1 /* 2 ** 2005 December 14 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** $Id: sqlite3async.c,v 1.7 2009/07/18 11:52:04 danielk1977 Exp $ 14 ** 15 ** This file contains the implementation of an asynchronous IO backend 16 ** for SQLite. 17 */ 18 19 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) 20 21 #include "sqlite3async.h" 22 #include "sqlite3.h" 23 #include <stdarg.h> 24 #include <string.h> 25 #include <assert.h> 26 27 /* Useful macros used in several places */ 28 #define MIN(x,y) ((x)<(y)?(x):(y)) 29 #define MAX(x,y) ((x)>(y)?(x):(y)) 30 31 #ifndef SQLITE_AMALGAMATION 32 /* Macro to mark parameters as unused and silence compiler warnings. */ 33 #define UNUSED_PARAMETER(x) (void)(x) 34 #endif 35 36 /* Forward references */ 37 typedef struct AsyncWrite AsyncWrite; 38 typedef struct AsyncFile AsyncFile; 39 typedef struct AsyncFileData AsyncFileData; 40 typedef struct AsyncFileLock AsyncFileLock; 41 typedef struct AsyncLock AsyncLock; 42 43 /* Enable for debugging */ 44 #ifndef NDEBUG 45 #include <stdio.h> 46 static int sqlite3async_trace = 0; 47 # define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X 48 static void asyncTrace(const char *zFormat, ...){ 49 char *z; 50 va_list ap; 51 va_start(ap, zFormat); 52 z = sqlite3_vmprintf(zFormat, ap); 53 va_end(ap); 54 fprintf(stderr, "[%d] %s", 0 /* (int)pthread_self() */, z); 55 sqlite3_free(z); 56 } 57 #else 58 # define ASYNC_TRACE(X) 59 #endif 60 61 /* 62 ** THREAD SAFETY NOTES 63 ** 64 ** Basic rules: 65 ** 66 ** * Both read and write access to the global write-op queue must be 67 ** protected by the async.queueMutex. As are the async.ioError and 68 ** async.nFile variables. 69 ** 70 ** * The async.pLock list and all AsyncLock and AsyncFileLock 71 ** structures must be protected by the async.lockMutex mutex. 72 ** 73 ** * The file handles from the underlying system are not assumed to 74 ** be thread safe. 75 ** 76 ** * See the last two paragraphs under "The Writer Thread" for 77 ** an assumption to do with file-handle synchronization by the Os. 78 ** 79 ** Deadlock prevention: 80 ** 81 ** There are three mutex used by the system: the "writer" mutex, 82 ** the "queue" mutex and the "lock" mutex. Rules are: 83 ** 84 ** * It is illegal to block on the writer mutex when any other mutex 85 ** are held, and 86 ** 87 ** * It is illegal to block on the queue mutex when the lock mutex 88 ** is held. 89 ** 90 ** i.e. mutex's must be grabbed in the order "writer", "queue", "lock". 91 ** 92 ** File system operations (invoked by SQLite thread): 93 ** 94 ** xOpen 95 ** xDelete 96 ** xFileExists 97 ** 98 ** File handle operations (invoked by SQLite thread): 99 ** 100 ** asyncWrite, asyncClose, asyncTruncate, asyncSync 101 ** 102 ** The operations above add an entry to the global write-op list. They 103 ** prepare the entry, acquire the async.queueMutex momentarily while 104 ** list pointers are manipulated to insert the new entry, then release 105 ** the mutex and signal the writer thread to wake up in case it happens 106 ** to be asleep. 107 ** 108 ** 109 ** asyncRead, asyncFileSize. 110 ** 111 ** Read operations. Both of these read from both the underlying file 112 ** first then adjust their result based on pending writes in the 113 ** write-op queue. So async.queueMutex is held for the duration 114 ** of these operations to prevent other threads from changing the 115 ** queue in mid operation. 