1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This defines CStringChecker, which is an assortment of checks on calls 11 // to functions in <string.h>. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ClangSACheckers.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/Basic/CharInfo.h" 18 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 19 #include "clang/StaticAnalyzer/Core/Checker.h" 20 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 using namespace clang; 29 using namespace ento; 30 31 namespace { 32 class CStringChecker : public Checker< eval::Call, 33 check::PreStmt<DeclStmt>, 34 check::LiveSymbols, 35 check::DeadSymbols, 36 check::RegionChanges 37 > { 38 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 39 BT_NotCString, BT_AdditionOverflow; 40 41 mutable const char *CurrentFunctionDescription; 42 43 public: 44 /// The filter is used to filter out the diagnostics which are not enabled by 45 /// the user. 46 struct CStringChecksFilter { 47 DefaultBool CheckCStringNullArg; 48 DefaultBool CheckCStringOutOfBounds; 49 DefaultBool CheckCStringBufferOverlap; 50 DefaultBool CheckCStringNotNullTerm; 51 52 CheckName CheckNameCStringNullArg; 53 CheckName CheckNameCStringOutOfBounds; 54 CheckName CheckNameCStringBufferOverlap; 55 CheckName CheckNameCStringNotNullTerm; 56 }; 57 58 CStringChecksFilter Filter; 59 60 static void *getTag() { static int tag; return &tag; } 61 62 bool evalCall(const CallExpr *CE, CheckerContext &C) const; 63 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 64 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 65 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 66 bool wantsRegionChangeUpdate(ProgramStateRef state) const; 67 68 ProgramStateRef 69 checkRegionChanges(ProgramStateRef state, 70 const InvalidatedSymbols *, 71 ArrayRef<const MemRegion *> ExplicitRegions, 72 ArrayRef<const MemRegion *> Regions, 73 const CallEvent *Call) const; 74 75 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 76 const CallExpr *) const; 77 78 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 79 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 80 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 81 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 82 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 83 ProgramStateRef state, 84 const Expr *Size, 85 const Expr *Source, 86 const Expr *Dest, 87 bool Restricted = false, 88 bool IsMempcpy = false) const; 89 90 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 91 92 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 93 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 94 void evalstrLengthCommon(CheckerContext &C, 95 const CallExpr *CE, 96 bool IsStrnlen = false) const; 97 98 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 99 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 100 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 101 void evalStrcpyCommon(CheckerContext &C, 102 const CallExpr *CE, 103 bool returnEnd, 104 bool isBounded, 105 bool isAppending) const; 106 107 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 108 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 109 110 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 111 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 112 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 113 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 114 void evalStrcmpCommon(CheckerContext &C, 115 const CallExpr *CE, 116 bool isBounded = false, 117 bool ignoreCase = false) const; 118 119 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 120 121 // Utility methods 122 std::pair<ProgramStateRef , ProgramStateRef > 123 static assumeZero(CheckerContext &C, 124 ProgramStateRef state, SVal V, QualType Ty); 125 126 static ProgramStateRef setCStringLength(ProgramStateRef state, 127 const MemRegion *MR, 128 SVal strLength); 129 static SVal getCStringLengthForRegion(CheckerContext &C, 130 ProgramStateRef &state, 131 const Expr *Ex, 132 const MemRegion *MR, 133 bool hypothetical); 134 SVal getCStringLength(CheckerContext &C, 135 ProgramStateRef &state, 136 const Expr *Ex, 137 SVal Buf, 138 bool hypothetical = false) const; 139 140 const StringLiteral *getCStringLiteral(CheckerContext &C, 141 ProgramStateRef &state, 142 const Expr *expr, 143 SVal val) const; 144 145 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 146 ProgramStateRef state, 147 const Expr *Ex, SVal V, 148 bool IsSourceBuffer); 149 150 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 151 const MemRegion *MR); 152 153 // Re-usable checks 154 ProgramStateRef checkNonNull(CheckerContext &C, 155 ProgramStateRef state, 156 const Expr *S, 157 SVal l) const; 158 ProgramStateRef CheckLocation(CheckerContext &C, 159 ProgramStateRef state, 160 const Expr *S, 161 SVal l, 162 const char *message = nullptr) const; 163 ProgramStateRef CheckBufferAccess(CheckerContext &C, 164 ProgramStateRef state, 165 const Expr *Size, 166 const Expr *FirstBuf, 167 const Expr *SecondBuf, 168 const char *firstMessage = nullptr, 169 const char *secondMessage = nullptr, 170 bool WarnAboutSize = false) const; 171 172 ProgramStateRef CheckBufferAccess(CheckerContext &C, 173 ProgramStateRef state, 174 const Expr *Size, 175 const Expr *Buf, 176 const char *message = nullptr, 177 bool WarnAboutSize = false) const { 178 // This is a convenience override. 179 return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr, 180 WarnAboutSize); 181 } 182 ProgramStateRef CheckOverlap(CheckerContext &C, 183 ProgramStateRef state, 184 const Expr *Size, 185 const Expr *First, 186 const Expr *Second) const; 187 void emitOverlapBug(CheckerContext &C, 188 ProgramStateRef state, 189 const Stmt *First, 190 const Stmt *Second) const; 191 192 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 193 ProgramStateRef state, 194 NonLoc left, 195 NonLoc right) const; 196 }; 197 198 } //end anonymous namespace 199 200 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 201 202 //===----------------------------------------------------------------------===// 203 // Individual checks and utility methods. 204 //===----------------------------------------------------------------------===// 205 206 std::pair<ProgramStateRef , ProgramStateRef > 207 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 208 QualType Ty) { 209 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 210 if (!val) 211 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 212 213 SValBuilder &svalBuilder = C.getSValBuilder(); 214 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 215 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 216 } 217 218 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 219 ProgramStateRef state, 220 const Expr *S, SVal l) const { 221 // If a previous check has failed, propagate the failure. 222 if (!state) 223 return nullptr; 224 225 ProgramStateRef stateNull, stateNonNull; 226 std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType()); 227 228 if (stateNull && !stateNonNull) { 229 if (!Filter.CheckCStringNullArg) 230 return nullptr; 231 232 ExplodedNode *N = C.generateSink(stateNull); 233 if (!N) 234 return nullptr; 235 236 if (!BT_Null) 237 BT_Null.reset(new BuiltinBug( 238 Filter.CheckNameCStringNullArg, categories::UnixAPI, 239 "Null pointer argument in call to byte string function")); 240 241 SmallString<80> buf; 242 llvm::raw_svector_ostream os(buf); 243 assert(CurrentFunctionDescription); 244 os << "Null pointer argument in call to " << CurrentFunctionDescription; 245 246 // Generate a report for this bug. 247 BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get()); 248 BugReport *report = new BugReport(*BT, os.str(), N); 249 250 report->addRange(S->getSourceRange()); 251 bugreporter::trackNullOrUndefValue(N, S, *report); 252 C.emitReport(report); 253 return nullptr; 254 } 255 256 // From here on, assume that the value is non-null. 257 assert(stateNonNull); 258 return stateNonNull; 259 } 260 261 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 262 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 263 ProgramStateRef state, 264 const Expr *S, SVal l, 265 const char *warningMsg) const { 266 // If a previous check has failed, propagate the failure. 267 if (!state) 268 return nullptr; 269 270 // Check for out of bound array element access. 271 const MemRegion *R = l.getAsRegion(); 272 if (!R) 273 return state; 274 275 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 276 if (!ER) 277 return state; 278 279 assert(ER->getValueType() == C.getASTContext().CharTy && 280 "CheckLocation should only be called with char* ElementRegions"); 281 282 // Get the size of the array. 283 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 284 SValBuilder &svalBuilder = C.getSValBuilder(); 285 SVal Extent = 286 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 287 DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>(); 288 289 // Get the index of the accessed element. 