instance. Even 682 // though the public class spawns a new 'impl' instance for each load, 683 // they share a single memory manager. This can become a problem when page 684 // permissions are applied. 685 Dyld = nullptr; 686 MM = mm; 687 ProcessAllSections = false; 688 } 689 690 RuntimeDyld::~RuntimeDyld() { delete Dyld; } 691 692 static std::unique_ptr<RuntimeDyldELF> 693 createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections) { 694 std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM)); 695 Dyld->setProcessAllSections(ProcessAllSections); 696 return Dyld; 697 } 698 699 static std::unique_ptr<RuntimeDyldMachO> 700 createRuntimeDyldMachO(RTDyldMemoryManager *MM, bool ProcessAllSections) { 701 std::unique_ptr<RuntimeDyldMachO> Dyld(new RuntimeDyldMachO(MM)); 702 Dyld->setProcessAllSections(ProcessAllSections); 703 return Dyld; 704 } 705 706 ObjectImage *RuntimeDyld::loadObject(std::unique_ptr<ObjectFile> InputObject) { 707 std::unique_ptr<ObjectImage> InputImage; 708 709 ObjectFile &Obj = *InputObject; 710 711 if (InputObject->isELF()) { 712 InputImage.reset(RuntimeDyldELF::createObjectImageFromFile(std::move(InputObject))); 713 if (!Dyld) 714 Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release(); 715 } else if (InputObject->isMachO()) { 716 InputImage.reset(RuntimeDyldMachO::createObjectImageFromFile(std::move(InputObject))); 717 if (!Dyld) 718 Dyld = createRuntimeDyldMachO(MM, ProcessAllSections).release(); 719 } else 720 report_fatal_error("Incompatible object format!"); 721 722 if (!Dyld->isCompatibleFile(&Obj)) 723 report_fatal_error("Incompatible object format!"); 724 725 Dyld->loadObject(InputImage.get()); 726 return InputImage.release(); 727 } 728 729 ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) { 730 std::unique_ptr<ObjectImage> InputImage; 731 sys::fs::file_magic Type = sys::fs::identify_magic(InputBuffer->getBuffer()); 732 733 switch (Type) { 734 case sys::fs::file_magic::elf_relocatable: 735 case sys::fs::file_magic::elf_executable: 736 case sys::fs::file_magic::elf_shared_object: 737 case sys::fs::file_magic::elf_core: 738 InputImage.reset(RuntimeDyldELF::createObjectImage(InputBuffer)); 739 if (!Dyld) 740 Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release(); 741 break; 742 case sys::fs::file_magic::macho_object: 743 case sys::fs::file_magic::macho_executable: 744 case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib: 745 case sys::fs::file_magic::macho_core: 746 case sys::fs::file_magic::macho_preload_executable: 747 case sys::fs::file_magic::macho_dynamically_linked_shared_lib: 748 case sys::fs::file_magic::macho_dynamic_linker: 749 case sys::fs::file_magic::macho_bundle: 750 case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub: 751 case sys::fs::file_magic::macho_dsym_companion: 752 InputImage.reset(RuntimeDyldMachO::createObjectImage(InputBuffer)); 753 if (!Dyld) 754 Dyld = createRuntimeDyldMachO(MM, ProcessAllSections).release(); 755 break; 756 case sys::fs::file_magic::unknown: 757 case sys::fs::file_magic::bitcode: 758 case sys::fs::file_magic::archive: 759 case sys::fs::file_magic::coff_object: 760 case sys::fs::file_magic::coff_import_library: 761 case sys::fs::file_magic::pecoff_executable: 762 case sys::fs::file_magic::macho_universal_binary: 763 case sys::fs::file_magic::windows_resource: 764 report_fatal_error("Incompatible object format!"); 765 } 766 767 if (!Dyld->isCompatibleFormat(InputBuffer)) 768 report_fatal_error("Incompatible object format!"); 769 770 Dyld->loadObject(InputImage.get()); 771 return InputImage.release(); 772 } 773 774 void *RuntimeDyld::getSymbolAddress(StringRef Name) { 775 if (!Dyld) 776 return nullptr; 777 return Dyld->getSymbolAddress(Name); 778 } 779 780 uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) { 781 if (!Dyld) 782 return 0; 783 return Dyld->getSymbolLoadAddress(Name); 784 } 785 786 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } 787 788 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { 789 Dyld->reassignSectionAddress(SectionID, Addr); 790 } 791 792 void RuntimeDyld::mapSectionAddress(const void *LocalAddress, 793 uint64_t TargetAddress) { 794 Dyld->mapSectionAddress(LocalAddress, TargetAddress); 795 } 796 797 bool RuntimeDyld::hasError() { return Dyld->hasError(); } 798 799 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } 800 801 void RuntimeDyld::registerEHFrames() { 802 if (Dyld) 803 Dyld->registerEHFrames(); 804 } 805 806 void RuntimeDyld::deregisterEHFrames() { 807 if (Dyld) 808 Dyld->deregisterEHFrames(); 809 } 810 811 } // end namespace llvm 812