116 ** 117 ** 118 ** asyncLock, asyncUnlock, asyncCheckReservedLock 119 ** 120 ** These primitives implement in-process locking using a hash table 121 ** on the file name. Files are locked correctly for connections coming 122 ** from the same process. But other processes cannot see these locks 123 ** and will therefore not honor them. 124 ** 125 ** 126 ** The writer thread: 127 ** 128 ** The async.writerMutex is used to make sure only there is only 129 ** a single writer thread running at a time. 130 ** 131 ** Inside the writer thread is a loop that works like this: 132 ** 133 ** WHILE (write-op list is not empty) 134 ** Do IO operation at head of write-op list 135 ** Remove entry from head of write-op list 136 ** END WHILE 137 ** 138 ** The async.queueMutex is always held during the <write-op list is 139 ** not empty> test, and when the entry is removed from the head 140 ** of the write-op list. Sometimes it is held for the interim 141 ** period (while the IO is performed), and sometimes it is 142 ** relinquished. It is relinquished if (a) the IO op is an 143 ** ASYNC_CLOSE or (b) when the file handle was opened, two of 144 ** the underlying systems handles were opened on the same 145 ** file-system entry. 146 ** 147 ** If condition (b) above is true, then one file-handle 148 ** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the 149 ** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush() 150 ** threads to perform write() operations. This means that read 151 ** operations are not blocked by asynchronous writes (although 152 ** asynchronous writes may still be blocked by reads). 153 ** 154 ** This assumes that the OS keeps two handles open on the same file 155 ** properly in sync. That is, any read operation that starts after a 156 ** write operation on the same file system entry has completed returns 157 ** data consistent with the write. We also assume that if one thread 158 ** reads a file while another is writing it all bytes other than the 159 ** ones actually being written contain valid data. 160 ** 161 ** If the above assumptions are not true, set the preprocessor symbol 162 ** SQLITE_ASYNC_TWO_FILEHANDLES to 0. 163 */ 164 165 166 #ifndef NDEBUG 167 # define TESTONLY( X ) X 168 #else 169 # define TESTONLY( X ) 170 #endif 171 172 /* 173 ** PORTING FUNCTIONS 174 ** 175 ** There are two definitions of the following functions. One for pthreads 176 ** compatible systems and one for Win32. These functions isolate the OS 177 ** specific code required by each platform. 178 ** 179 ** The system uses three mutexes and a single condition variable. To 180 ** block on a mutex, async_mutex_enter() is called. The parameter passed 181 ** to async_mutex_enter(), which must be one of ASYNC_MUTEX_LOCK, 182 ** ASYNC_MUTEX_QUEUE or ASYNC_MUTEX_WRITER, identifies which of the three 183 ** mutexes to lock. Similarly, to unlock a mutex, async_mutex_leave() is 184 ** called with a parameter identifying the mutex being unlocked. Mutexes 185 ** are not recursive - it is an error to call async_mutex_enter() to 186 ** lock a mutex that is already locked, or to call async_mutex_leave() 187 ** to unlock a mutex that is not currently locked. 188 ** 189 ** The async_cond_wait() and async_cond_signal() functions are modelled 190 ** on the pthreads functions with similar names. The first parameter to 191 ** both functions is always ASYNC_COND_QUEUE. When async_cond_wait() 192 ** is called the mutex identified by the second parameter must be held. 193 ** The mutex is unlocked, and the calling thread simultaneously begins 194 ** waiting for the condition variable to be signalled by another thread. 