290 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 291 292 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 293 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 294 if (StOutBound && !StInBound) { 295 ExplodedNode *N = C.generateSink(StOutBound); 296 if (!N) 297 return nullptr; 298 299 if (!BT_Bounds) { 300 BT_Bounds.reset(new BuiltinBug( 301 Filter.CheckNameCStringOutOfBounds, "Out-of-bound array access", 302 "Byte string function accesses out-of-bound array element")); 303 } 304 BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get()); 305 306 // Generate a report for this bug. 307 BugReport *report; 308 if (warningMsg) { 309 report = new BugReport(*BT, warningMsg, N); 310 } else { 311 assert(CurrentFunctionDescription); 312 assert(CurrentFunctionDescription[0] != '\0'); 313 314 SmallString<80> buf; 315 llvm::raw_svector_ostream os(buf); 316 os << toUppercase(CurrentFunctionDescription[0]) 317 << &CurrentFunctionDescription[1] 318 << " accesses out-of-bound array element"; 319 report = new BugReport(*BT, os.str(), N); 320 } 321 322 // FIXME: It would be nice to eventually make this diagnostic more clear, 323 // e.g., by referencing the original declaration or by saying *why* this 324 // reference is outside the range. 325 326 report->addRange(S->getSourceRange()); 327 C.emitReport(report); 328 return nullptr; 329 } 330 331 // Array bound check succeeded. From this point forward the array bound 332 // should always succeed. 333 return StInBound; 334 } 335 336 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 337 ProgramStateRef state, 338 const Expr *Size, 339 const Expr *FirstBuf, 340 const Expr *SecondBuf, 341 const char *firstMessage, 342 const char *secondMessage, 343 bool WarnAboutSize) const { 344 // If a previous check has failed, propagate the failure. 345 if (!state) 346 return nullptr; 347 348 SValBuilder &svalBuilder = C.getSValBuilder(); 349 ASTContext &Ctx = svalBuilder.getContext(); 350 const LocationContext *LCtx = C.getLocationContext(); 351 352 QualType sizeTy = Size->getType(); 353 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 354 355 // Check that the first buffer is non-null. 356 SVal BufVal = state->getSVal(FirstBuf, LCtx); 357 state = checkNonNull(C, state, FirstBuf, BufVal); 358 if (!state) 359 return nullptr; 360 361 // If out-of-bounds checking is turned off, skip the rest. 362 if (!Filter.CheckCStringOutOfBounds) 363 return state; 364 365 // Get the access length and make sure it is known. 366 // FIXME: This assumes the caller has already checked that the access length 367 // is positive. And that it's unsigned. 368 SVal LengthVal = state->getSVal(Size, LCtx); 369 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 370 if (!Length) 371 return state; 372 373 // Compute the offset of the last element to be accessed: size-1. 374 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 375 NonLoc LastOffset = svalBuilder 376 .evalBinOpNN(state, BO_Sub, *Length, One, sizeTy).castAs<NonLoc>(); 377 378 // Check that the first buffer is sufficiently long. 379 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 380 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 381 const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf); 382 383 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 384 LastOffset, PtrTy); 385 state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage); 386 387 // If the buffer isn't large enough, abort. 388 if (!state) 389 return nullptr; 390 } 391 392 // If there's a second buffer, check it as well. 393 if (SecondBuf) { 394 BufVal = state->getSVal(SecondBuf, LCtx); 395 state = checkNonNull(C, state, SecondBuf, BufVal); 396 if (!state) 397 return nullptr; 398 399 BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType()); 400 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 401 const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf); 402 403 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 404 LastOffset, PtrTy); 405 state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage); 406 } 407 } 408 409 // Large enough or not, return this state! 410 return state; 411 } 412 413 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 414 ProgramStateRef state, 415 const Expr *Size, 416 const Expr *First, 417 const Expr *Second) const { 418 if (!Filter.CheckCStringBufferOverlap) 419 return state; 420 421 // Do a simple check for overlap: if the two arguments are from the same 422 // buffer, see if the end of the first is greater than the start of the second 423 // or vice versa. 424 425 // If a previous check has failed, propagate the failure. 426 if (!state) 427 return nullptr; 428 429 ProgramStateRef stateTrue, stateFalse; 430 431 // Get the buffer values and make sure they're known locations. 432 const LocationContext *LCtx = C.getLocationContext(); 433 SVal firstVal = state->getSVal(First, LCtx); 434 SVal secondVal = state->getSVal(Second, LCtx); 435 436 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 437 if (!firstLoc) 438 return state; 439 440 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 441 if (!secondLoc) 442 return state; 443 444 // Are the two values the same? 445 SValBuilder &svalBuilder = C.getSValBuilder(); 446 std::tie(stateTrue, stateFalse) = 447 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 448 449 if (stateTrue && !stateFalse) { 450 // If the values are known to be equal, that's automatically an overlap. 451 emitOverlapBug(C, stateTrue, First, Second); 452 return nullptr; 453 } 454 455 // assume the two expressions are not equal. 456 assert(stateFalse); 457 state = stateFalse; 458 459 // Which value comes first? 460 QualType cmpTy = svalBuilder.getConditionType(); 461 SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT, 462 *firstLoc, *secondLoc, cmpTy); 463 Optional<DefinedOrUnknownSVal> reverseTest = 464 reverse.getAs<DefinedOrUnknownSVal>(); 465 if (!reverseTest) 466 return state; 467 468 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 469 if (stateTrue) { 470 if (stateFalse) { 471 // If we don't know which one comes first, we can't perform this test. 472 return state; 473 } else { 474 // Switch the values so that firstVal is before secondVal. 475 std::swap(firstLoc, secondLoc); 476 477 // Switch the Exprs as well, so that they still correspond. 478 std::swap(First, Second); 479 } 480 } 481 482 // Get the length, and make sure it too is known. 483 SVal LengthVal = state->getSVal(Size, LCtx); 484 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 485 if (!Length) 486 return state; 487 488 // Convert the first buffer's start address to char*. 489 // Bail out if the cast fails. 490 ASTContext &Ctx = svalBuilder.getContext(); 491 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 492 SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy, 493 First->getType()); 494 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 495 if (!FirstStartLoc) 496 return state; 497 498 // Compute the end of the first buffer. Bail out if THAT fails. 499 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, 500 *FirstStartLoc, *Length, CharPtrTy); 501 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 502 if (!FirstEndLoc) 503 return state; 504 505 // Is the end of the first buffer past the start of the second buffer? 506 SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT, 507 *FirstEndLoc, *secondLoc, cmpTy); 508 Optional<DefinedOrUnknownSVal> OverlapTest = 509 Overlap.getAs<DefinedOrUnknownSVal>(); 510 if (!OverlapTest) 511 return state; 512 513 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 514 515 if (stateTrue && !stateFalse) { 516 // Overlap! 517 emitOverlapBug(C, stateTrue, First, Second); 518 return nullptr; 519 } 520 521 // assume the two expressions don't overlap. 522 assert(stateFalse); 523 return stateFalse; 524 } 525 526 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 527 const Stmt *First, const Stmt *Second) const { 528 ExplodedNode *N = C.generateSink(state); 529 if (!N) 530 return; 531 532 if (!BT_Overlap) 533 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 534 categories::UnixAPI, "Improper arguments")); 535 536 // Generate a report for this bug. 537 BugReport *report = 538 new BugReport(*BT_Overlap, 539 "Arguments must not be overlapping buffers", N); 540 report->addRange(First->getSourceRange()); 541 report->addRange(Second->getSourceRange()); 542 543 C.emitReport(report); 544 } 545 546 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 547 ProgramStateRef state, 548 NonLoc left, 549 NonLoc right) const { 550 // If out-of-bounds checking is turned off, skip the rest. 551 if (!Filter.CheckCStringOutOfBounds) 552 return state; 553 554 // If a previous check has failed, propagate the failure. 555 if (!state) 556 return nullptr; 557 558 SValBuilder &svalBuilder = C.getSValBuilder(); 559 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 560 561 QualType sizeTy = svalBuilder.getContext().getSizeType(); 562 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 563 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 564 565 SVal maxMinusRight; 566 if (right.getAs<nonloc::ConcreteInt>()) { 567 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 568 sizeTy); 569 } else { 570 // Try switching the operands. (The order of these two assignments is 571 // important!) 572 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 573 sizeTy); 574 left = right; 575 } 576 577 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 578 QualType cmpTy = svalBuilder.getConditionType(); 579 // If left > max - right, we have an overflow. 580 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 581 *maxMinusRightNL, cmpTy); 582 583 ProgramStateRef stateOverflow, stateOkay; 584 std::tie(stateOverflow, stateOkay) = 585 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 586 587 if (stateOverflow && !stateOkay) { 588 // We have an overflow. Emit a bug report. 589 ExplodedNode *N = C.generateSink(stateOverflow); 590 if (!N) 591 return nullptr; 592 593 if (!BT_AdditionOverflow) 594 BT_AdditionOverflow.reset( 595 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 596 "Sum of expressions causes overflow")); 597 598 // This isn't a great error message, but this should never occur in real 599 // code anyway -- you'd have to create a buffer longer than a size_t can 600 // represent, which is sort of a contradiction. 601 const char *warning = 602 "This expression will create a string whose length is too big to " 603 "be represented as a size_t"; 604 605 // Generate a report for this bug. 606 BugReport *report = new BugReport(*BT_AdditionOverflow, warning, N); 607 C.emitReport(report); 608 609 return nullptr; 610 } 611 612 // From now on, assume an overflow didn't occur. 613 assert(stateOkay); 614 state = stateOkay; 615 } 616 617 return state; 618 } 619 620 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 621 const MemRegion *MR, 622 SVal strLength) { 623 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 624 625 MR = MR->StripCasts(); 626 627 switch (MR->getKind()) { 628 case MemRegion::StringRegionKind: 629 // FIXME: This can happen if we strcpy() into a string region. This is 630 // undefined [C99 6.4.5p6], but we should still warn about it. 631 return state; 632 633 case MemRegion::SymbolicRegionKind: 634 case MemRegion::AllocaRegionKind: 635 case MemRegion::VarRegionKind: 636 case MemRegion::FieldRegionKind: 637 case MemRegion::ObjCIvarRegionKind: 638 // These are the types we can currently track string lengths for. 639 break; 640 641 case MemRegion::ElementRegionKind: 642 // FIXME: Handle element regions by upper-bounding the parent region's 643 // string length. 644 return state; 645 646 default: 647 // Other regions (mostly non-data) can't have a reliable C string length. 648 // For now, just ignore the change. 649 // FIXME: These are rare but not impossible. We should output some kind of 650 // warning for things like strcpy((char[]){'a', 0}, "b"); 651 return state; 652 } 653 654 if (strLength.isUnknown()) 655 return state->remove<CStringLength>(MR); 656 657 return state->set<CStringLength>(MR, strLength); 658 } 659 660 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 661 ProgramStateRef &state, 662 const Expr *Ex, 663 const MemRegion *MR, 664 bool hypothetical) { 665 if (!hypothetical) { 666 // If there's a recorded length, go ahead and return it. 667 const SVal *Recorded = state->get<CStringLength>(MR); 668 if (Recorded) 669 return *Recorded; 670 } 671 672 // Otherwise, get a new symbol and update the state. 673 SValBuilder &svalBuilder = C.getSValBuilder(); 674 QualType sizeTy = svalBuilder.getContext().getSizeType(); 675 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 676 MR, Ex, sizeTy, 677 C.blockCount()); 678 679 if (!hypothetical) { 680 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 681 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 682 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 683 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 684 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 685 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 686 fourInt); 687 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 688 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 689 maxLength, sizeTy); 690 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 691 } 692 state = state->set<CStringLength>(MR, strLength); 693 } 694 695 return strLength; 696 } 697 698 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 699 const Expr *Ex, SVal Buf, 700 bool hypothetical) const { 701 const MemRegion *MR = Buf.getAsRegion(); 702 if (!MR) { 703 // If we can't get a region, see if it's something we /know/ isn't a 704 // C string. In the context of locations, the only time we can issue such 705 // a warning is for labels. 706 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 707 if (!Filter.CheckCStringNotNullTerm) 708 return UndefinedVal(); 709 710 if (ExplodedNode *N = C.addTransition(state)) { 711 if (!BT_NotCString) 712 BT_NotCString.reset(new BuiltinBug( 713 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 714 "Argument is not a null-terminated string.")); 715 716 SmallString<120> buf; 717 llvm::raw_svector_ostream os(buf); 718 assert(CurrentFunctionDescription); 719 os << "Argument to " << CurrentFunctionDescription 720 << " is the address of the label '" << Label->getLabel()->getName() 721 << "', which is not a null-terminated string"; 722 723 // Generate a report for this bug. 724 BugReport *report = new BugReport(*BT_NotCString, os.str(), N); 725 726 report->addRange(Ex->getSourceRange()); 727 C.emitReport(report); 728 } 729 return UndefinedVal(); 730 731 } 732 733 // If it's not a region and not a label, give up. 734 return UnknownVal(); 735 } 736 737 // If we have a region, strip casts from it and see if we can figure out 738 // its length. For anything we can't figure out, just return UnknownVal. 739 MR = MR->StripCasts(); 740 741 switch (MR->getKind()) { 742 case MemRegion::StringRegionKind: { 743 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 744 // so we can assume that the byte length is the correct C string length. 745 SValBuilder &svalBuilder = C.getSValBuilder(); 746 QualType sizeTy = svalBuilder.getContext().getSizeType(); 747 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 748 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 749 } 750 case MemRegion::SymbolicRegionKind: 751 case MemRegion::AllocaRegionKind: 752 case MemRegion::VarRegionKind: 753 case MemRegion::FieldRegionKind: 754 case MemRegion::ObjCIvarRegionKind: 755 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 756 case MemRegion::CompoundLiteralRegionKind: 757 // FIXME: Can we track this? Is it necessary? 758 return UnknownVal(); 759 case MemRegion::ElementRegionKind: 760 // FIXME: How can we handle this? It's not good enough to subtract the 761 // offset from the base string length; consider "123\x00567" and &a[5]. 762 return UnknownVal(); 763 default: 764 // Other regions (mostly non-data) can't have a reliable C string length. 765 // In this case, an error is emitted and UndefinedVal is returned. 766 // The caller should always be prepared to handle this case. 767 if (!Filter.CheckCStringNotNullTerm) 768 return UndefinedVal(); 769 770 if (ExplodedNode *N = C.addTransition(state)) { 771 if (!BT_NotCString) 772 BT_NotCString.reset(new BuiltinBug( 773 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 774 "Argument is not a null-terminated string.")); 775 776 SmallString<120> buf; 777 llvm::raw_svector_ostream os(buf); 778 779 assert(CurrentFunctionDescription); 780 os << "Argument to " << CurrentFunctionDescription << " is "; 781 782 if (SummarizeRegion(os, C.getASTContext(), MR)) 783 os << ", which is not a null-terminated string"; 784 else 785 os << "not a null-terminated string"; 786 787 // Generate a report for this bug. 788 BugReport *report = new BugReport(*BT_NotCString, 789 os.str(), N); 790 791 report->addRange(Ex->getSourceRange()); 792 C.emitReport(report); 793 } 794 795 return UndefinedVal(); 796 } 797 } 798 799 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 800 ProgramStateRef &state, const Expr *expr, SVal val) const { 801 802 // Get the memory region pointed to by the val. 803 const MemRegion *bufRegion = val.getAsRegion(); 804 if (!bufRegion) 805 return nullptr; 806 807 // Strip casts off the memory region. 808 bufRegion = bufRegion->StripCasts(); 809 810 // Cast the memory region to a string region. 811 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 812 if (!strRegion) 813 return nullptr; 814 815 // Return the actual string in the string region. 816 return strRegion->getStringLiteral(); 817 } 818 819 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 820 ProgramStateRef state, 821 const Expr *E, SVal V, 822 bool IsSourceBuffer) { 823 Optional<Loc> L = V.getAs<Loc>(); 824 if (!L) 825 return state; 826 827 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 828 // some assumptions about the value that CFRefCount can't. Even so, it should 829 // probably be refactored. 