195 ** After another thread signals the condition variable, the calling 196 ** thread stops waiting, locks mutex eMutex and returns. The 197 ** async_cond_signal() function is used to signal the condition variable. 198 ** It is assumed that the mutex used by the thread calling async_cond_wait() 199 ** is held by the caller of async_cond_signal() (otherwise there would be 200 ** a race condition). 201 ** 202 ** It is guaranteed that no other thread will call async_cond_wait() when 203 ** there is already a thread waiting on the condition variable. 204 ** 205 ** The async_sched_yield() function is called to suggest to the operating 206 ** system that it would be a good time to shift the current thread off the 207 ** CPU. The system will still work if this function is not implemented 208 ** (it is not currently implemented for win32), but it might be marginally 209 ** more efficient if it is. 210 */ 211 static void async_mutex_enter(int eMutex); 212 static void async_mutex_leave(int eMutex); 213 static void async_cond_wait(int eCond, int eMutex); 214 static void async_cond_signal(int eCond); 215 static void async_sched_yield(void); 216 217 /* 218 ** There are also two definitions of the following. async_os_initialize() 219 ** is called when the asynchronous VFS is first installed, and os_shutdown() 220 ** is called when it is uninstalled (from within sqlite3async_shutdown()). 221 ** 222 ** For pthreads builds, both of these functions are no-ops. For win32, 223 ** they provide an opportunity to initialize and finalize the required 224 ** mutex and condition variables. 225 ** 226 ** If async_os_initialize() returns other than zero, then the initialization 227 ** fails and SQLITE_ERROR is returned to the user. 228 */ 229 static int async_os_initialize(void); 230 static void async_os_shutdown(void); 231 232 /* Values for use as the 'eMutex' argument of the above functions. The 233 ** integer values assigned to these constants are important for assert() 234 ** statements that verify that mutexes are locked in the correct order. 235 ** Specifically, it is unsafe to try to lock mutex N while holding a lock 236 ** on mutex M if (M<=N). 237 */ 238 #define ASYNC_MUTEX_LOCK 0 239 #define ASYNC_MUTEX_QUEUE 1 240 #define ASYNC_MUTEX_WRITER 2 241 242 /* Values for use as the 'eCond' argument of the above functions. */ 243 #define ASYNC_COND_QUEUE 0 244 245 /************************************************************************* 246 ** Start of OS specific code. 247 */ 248 #if SQLITE_OS_WIN || defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__) 249 250 #include <windows.h> 251 252 /* The following block contains the win32 specific code. */ 253 254 #define mutex_held(X) (GetCurrentThreadId()==primitives.aHolder[X]) 255 256 static struct AsyncPrimitives { 257 int isInit; 258 DWORD aHolder[3]; 259 CRITICAL_SECTION aMutex[3]; 260 HANDLE aCond[1]; 261 } primitives = { 0 }; 262 263 static int async_os_initialize(void){ 264 if( !primitives.isInit ){ 265 primitives.aCond[0] = CreateEvent(NULL, TRUE, FALSE, 0); 266 if( primitives.aCond[0]==NULL ){ 267 return 1; 268 } 269 InitializeCriticalSection(&primitives.aMutex[0]); 270 InitializeCriticalSection(&primitives.aMutex[1]); 271 InitializeCriticalSection(&primitives.aMutex[2]); 272 primitives.isInit = 1; 273 } 274 return 0; 275 } 276 static void async_os_shutdown(void){ 277 if( primitives.isInit ){ 278 DeleteCriticalSection(&primitives.aMutex[0]); 279 DeleteCriticalSection(&primitives.aMutex[1]); 280 DeleteCriticalSection(&primitives.aMutex[2]); 281 CloseHandle(primitives.aCond[0]); 282 primitives.isInit = 0; 283 } 284 } 285 286 /* The following block contains the Win32 specific code. */ 287 static void async_mutex_enter(int eMutex){ 288 assert( eMutex==0 || eMutex==1 || eMutex==2 ); 289 assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); 290 assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); 291 assert( eMutex!