830 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 831 const MemRegion *R = MR->getRegion()->StripCasts(); 832 833 // Are we dealing with an ElementRegion? If so, we should be invalidating 834 // the super-region. 835 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 836 R = ER->getSuperRegion(); 837 // FIXME: What about layers of ElementRegions? 838 } 839 840 // Invalidate this region. 841 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 842 843 bool CausesPointerEscape = false; 844 RegionAndSymbolInvalidationTraits ITraits; 845 // Invalidate and escape only indirect regions accessible through the source 846 // buffer. 847 if (IsSourceBuffer) { 848 ITraits.setTrait(R, 849 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 850 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 851 CausesPointerEscape = true; 852 } 853 854 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 855 CausesPointerEscape, nullptr, nullptr, 856 &ITraits); 857 } 858 859 // If we have a non-region value by chance, just remove the binding. 860 // FIXME: is this necessary or correct? This handles the non-Region 861 // cases. Is it ever valid to store to these? 862 return state->killBinding(*L); 863 } 864 865 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 866 const MemRegion *MR) { 867 const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR); 868 869 switch (MR->getKind()) { 870 case MemRegion::FunctionTextRegionKind: { 871 const NamedDecl *FD = cast<FunctionTextRegion>(MR)->getDecl(); 872 if (FD) 873 os << "the address of the function '" << *FD << '\''; 874 else 875 os << "the address of a function"; 876 return true; 877 } 878 case MemRegion::BlockTextRegionKind: 879 os << "block text"; 880 return true; 881 case MemRegion::BlockDataRegionKind: 882 os << "a block"; 883 return true; 884 case MemRegion::CXXThisRegionKind: 885 case MemRegion::CXXTempObjectRegionKind: 886 os << "a C++ temp object of type " << TVR->getValueType().getAsString(); 887 return true; 888 case MemRegion::VarRegionKind: 889 os << "a variable of type" << TVR->getValueType().getAsString(); 890 return true; 891 case MemRegion::FieldRegionKind: 892 os << "a field of type " << TVR->getValueType().getAsString(); 893 return true; 894 case MemRegion::ObjCIvarRegionKind: 895 os << "an instance variable of type " << TVR->getValueType().getAsString(); 896 return true; 897 default: 898 return false; 899 } 900 } 901 902 //===----------------------------------------------------------------------===// 903 // evaluation of individual function calls. 904 //===----------------------------------------------------------------------===// 905 906 void CStringChecker::evalCopyCommon(CheckerContext &C, 907 const CallExpr *CE, 908 ProgramStateRef state, 909 const Expr *Size, const Expr *Dest, 910 const Expr *Source, bool Restricted, 911 bool IsMempcpy) const { 912 CurrentFunctionDescription = "memory copy function"; 913 914 // See if the size argument is zero. 915 const LocationContext *LCtx = C.getLocationContext(); 916 SVal sizeVal = state->getSVal(Size, LCtx); 917 QualType sizeTy = Size->getType(); 918 919 ProgramStateRef stateZeroSize, stateNonZeroSize; 920 std::tie(stateZeroSize, stateNonZeroSize) = 921 assumeZero(C, state, sizeVal, sizeTy); 922 923 // Get the value of the Dest. 924 SVal destVal = state->getSVal(Dest, LCtx); 925 926 // If the size is zero, there won't be any actual memory access, so 927 // just bind the return value to the destination buffer and return. 928 if (stateZeroSize && !stateNonZeroSize) { 929 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 930 C.addTransition(stateZeroSize); 931 return; 932 } 933 934 // If the size can be nonzero, we have to check the other arguments. 935 if (stateNonZeroSize) { 936 state = stateNonZeroSize; 937 938 // Ensure the destination is not null. If it is NULL there will be a 939 // NULL pointer dereference. 940 state = checkNonNull(C, state, Dest, destVal); 941 if (!state) 942 return; 943 944 // Get the value of the Src. 945 SVal srcVal = state->getSVal(Source, LCtx); 946 947 // Ensure the source is not null. If it is NULL there will be a 948 // NULL pointer dereference. 949 state = checkNonNull(C, state, Source, srcVal); 950 if (!state) 951 return; 952 953 // Ensure the accesses are valid and that the buffers do not overlap. 954 const char * const writeWarning = 955 "Memory copy function overflows destination buffer"; 956 state = CheckBufferAccess(C, state, Size, Dest, Source, 957 writeWarning, /* sourceWarning = */ nullptr); 958 if (Restricted) 959 state = CheckOverlap(C, state, Size, Dest, Source); 960 961 if (!state) 962 return; 963 964 // If this is mempcpy, get the byte after the last byte copied and 965 // bind the expr. 966 if (IsMempcpy) { 967 loc::MemRegionVal destRegVal = destVal.castAs<loc::MemRegionVal>(); 968 969 // Get the length to copy. 970 if (Optional<NonLoc> lenValNonLoc = sizeVal.getAs<NonLoc>()) { 971 // Get the byte after the last byte copied. 972 SVal lastElement = C.getSValBuilder().evalBinOpLN(state, BO_Add, 973 destRegVal, 974 *lenValNonLoc, 975 Dest->getType()); 976 977 // The byte after the last byte copied is the return value. 978 state = state->BindExpr(CE, LCtx, lastElement); 979 } else { 980 // If we don't know how much we copied, we can at least 981 // conjure a return value for later. 982 SVal result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 983 C.blockCount()); 984 state = state->BindExpr(CE, LCtx, result); 985 } 986 987 } else { 988 // All other copies return the destination buffer. 989 // (Well, bcopy() has a void return type, but this won't hurt.) 990 state = state->BindExpr(CE, LCtx, destVal); 991 } 992 993 // Invalidate the destination (regular invalidation without pointer-escaping 994 // the address of the top-level region). 995 // FIXME: Even if we can't perfectly model the copy, we should see if we 996 // can use LazyCompoundVals to copy the source values into the destination. 997 // This would probably remove any existing bindings past the end of the 998 // copied region, but that's still an improvement over blank invalidation. 999 state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest), 1000 /*IsSourceBuffer*/false); 1001 1002 // Invalidate the source (const-invalidation without const-pointer-escaping 1003 // the address of the top-level region). 1004 state = InvalidateBuffer(C, state, Source, C.getSVal(Source), 1005 /*IsSourceBuffer*/true); 1006 1007 C.addTransition(state); 1008 } 1009 } 1010 1011 1012 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1013 if (CE->getNumArgs() < 3) 1014 return; 1015 1016 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1017 // The return value is the address of the destination buffer. 1018 const Expr *Dest = CE->getArg(0); 1019 ProgramStateRef state = C.getState(); 1020 1021 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true); 1022 } 1023 1024 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1025 if (CE->getNumArgs() < 3) 1026 return; 1027 1028 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1029 // The return value is a pointer to the byte following the last written byte. 1030 const Expr *Dest = CE->getArg(0); 1031 ProgramStateRef state = C.getState(); 1032 1033 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true); 1034 } 1035 1036 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1037 if (CE->getNumArgs() < 3) 1038 return; 1039 1040 // void *memmove(void *dst, const void *src, size_t n); 1041 // The return value is the address of the destination buffer. 1042 const Expr *Dest = CE->getArg(0); 1043 ProgramStateRef state = C.getState(); 1044 1045 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1)); 1046 } 1047 1048 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1049 if (CE->getNumArgs() < 3) 1050 return; 1051 1052 // void bcopy(const void *src, void *dst, size_t n); 1053 evalCopyCommon(C, CE, C.getState(), 1054 CE->getArg(2), CE->getArg(1), CE->getArg(0)); 1055 } 1056 1057 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1058 if (CE->getNumArgs() < 3) 1059 return; 1060 1061 // int memcmp(const void *s1, const void *s2, size_t n); 1062 CurrentFunctionDescription = "memory comparison function"; 1063 1064 const Expr *Left = CE->getArg(0); 1065 const Expr *Right = CE->getArg(1); 1066 const Expr *Size = CE->getArg(2); 1067 1068 ProgramStateRef state = C.getState(); 1069 SValBuilder &svalBuilder = C.getSValBuilder(); 1070 1071 // See if the size argument is zero. 1072 const LocationContext *LCtx = C.getLocationContext(); 1073 SVal sizeVal = state->getSVal(Size, LCtx); 1074 QualType sizeTy = Size->getType(); 1075 1076 ProgramStateRef stateZeroSize, stateNonZeroSize; 1077 std::tie(stateZeroSize, stateNonZeroSize) = 1078 assumeZero(C, state, sizeVal, sizeTy); 1079 1080 // If the size can be zero, the result will be 0 in that case, and we don't 1081 // have to check either of the buffers. 1082 if (stateZeroSize) { 1083 state = stateZeroSize; 1084 state = state->BindExpr(CE, LCtx, 1085 svalBuilder.makeZeroVal(CE->getType())); 1086 C.addTransition(state); 1087 } 1088 1089 // If the size can be nonzero, we have to check the other arguments. 1090 if (stateNonZeroSize) { 1091 state = stateNonZeroSize; 1092 // If we know the two buffers are the same, we know the result is 0. 1093 // First, get the two buffers' addresses. Another checker will have already 1094 // made sure they're not undefined. 1095 DefinedOrUnknownSVal LV = 1096 state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>(); 1097 DefinedOrUnknownSVal RV = 1098 state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>(); 1099 1100 // See if they are the same. 1101 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1102 ProgramStateRef StSameBuf, StNotSameBuf; 1103 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1104 1105 // If the two arguments might be the same buffer, we know the result is 0, 1106 // and we only need to check one size. 1107 if (StSameBuf) { 1108 state = StSameBuf; 1109 state = CheckBufferAccess(C, state, Size, Left); 1110 if (state) { 1111 state = StSameBuf->BindExpr(CE, LCtx, 1112 svalBuilder.makeZeroVal(CE->getType())); 1113 C.addTransition(state); 1114 } 1115 } 1116 1117 // If the two arguments might be different buffers, we have to check the 1118 // size of both of them. 1119 if (StNotSameBuf) { 1120 state = StNotSameBuf; 1121 state = CheckBufferAccess(C, state, Size, Left, Right); 1122 if (state) { 1123 // The return value is the comparison result, which we don't know. 1124 SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1125 C.blockCount()); 1126 state = state->BindExpr(CE, LCtx, CmpV); 1127 C.addTransition(state); 1128 } 1129 } 1130 } 1131 } 1132 1133 void CStringChecker::evalstrLength(CheckerContext &C, 1134 const CallExpr *CE) const { 1135 if (CE->getNumArgs() < 1) 1136 return; 1137 1138 // size_t strlen(const char *s); 1139 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1140 } 1141 1142 void CStringChecker::evalstrnLength(CheckerContext &C, 1143 const CallExpr *CE) const { 1144 if (CE->getNumArgs() < 2) 1145 return; 1146 1147 // size_t strnlen(const char *s, size_t maxlen); 1148 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1149 } 1150 1151 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1152 bool IsStrnlen) const { 1153 CurrentFunctionDescription = "string length function"; 1154 ProgramStateRef state = C.getState(); 1155 const LocationContext *LCtx = C.getLocationContext(); 1156 1157 if (IsStrnlen) { 1158 const Expr *maxlenExpr = CE->getArg(1); 1159 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1160 1161 ProgramStateRef stateZeroSize, stateNonZeroSize; 1162 std::tie(stateZeroSize, stateNonZeroSize) = 1163 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1164 1165 // If the size can be zero, the result will be 0 in that case, and we don't 1166 // have to check the string itself. 1167 if (stateZeroSize) { 1168 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1169 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1170 C.addTransition(stateZeroSize); 1171 } 1172 1173 // If the size is GUARANTEED to be zero, we're done! 1174 if (!stateNonZeroSize) 1175 return; 1176 1177 // Otherwise, record the assumption that the size is nonzero. 1178 state = stateNonZeroSize; 1179 } 1180 1181 // Check that the string argument is non-null. 1182 const Expr *Arg = CE->getArg(0); 1183 SVal ArgVal = state->getSVal(Arg, LCtx); 1184 1185 state = checkNonNull(C, state, Arg, ArgVal); 1186 1187 if (!state) 1188 return; 1189 1190 SVal strLength = getCStringLength(C, state, Arg, ArgVal); 1191 1192 // If the argument isn't a valid C string, there's no valid state to 1193 // transition to. 1194 if (strLength.isUndef()) 1195 return; 1196 1197 DefinedOrUnknownSVal result = UnknownVal(); 1198 1199 // If the check is for strnlen() then bind the return value to no more than 1200 // the maxlen value. 1201 if (IsStrnlen) { 1202 QualType cmpTy = C.getSValBuilder().getConditionType(); 1203 1204 // It's a little unfortunate to be getting this again, 1205 // but it's not that expensive... 1206 const Expr *maxlenExpr = CE->getArg(1); 1207 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1208 1209 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1210 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1211 1212 if (strLengthNL && maxlenValNL) { 1213 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1214 1215 // Check if the strLength is greater than the maxlen. 1216 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1217 C.getSValBuilder() 1218 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1219 .castAs<DefinedOrUnknownSVal>()); 1220 1221 if (stateStringTooLong && !stateStringNotTooLong) { 1222 // If the string is longer than maxlen, return maxlen. 1223 result = *maxlenValNL; 1224 } else if (stateStringNotTooLong && !stateStringTooLong) { 1225 // If the string is shorter than maxlen, return its length. 1226 result = *strLengthNL; 1227 } 1228 } 1229 1230 if (result.isUnknown()) { 1231 // If we don't have enough information for a comparison, there's 1232 // no guarantee the full string length will actually be returned. 1233 // All we know is the return value is the min of the string length 1234 // and the limit. This is better than nothing. 1235 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1236 C.blockCount()); 1237 NonLoc resultNL = result.castAs<NonLoc>(); 1238 1239 if (strLengthNL) { 1240 state = state->assume(C.getSValBuilder().evalBinOpNN( 1241 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1242 .castAs<DefinedOrUnknownSVal>(), true); 1243 } 1244 1245 if (maxlenValNL) { 1246 state = state->assume(C.getSValBuilder().evalBinOpNN( 1247 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1248 .castAs<DefinedOrUnknownSVal>(), true); 1249 } 1250 } 1251 1252 } else { 1253 // This is a plain strlen(), not strnlen(). 1254 result = strLength.castAs<DefinedOrUnknownSVal>(); 1255 1256 // If we don't know the length of the string, conjure a return 1257 // value, so it can be used in constraints, at least. 1258 if (result.isUnknown()) { 1259 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1260 C.blockCount()); 1261 } 1262 } 1263 1264 // Bind the return value. 1265 assert(!result.isUnknown() && "Should have conjured a value by now"); 1266 state = state->BindExpr(CE, LCtx, result); 1267 C.addTransition(state); 1268 } 1269 1270 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1271 if (CE->getNumArgs() < 2) 1272 return; 1273 1274 // char *strcpy(char *restrict dst, const char *restrict src); 1275 evalStrcpyCommon(C, CE, 1276 /* returnEnd = */ false, 1277 /* isBounded = */ false, 1278 /* isAppending = */ false); 1279 } 1280 1281 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1282 if (CE->getNumArgs() < 3) 1283 return; 1284 1285 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1286 evalStrcpyCommon(C, CE, 1287 /* returnEnd = */ false, 1288 /* isBounded = */ true, 1289 /* isAppending = */ false); 1290 } 1291 1292 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1293 if (CE->getNumArgs() < 2) 1294 return; 1295 1296 // char *stpcpy(char *restrict dst, const char *restrict src); 1297 evalStrcpyCommon(C, CE, 1298 /* returnEnd = */ true, 1299 /* isBounded = */ false, 1300 /* isAppending = */ false); 1301 } 1302 1303 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1304 if (CE->getNumArgs() < 2) 1305 return; 1306 1307 //char *strcat(char *restrict s1, const char *restrict s2); 1308 evalStrcpyCommon(C, CE, 1309 /* returnEnd = */ false, 1310 /* isBounded = */ false, 1311 /* isAppending = */ true); 1312 } 1313 1314 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1315 if (CE->getNumArgs() < 3) 1316 return; 1317 1318 //char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1319 evalStrcpyCommon(C, CE, 1320 /* returnEnd = */ false, 1321 /* isBounded = */ true, 1322 /* isAppending = */ true); 1323 } 1324 1325 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1326 bool returnEnd, bool isBounded, 1327 bool isAppending) const { 1328 CurrentFunctionDescription = "string copy function"; 1329 ProgramStateRef state = C.getState(); 1330 const LocationContext *LCtx = C.getLocationContext(); 1331 1332 // Check that the destination is non-null. 1333 const Expr *Dst = CE->getArg(0); 1334 SVal DstVal = state->getSVal(Dst, LCtx); 1335 1336 state = checkNonNull(C, state, Dst, DstVal); 1337 if (!state) 1338 return; 1339 1340 // Check that the source is non-null. 1341 const Expr *srcExpr = CE->getArg(1); 1342 SVal srcVal = state->getSVal(srcExpr, LCtx); 1343 state = checkNonNull(C, state, srcExpr, srcVal); 1344 if (!state) 1345 return; 1346 1347 // Get the string length of the source. 