=0 || (!mutex_held(0)) ); 292 EnterCriticalSection(&primitives.aMutex[eMutex]); 293 TESTONLY( primitives.aHolder[eMutex] = GetCurrentThreadId(); ) 294 } 295 static void async_mutex_leave(int eMutex){ 296 assert( eMutex==0 || eMutex==1 || eMutex==2 ); 297 assert( mutex_held(eMutex) ); 298 TESTONLY( primitives.aHolder[eMutex] = 0; ) 299 LeaveCriticalSection(&primitives.aMutex[eMutex]); 300 } 301 static void async_cond_wait(int eCond, int eMutex){ 302 ResetEvent(primitives.aCond[eCond]); 303 async_mutex_leave(eMutex); 304 WaitForSingleObject(primitives.aCond[eCond], INFINITE); 305 async_mutex_enter(eMutex); 306 } 307 static void async_cond_signal(int eCond){ 308 assert( mutex_held(ASYNC_MUTEX_QUEUE) ); 309 SetEvent(primitives.aCond[eCond]); 310 } 311 static void async_sched_yield(void){ 312 Sleep(0); 313 } 314 #else 315 316 /* The following block contains the pthreads specific code. */ 317 #include <pthread.h> 318 #include <sched.h> 319 320 #define mutex_held(X) pthread_equal(primitives.aHolder[X], pthread_self()) 321 322 static int async_os_initialize(void) {return 0;} 323 static void async_os_shutdown(void) {} 324 325 static struct AsyncPrimitives { 326 pthread_mutex_t aMutex[3]; 327 pthread_cond_t aCond[1]; 328 pthread_t aHolder[3]; 329 } primitives = { 330 { PTHREAD_MUTEX_INITIALIZER, 331 PTHREAD_MUTEX_INITIALIZER, 332 PTHREAD_MUTEX_INITIALIZER 333 } , { 334 PTHREAD_COND_INITIALIZER 335 } , { 0, 0, 0 } 336 }; 337 338 static void async_mutex_enter(int eMutex){ 339 assert( eMutex==0 || eMutex==1 || eMutex==2 ); 340 assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); 341 assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); 342 assert( eMutex!=0 || (!mutex_held(0)) ); 343 pthread_mutex_lock(&primitives.aMutex[eMutex]); 344 TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) 345 } 346 static void async_mutex_leave(int eMutex){ 347 assert( eMutex==0 || eMutex==1 || eMutex==2 ); 348 assert( mutex_held(eMutex) ); 349 TESTONLY( primitives.aHolder[eMutex] = 0; ) 350 pthread_mutex_unlock(&primitives.aMutex[eMutex]); 351 } 352 static void async_cond_wait(int eCond, int eMutex){ 353 assert( eMutex==0 || eMutex==1 || eMutex==2 ); 354 assert( mutex_held(eMutex) ); 355 TESTONLY( primitives.aHolder[eMutex] = 0; ) 356 pthread_cond_wait(&primitives.aCond[eCond], &primitives.aMutex[eMutex]); 357 TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) 358 } 359 static void async_cond_signal(int eCond){ 360 assert( mutex_held(ASYNC_MUTEX_QUEUE) ); 361 pthread_cond_signal(&primitives.aCond[eCond]); 362 } 363 static void async_sched_yield(void){ 364 sched_yield(); 365 } 366 #endif 367 /* 368 ** End of OS specific code. 369 *************************************************************************/ 370 371 #define assert_mutex_is_held(X) assert( mutex_held(X) ) 372 373 374 #ifndef SQLITE_ASYNC_TWO_FILEHANDLES 375 /* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */ 376 #define SQLITE_ASYNC_TWO_FILEHANDLES 1 377 #endif 378 379 /* 380 ** State information is held in the static variable "async" defined 381 ** as the following structure. 382 ** 383 ** Both async.ioError and async.nFile are protected by async.queueMutex. 