1348 SVal strLength = getCStringLength(C, state, srcExpr, srcVal); 1349 1350 // If the source isn't a valid C string, give up. 1351 if (strLength.isUndef()) 1352 return; 1353 1354 SValBuilder &svalBuilder = C.getSValBuilder(); 1355 QualType cmpTy = svalBuilder.getConditionType(); 1356 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1357 1358 // These two values allow checking two kinds of errors: 1359 // - actual overflows caused by a source that doesn't fit in the destination 1360 // - potential overflows caused by a bound that could exceed the destination 1361 SVal amountCopied = UnknownVal(); 1362 SVal maxLastElementIndex = UnknownVal(); 1363 const char *boundWarning = nullptr; 1364 1365 // If the function is strncpy, strncat, etc... it is bounded. 1366 if (isBounded) { 1367 // Get the max number of characters to copy. 1368 const Expr *lenExpr = CE->getArg(2); 1369 SVal lenVal = state->getSVal(lenExpr, LCtx); 1370 1371 // Protect against misdeclared strncpy(). 1372 lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType()); 1373 1374 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1375 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1376 1377 // If we know both values, we might be able to figure out how much 1378 // we're copying. 1379 if (strLengthNL && lenValNL) { 1380 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1381 1382 // Check if the max number to copy is less than the length of the src. 1383 // If the bound is equal to the source length, strncpy won't null- 1384 // terminate the result! 1385 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1386 svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1387 .castAs<DefinedOrUnknownSVal>()); 1388 1389 if (stateSourceTooLong && !stateSourceNotTooLong) { 1390 // Max number to copy is less than the length of the src, so the actual 1391 // strLength copied is the max number arg. 1392 state = stateSourceTooLong; 1393 amountCopied = lenVal; 1394 1395 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1396 // The source buffer entirely fits in the bound. 1397 state = stateSourceNotTooLong; 1398 amountCopied = strLength; 1399 } 1400 } 1401 1402 // We still want to know if the bound is known to be too large. 1403 if (lenValNL) { 1404 if (isAppending) { 1405 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1406 1407 // Get the string length of the destination. If the destination is 1408 // memory that can't have a string length, we shouldn't be copying 1409 // into it anyway. 1410 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1411 if (dstStrLength.isUndef()) 1412 return; 1413 1414 if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) { 1415 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add, 1416 *lenValNL, 1417 *dstStrLengthNL, 1418 sizeTy); 1419 boundWarning = "Size argument is greater than the free space in the " 1420 "destination buffer"; 1421 } 1422 1423 } else { 1424 // For strncpy, this is just checking that lenVal <= sizeof(dst) 1425 // (Yes, strncpy and strncat differ in how they treat termination. 1426 // strncat ALWAYS terminates, but strncpy doesn't.) 1427 1428 // We need a special case for when the copy size is zero, in which 1429 // case strncpy will do no work at all. Our bounds check uses n-1 1430 // as the last element accessed, so n == 0 is problematic. 1431 ProgramStateRef StateZeroSize, StateNonZeroSize; 1432 std::tie(StateZeroSize, StateNonZeroSize) = 1433 assumeZero(C, state, *lenValNL, sizeTy); 1434 1435 // If the size is known to be zero, we're done. 1436 if (StateZeroSize && !StateNonZeroSize) { 1437 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1438 C.addTransition(StateZeroSize); 1439 return; 1440 } 1441 1442 // Otherwise, go ahead and figure out the last element we'll touch. 1443 // We don't record the non-zero assumption here because we can't 1444 // be sure. We won't warn on a possible zero. 1445 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1446 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1447 one, sizeTy); 1448 boundWarning = "Size argument is greater than the length of the " 1449 "destination buffer"; 1450 } 1451 } 1452 1453 // If we couldn't pin down the copy length, at least bound it. 1454 // FIXME: We should actually run this code path for append as well, but 1455 // right now it creates problems with constraints (since we can end up 1456 // trying to pass constraints from symbol to symbol). 1457 if (amountCopied.isUnknown() && !isAppending) { 1458 // Try to get a "hypothetical" string length symbol, which we can later 1459 // set as a real value if that turns out to be the case. 1460 amountCopied = getCStringLength(C, state, lenExpr, srcVal, true); 1461 assert(!amountCopied.isUndef()); 1462 1463 if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) { 1464 if (lenValNL) { 1465 // amountCopied <= lenVal 1466 SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE, 1467 *amountCopiedNL, 1468 *lenValNL, 1469 cmpTy); 1470 state = state->assume( 1471 copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true); 1472 if (!state) 1473 return; 1474 } 1475 1476 if (strLengthNL) { 1477 // amountCopied <= strlen(source) 1478 SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE, 1479 *amountCopiedNL, 1480 *strLengthNL, 1481 cmpTy); 1482 state = state->assume( 1483 copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true); 1484 if (!state) 1485 return; 1486 } 1487 } 1488 } 1489 1490 } else { 1491 // The function isn't bounded. The amount copied should match the length 1492 // of the source buffer. 1493 amountCopied = strLength; 1494 } 1495 1496 assert(state); 1497 1498 // This represents the number of characters copied into the destination 1499 // buffer. (It may not actually be the strlen if the destination buffer 1500 // is not terminated.) 1501 SVal finalStrLength = UnknownVal(); 1502 1503 // If this is an appending function (strcat, strncat...) then set the 1504 // string length to strlen(src) + strlen(dst) since the buffer will 1505 // ultimately contain both. 1506 if (isAppending) { 1507 // Get the string length of the destination. If the destination is memory 1508 // that can't have a string length, we shouldn't be copying into it anyway. 1509 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1510 if (dstStrLength.isUndef()) 1511 return; 1512 1513 Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>(); 1514 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1515 1516 // If we know both string lengths, we might know the final string length. 1517 if (srcStrLengthNL && dstStrLengthNL) { 1518 // Make sure the two lengths together don't overflow a size_t. 1519 state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL); 1520 if (!state) 1521 return; 1522 1523 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL, 1524 *dstStrLengthNL, sizeTy); 1525 } 1526 1527 // If we couldn't get a single value for the final string length, 1528 // we can at least bound it by the individual lengths. 1529 if (finalStrLength.isUnknown()) { 1530 // Try to get a "hypothetical" string length symbol, which we can later 1531 // set as a real value if that turns out to be the case. 1532 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1533 assert(!finalStrLength.isUndef()); 1534 1535 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1536 if (srcStrLengthNL) { 1537 // finalStrLength >= srcStrLength 1538 SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1539 *finalStrLengthNL, 1540 *srcStrLengthNL, 1541 cmpTy); 1542 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1543 true); 1544 if (!state) 1545 return; 1546 } 1547 1548 if (dstStrLengthNL) { 1549 // finalStrLength >= dstStrLength 1550 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1551 *finalStrLengthNL, 1552 *dstStrLengthNL, 1553 cmpTy); 1554 state = 1555 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1556 if (!state) 1557 return; 1558 } 1559 } 1560 } 1561 1562 } else { 1563 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1564 // the final string length will match the input string length. 1565 finalStrLength = amountCopied; 1566 } 1567 1568 // The final result of the function will either be a pointer past the last 1569 // copied element, or a pointer to the start of the destination buffer. 1570 SVal Result = (returnEnd ? UnknownVal() : DstVal); 1571 1572 assert(state); 1573 1574 // If the destination is a MemRegion, try to check for a buffer overflow and 1575 // record the new string length. 1576 if (Optional<loc::MemRegionVal> dstRegVal = 1577 DstVal.getAs<loc::MemRegionVal>()) { 1578 QualType ptrTy = Dst->getType(); 1579 1580 // If we have an exact value on a bounded copy, use that to check for 1581 // overflows, rather than our estimate about how much is actually copied. 1582 if (boundWarning) { 1583 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1584 SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1585 *maxLastNL, ptrTy); 1586 state = CheckLocation(C, state, CE->getArg(2), maxLastElement, 1587 boundWarning); 1588 if (!state) 1589 return; 1590 } 1591 } 1592 1593 // Then, if the final length is known... 1594 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1595 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1596 *knownStrLength, ptrTy); 1597 1598 // ...and we haven't checked the bound, we'll check the actual copy. 1599 if (!boundWarning) { 1600 const char * const warningMsg = 1601 "String copy function overflows destination buffer"; 1602 state = CheckLocation(C, state, Dst, lastElement, warningMsg); 1603 if (!state) 1604 return; 1605 } 1606 1607 // If this is a stpcpy-style copy, the last element is the return value. 1608 if (returnEnd) 1609 Result = lastElement; 1610 } 1611 1612 // Invalidate the destination (regular invalidation without pointer-escaping 1613 // the address of the top-level region). This must happen before we set the 1614 // C string length because invalidation will clear the length. 1615 // FIXME: Even if we can't perfectly model the copy, we should see if we 1616 // can use LazyCompoundVals to copy the source values into the destination. 1617 // This would probably remove any existing bindings past the end of the 1618 // string, but that's still an improvement over blank invalidation. 1619 state = InvalidateBuffer(C, state, Dst, *dstRegVal, 1620 /*IsSourceBuffer*/false); 1621 1622 // Invalidate the source (const-invalidation without const-pointer-escaping 1623 // the address of the top-level region). 1624 state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true); 1625 1626 // Set the C string length of the destination, if we know it. 1627 if (isBounded && !isAppending) { 1628 // strncpy is annoying in that it doesn't guarantee to null-terminate 1629 // the result string. If the original string didn't fit entirely inside 1630 // the bound (including the null-terminator), we don't know how long the 1631 // result is. 1632 if (amountCopied != strLength) 1633 finalStrLength = UnknownVal(); 1634 } 1635 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1636 } 1637 1638 assert(state); 1639 1640 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1641 // overflow, we still need a result. Conjure a return value. 1642 if (returnEnd && Result.isUnknown()) { 1643 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1644 } 1645 1646 // Set the return value. 1647 state = state->BindExpr(CE, LCtx, Result); 1648 C.addTransition(state); 1649 } 1650 1651 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1652 if (CE->getNumArgs() < 2) 1653 return; 1654 1655 //int strcmp(const char *s1, const char *s2); 1656 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false); 1657 } 1658 1659 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1660 if (CE->getNumArgs() < 3) 1661 return; 1662 1663 //int strncmp(const char *s1, const char *s2, size_t n); 1664 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false); 1665 } 1666 1667 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1668 const CallExpr *CE) const { 1669 if (CE->getNumArgs() < 2) 1670 return; 1671 1672 //int strcasecmp(const char *s1, const char *s2); 1673 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true); 1674 } 1675 1676 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1677 const CallExpr *CE) const { 1678 if (CE->getNumArgs() < 3) 1679 return; 1680 1681 //int strncasecmp(const char *s1, const char *s2, size_t n); 1682 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true); 1683 } 1684 1685 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1686 bool isBounded, bool ignoreCase) const { 1687 CurrentFunctionDescription = "string comparison function"; 1688 ProgramStateRef state = C.getState(); 1689 const LocationContext *LCtx = C.getLocationContext(); 1690 1691 // Check that the first string is non-null 1692 const Expr *s1 = CE->getArg(0); 1693 SVal s1Val = state->getSVal(s1, LCtx); 1694 state = checkNonNull(C, state, s1, s1Val); 1695 if (!state) 1696 return; 1697 1698 // Check that the second string is non-null. 1699 const Expr *s2 = CE->getArg(1); 1700 SVal s2Val = state->getSVal(s2, LCtx); 1701 state = checkNonNull(C, state, s2, s2Val); 1702 if (!state) 1703 return; 1704 1705 // Get the string length of the first string or give up. 1706 SVal s1Length = getCStringLength(C, state, s1, s1Val); 1707 if (s1Length.isUndef()) 1708 return; 1709 1710 // Get the string length of the second string or give up. 1711 SVal s2Length = getCStringLength(C, state, s2, s2Val); 1712 if (s2Length.isUndef()) 1713 return; 1714 1715 // If we know the two buffers are the same, we know the result is 0. 1716 // First, get the two buffers' addresses. Another checker will have already 1717 // made sure they're not undefined. 1718 DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>(); 1719 DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>(); 1720 1721 // See if they are the same. 1722 SValBuilder &svalBuilder = C.getSValBuilder(); 1723 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1724 ProgramStateRef StSameBuf, StNotSameBuf; 1725 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1726 1727 // If the two arguments might be the same buffer, we know the result is 0, 1728 // and we only need to check one size. 1729 if (StSameBuf) { 1730 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 1731 svalBuilder.makeZeroVal(CE->getType())); 1732 C.addTransition(StSameBuf); 1733 1734 // If the two arguments are GUARANTEED to be the same, we're done! 1735 if (!StNotSameBuf) 1736 return; 1737 } 1738 1739 assert(StNotSameBuf); 1740 state = StNotSameBuf; 1741 1742 // At this point we can go about comparing the two buffers. 1743 // For now, we only do this if they're both known string literals. 1744 1745 // Attempt to extract string literals from both expressions. 1746 const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val); 1747 const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val); 1748 bool canComputeResult = false; 1749 1750 if (s1StrLiteral && s2StrLiteral) { 1751 StringRef s1StrRef = s1StrLiteral->getString(); 1752 StringRef s2StrRef = s2StrLiteral->getString(); 1753 1754 if (isBounded) { 1755 // Get the max number of characters to compare. 1756 const Expr *lenExpr = CE->getArg(2); 1757 SVal lenVal = state->getSVal(lenExpr, LCtx); 1758 1759 // If the length is known, we can get the right substrings. 1760 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 1761 // Create substrings of each to compare the prefix. 1762 s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue()); 1763 s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue()); 1764 canComputeResult = true; 1765 } 1766 } else { 1767 // This is a normal, unbounded strcmp. 1768 canComputeResult = true; 1769 } 1770 1771 if (canComputeResult) { 1772 // Real strcmp stops at null characters. 1773 size_t s1Term = s1StrRef.find('\0'); 1774 if (s1Term != StringRef::npos) 1775 s1StrRef = s1StrRef.substr(0, s1Term); 1776 1777 size_t s2Term = s2StrRef.find('\0'); 1778 if (s2Term != StringRef::npos) 1779 s2StrRef = s2StrRef.substr(0, s2Term); 1780 1781 // Use StringRef's comparison methods to compute the actual result. 1782 int result; 1783 1784 if (ignoreCase) { 1785 // Compare string 1 to string 2 the same way strcasecmp() does. 1786 result = s1StrRef.compare_lower(s2StrRef); 1787 } else { 1788 // Compare string 1 to string 2 the same way strcmp() does. 1789 result = s1StrRef.compare(s2StrRef); 1790 } 1791 1792 // Build the SVal of the comparison and bind the return value. 1793 SVal resultVal = svalBuilder.makeIntVal(result, CE->getType()); 1794 state = state->BindExpr(CE, LCtx, resultVal); 1795 } 1796 } 1797 1798 if (!canComputeResult) { 1799 // Conjure a symbolic value. It's the best we can do. 1800 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1801 C.blockCount()); 1802 state = state->BindExpr(CE, LCtx, resultVal); 1803 } 1804 1805 // Record this as a possible path. 1806 C.addTransition(state); 1807 } 1808 1809 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 1810 //char *strsep(char **stringp, const char *delim); 1811 if (CE->getNumArgs() < 2) 1812 return; 1813 1814 // Sanity: does the search string parameter match the return type? 1815 const Expr *SearchStrPtr = CE->getArg(0); 1816 QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType(); 1817 if (CharPtrTy.isNull() || 1818 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 1819 return; 1820 1821 CurrentFunctionDescription = "strsep()"; 1822 ProgramStateRef State = C.getState(); 1823 const LocationContext *LCtx = C.getLocationContext(); 1824 1825 // Check that the search string pointer is non-null (though it may point to 1826 // a null string). 