384 */ 385 static struct TestAsyncStaticData { 386 AsyncWrite *pQueueFirst; /* Next write operation to be processed */ 387 AsyncWrite *pQueueLast; /* Last write operation on the list */ 388 AsyncLock *pLock; /* Linked list of all AsyncLock structures */ 389 volatile int ioDelay; /* Extra delay between write operations */ 390 volatile int eHalt; /* One of the SQLITEASYNC_HALT_XXX values */ 391 volatile int bLockFiles; /* Current value of "lockfiles" parameter */ 392 int ioError; /* True if an IO error has occurred */ 393 int nFile; /* Number of open files (from sqlite pov) */ 394 } async = { 0,0,0,0,0,1,0,0 }; 395 396 /* Possible values of AsyncWrite.op */ 397 #define ASYNC_NOOP 0 398 #define ASYNC_WRITE 1 399 #define ASYNC_SYNC 2 400 #define ASYNC_TRUNCATE 3 401 #define ASYNC_CLOSE 4 402 #define ASYNC_DELETE 5 403 #define ASYNC_OPENEXCLUSIVE 6 404 #define ASYNC_UNLOCK 7 405 406 /* Names of opcodes. Used for debugging only. 407 ** Make sure these stay in sync with the macros above! 408 */ 409 static const char *azOpcodeName[] = { 410 "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK" 411 }; 412 413 /* 414 ** Entries on the write-op queue are instances of the AsyncWrite 415 ** structure, defined here. 416 ** 417 ** The interpretation of the iOffset and nByte variables varies depending 418 ** on the value of AsyncWrite.op: 419 ** 420 ** ASYNC_NOOP: 421 ** No values used. 422 ** 423 ** ASYNC_WRITE: 424 ** iOffset -> Offset in file to write to. 425 ** nByte -> Number of bytes of data to write (pointed to by zBuf). 426 ** 427 ** ASYNC_SYNC: 428 ** nByte -> flags to pass to sqlite3OsSync(). 429 ** 430 ** ASYNC_TRUNCATE: 431 ** iOffset -> Size to truncate file to. 432 ** nByte -> Unused. 433 ** 434 ** ASYNC_CLOSE: 435 ** iOffset -> Unused. 436 ** nByte -> Unused. 437 ** 438 ** ASYNC_DELETE: 439 ** iOffset -> Contains the "syncDir" flag. 440 ** nByte -> Number of bytes of zBuf points to (file name). 441 ** 442 ** ASYNC_OPENEXCLUSIVE: 443 ** iOffset -> Value of "delflag". 444 ** nByte -> Number of bytes of zBuf points to (file name). 445 ** 446 ** ASYNC_UNLOCK: 447 ** nByte -> Argument to sqlite3OsUnlock(). 448 ** 449 ** 450 ** For an ASYNC_WRITE operation, zBuf points to the data to write to the file. 451 ** This space is sqlite3_malloc()d along with the AsyncWrite structure in a 452 ** single blob, so is deleted when sqlite3_free() is called on the parent 453 ** structure. 454 */ 455 struct AsyncWrite { 456 AsyncFileData *pFileData; /* File to write data to or sync */ 457 int op; /* One of ASYNC_xxx etc. */ 458 sqlite_int64 iOffset; /* See above */ 459 int nByte; /* See above */ 460 char *zBuf; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */ 461 AsyncWrite *pNext; /* Next write operation (to any file) */ 462 }; 463 464 /* 465 ** An instance of this structure is created for each distinct open file 466 ** (i.e. if two handles are opened on the one file, only one of these 467 ** structures is allocated) and stored in the async.aLock hash table. The 468 ** keys for async.aLock are the full pathnames of the opened files. 469 ** 470 ** AsyncLock.pList points to the head of a linked list of AsyncFileLock 471 ** structures, one for each handle currently open on the file. 472 ** 473 ** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is 474 ** not passed to the sqlite3OsOpen() call), or if async.bLockFiles is 475 ** false, variables AsyncLock.pFile and AsyncLock.eLock are never used. 476 ** Otherwise, pFile is a file handle opened on the file in question and 477 ** used to obtain the file-system locks required by database connections 478 ** within this process. 