1827 SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx); 1828 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 1829 if (!State) 1830 return; 1831 1832 // Check that the delimiter string is non-null. 1833 const Expr *DelimStr = CE->getArg(1); 1834 SVal DelimStrVal = State->getSVal(DelimStr, LCtx); 1835 State = checkNonNull(C, State, DelimStr, DelimStrVal); 1836 if (!State) 1837 return; 1838 1839 SValBuilder &SVB = C.getSValBuilder(); 1840 SVal Result; 1841 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 1842 // Get the current value of the search string pointer, as a char*. 1843 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 1844 1845 // Invalidate the search string, representing the change of one delimiter 1846 // character to NUL. 1847 State = InvalidateBuffer(C, State, SearchStrPtr, Result, 1848 /*IsSourceBuffer*/false); 1849 1850 // Overwrite the search string pointer. The new value is either an address 1851 // further along in the same string, or NULL if there are no more tokens. 1852 State = State->bindLoc(*SearchStrLoc, 1853 SVB.conjureSymbolVal(getTag(), CE, LCtx, CharPtrTy, 1854 C.blockCount())); 1855 } else { 1856 assert(SearchStrVal.isUnknown()); 1857 // Conjure a symbolic value. It's the best we can do. 1858 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1859 } 1860 1861 // Set the return value, and finish. 1862 State = State->BindExpr(CE, LCtx, Result); 1863 C.addTransition(State); 1864 } 1865 1866 1867 //===----------------------------------------------------------------------===// 1868 // The driver method, and other Checker callbacks. 1869 //===----------------------------------------------------------------------===// 1870 1871 bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const { 1872 const FunctionDecl *FDecl = C.getCalleeDecl(CE); 1873 1874 if (!FDecl) 1875 return false; 1876 1877 // FIXME: Poorly-factored string switches are slow. 1878 FnCheck evalFunction = nullptr; 1879 if (C.isCLibraryFunction(FDecl, "memcpy")) 1880 evalFunction = &CStringChecker::evalMemcpy; 1881 else if (C.isCLibraryFunction(FDecl, "mempcpy")) 1882 evalFunction = &CStringChecker::evalMempcpy; 1883 else if (C.isCLibraryFunction(FDecl, "memcmp")) 1884 evalFunction = &CStringChecker::evalMemcmp; 1885 else if (C.isCLibraryFunction(FDecl, "memmove")) 1886 evalFunction = &CStringChecker::evalMemmove; 1887 else if (C.isCLibraryFunction(FDecl, "strcpy")) 1888 evalFunction = &CStringChecker::evalStrcpy; 1889 else if (C.isCLibraryFunction(FDecl, "strncpy")) 1890 evalFunction = &CStringChecker::evalStrncpy; 1891 else if (C.isCLibraryFunction(FDecl, "stpcpy")) 1892 evalFunction = &CStringChecker::evalStpcpy; 1893 else if (C.isCLibraryFunction(FDecl, "strcat")) 1894 evalFunction = &CStringChecker::evalStrcat; 1895 else if (C.isCLibraryFunction(FDecl, "strncat")) 1896 evalFunction = &CStringChecker::evalStrncat; 1897 else if (C.isCLibraryFunction(FDecl, "strlen")) 1898 evalFunction = &CStringChecker::evalstrLength; 1899 else if (C.isCLibraryFunction(FDecl, "strnlen")) 1900 evalFunction = &CStringChecker::evalstrnLength; 1901 else if (C.isCLibraryFunction(FDecl, "strcmp")) 1902 evalFunction = &CStringChecker::evalStrcmp; 1903 else if (C.isCLibraryFunction(FDecl, "strncmp")) 1904 evalFunction = &CStringChecker::evalStrncmp; 1905 else if (C.isCLibraryFunction(FDecl, "strcasecmp")) 1906 evalFunction = &CStringChecker::evalStrcasecmp; 1907 else if (C.isCLibraryFunction(FDecl, "strncasecmp")) 1908 evalFunction = &CStringChecker::evalStrncasecmp; 1909 else if (C.isCLibraryFunction(FDecl, "strsep")) 1910 evalFunction = &CStringChecker::evalStrsep; 1911 else if (C.isCLibraryFunction(FDecl, "bcopy")) 1912 evalFunction = &CStringChecker::evalBcopy; 1913 else if (C.isCLibraryFunction(FDecl, "bcmp")) 1914 evalFunction = &CStringChecker::evalMemcmp; 1915 1916 // If the callee isn't a string function, let another checker handle it. 1917 if (!evalFunction) 1918 return false; 1919 1920 // Make sure each function sets its own description. 1921 // (But don't bother in a release build.) 1922 assert(!(CurrentFunctionDescription = nullptr)); 1923 1924 // Check and evaluate the call. 1925 (this->*evalFunction)(C, CE); 1926 1927 // If the evaluate call resulted in no change, chain to the next eval call 1928 // handler. 1929 // Note, the custom CString evaluation calls assume that basic safety 1930 // properties are held. However, if the user chooses to turn off some of these 1931 // checks, we ignore the issues and leave the call evaluation to a generic 1932 // handler. 1933 if (!C.isDifferent()) 1934 return false; 1935 1936 return true; 1937 } 1938 1939 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 1940 // Record string length for char a[] = "abc"; 1941 ProgramStateRef state = C.getState(); 1942 1943 for (const auto *I : DS->decls()) { 1944 const VarDecl *D = dyn_cast<VarDecl>(I); 1945 if (!D) 1946 continue; 1947 1948 // FIXME: Handle array fields of structs. 1949 if (!D->getType()->isArrayType()) 1950 continue; 1951 1952 const Expr *Init = D->getInit(); 1953 if (!Init) 1954 continue; 1955 if (!isa<StringLiteral>(Init)) 1956 continue; 1957 1958 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 1959 const MemRegion *MR = VarLoc.getAsRegion(); 1960 if (!MR) 1961 continue; 1962 1963 SVal StrVal = state->getSVal(Init, C.getLocationContext()); 1964 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 1965 DefinedOrUnknownSVal strLength = 1966 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 1967 1968 state = state->set<CStringLength>(MR, strLength); 1969 } 1970 1971 C.addTransition(state); 1972 } 1973 1974 bool CStringChecker::wantsRegionChangeUpdate(ProgramStateRef state) const { 1975 CStringLengthTy Entries = state->get<CStringLength>(); 1976 return !Entries.isEmpty(); 1977 } 1978 1979 ProgramStateRef 1980 CStringChecker::checkRegionChanges(ProgramStateRef state, 1981 const InvalidatedSymbols *, 1982 ArrayRef<const MemRegion *> ExplicitRegions, 1983 ArrayRef<const MemRegion *> Regions, 1984 const CallEvent *Call) const { 1985 CStringLengthTy Entries = state->get<CStringLength>(); 1986 if (Entries.isEmpty()) 1987 return state; 1988 1989 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 1990 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 1991 1992 // First build sets for the changed regions and their super-regions. 1993 for (ArrayRef<const MemRegion *>::iterator 1994 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 1995 const MemRegion *MR = *I; 1996 Invalidated.insert(MR); 1997 1998 SuperRegions.insert(MR); 1999 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2000 MR = SR->getSuperRegion(); 2001 SuperRegions.insert(MR); 2002 } 2003 } 2004 2005 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2006 2007 // Then loop over the entries in the current state. 2008 for (CStringLengthTy::iterator I = Entries.begin(), 2009 E = Entries.end(); I != E; ++I) { 2010 const MemRegion *MR = I.getKey(); 2011 2012 // Is this entry for a super-region of a changed region? 2013 if (SuperRegions.count(MR)) { 2014 Entries = F.remove(Entries, MR); 2015 continue; 2016 } 2017 2018 // Is this entry for a sub-region of a changed region? 2019 const MemRegion *Super = MR; 2020 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2021 Super = SR->getSuperRegion(); 2022 if (Invalidated.count(Super)) { 2023 Entries = F.remove(Entries, MR); 2024 break; 2025 } 2026 } 2027 } 2028 2029 return state->set<CStringLength>(Entries); 2030 } 2031 2032 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2033 SymbolReaper &SR) const { 2034 // Mark all symbols in our string length map as valid. 2035 CStringLengthTy Entries = state->get<CStringLength>(); 2036 2037 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2038 I != E; ++I) { 2039 SVal Len = I.getData(); 2040 2041 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2042 se = Len.symbol_end(); si != se; ++si) 2043 SR.markInUse(*si); 2044 } 2045 } 2046 2047 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2048 CheckerContext &C) const { 2049 if (!SR.hasDeadSymbols()) 2050 return; 2051 2052 ProgramStateRef state = C.getState(); 2053 CStringLengthTy Entries = state->get<CStringLength>(); 2054 if (Entries.isEmpty()) 2055 return; 2056 2057 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2058 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2059 I != E; ++I) { 2060 SVal Len = I.getData(); 2061 if (SymbolRef Sym = Len.getAsSymbol()) { 2062 if (SR.isDead(Sym)) 2063 Entries = F.remove(Entries, I.getKey()); 2064 } 2065 } 2066 2067 state = state->set<CStringLength>(Entries); 2068 C.addTransition(state); 2069 } 2070 2071 #define REGISTER_CHECKER(name) \ 2072 void ento::register##name(CheckerManager &mgr) { \ 2073 CStringChecker *checker = mgr.registerChecker<CStringChecker>(); \ 2074 checker->Filter.Check##name = true; \ 2075 checker->Filter.CheckName##name = mgr.getCurrentCheckName(); \ 2076 } 2077 2078 REGISTER_CHECKER(CStringNullArg) 2079 REGISTER_CHECKER(CStringOutOfBounds) 2080 REGISTER_CHECKER(CStringBufferOverlap) 2081 REGISTER_CHECKER(CStringNotNullTerm) 2082 2083 void ento::registerCStringCheckerBasic(CheckerManager &Mgr) { 2084 registerCStringNullArg(Mgr); 2085 } 2086