479 ** 480 ** See comments above the asyncLock() function for more details on 481 ** the implementation of database locking used by this backend. 482 */ 483 struct AsyncLock { 484 char *zFile; 485 int nFile; 486 sqlite3_file *pFile; 487 int eLock; 488 AsyncFileLock *pList; 489 AsyncLock *pNext; /* Next in linked list headed by async.pLock */ 490 }; 491 492 /* 493 ** An instance of the following structure is allocated along with each 494 ** AsyncFileData structure (see AsyncFileData.lock), but is only used if the 495 ** file was opened with the SQLITE_OPEN_MAIN_DB. 496 */ 497 struct AsyncFileLock { 498 int eLock; /* Internally visible lock state (sqlite pov) */ 499 int eAsyncLock; /* Lock-state with write-queue unlock */ 500 AsyncFileLock *pNext; 501 }; 502 503 /* 504 ** The AsyncFile structure is a subclass of sqlite3_file used for 505 ** asynchronous IO. 506 ** 507 ** All of the actual data for the structure is stored in the structure 508 ** pointed to by AsyncFile.pData, which is allocated as part of the 509 ** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the 510 ** lifetime of the AsyncFile structure is ended by the caller after OsClose() 511 ** is called, but the data in AsyncFileData may be required by the 512 ** writer thread after that point. 513 */ 514 struct AsyncFile { 515 sqlite3_io_methods *pMethod; 516 AsyncFileData *pData; 517 }; 518 struct AsyncFileData { 519 char *zName; /* Underlying OS filename - used for debugging */ 520 int nName; /* Number of characters in zName */ 521 sqlite3_file *pBaseRead; /* Read handle to the underlying Os file */ 522 sqlite3_file *pBaseWrite; /* Write handle to the underlying Os file */ 523 AsyncFileLock lock; /* Lock state for this handle */ 524 AsyncLock *pLock; /* AsyncLock object for this file system entry */ 525 AsyncWrite closeOp; /* Preallocated close operation */ 526 }; 527 528 /* 529 ** Add an entry to the end of the global write-op list. pWrite should point 530 ** to an AsyncWrite structure allocated using sqlite3_malloc(). The writer 531 ** thread will call sqlite3_free() to free the structure after the specified 532 ** operation has been completed. 533 ** 534 ** Once an AsyncWrite structure has been added to the list, it becomes the 535 ** property of the writer thread and must not be read or modified by the 536 ** caller. 537 */ 538 static void addAsyncWrite(AsyncWrite *pWrite){ 539 /* We must hold the queue mutex in order to modify the queue pointers */ 540 if( pWrite->op!=ASYNC_UNLOCK ){ 541 async_mutex_enter(ASYNC_MUTEX_QUEUE); 542 } 543 544 /* Add the record to the end of the write-op queue */ 545 assert( !pWrite->pNext ); 546 if( async.pQueueLast ){ 547 assert( async.pQueueFirst ); 548 async.pQueueLast->pNext = pWrite; 549 }else{ 550 async.pQueueFirst = pWrite; 551 } 552 async.pQueueLast = pWrite; 553 ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op], 554 pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset)); 555 556 if( pWrite->op==ASYNC_CLOSE ){ 557 async.nFile--; 558 } 559 560 /* The writer thread might have been idle because there was nothing 561 ** on the write-op queue for it to do. So wake it up. */ 562 async_cond_signal(ASYNC_COND_QUEUE); 563 564 /* Drop the queue mutex */ 565 if( pWrite->op!=ASYNC_UNLOCK ){ 566 async_mutex_leave(ASYNC_MUTEX_QUEUE); 567 } 568 } 569 570 /* 571 ** Increment async.nFile in a thread-safe manner. 572 */ 573 static void incrOpenFileCount(void){ 574 /* We must hold the queue mutex in order to modify async.nFile */ 575 async_mutex_enter(ASYNC_MUTEX_QUEUE); 576 if( async.nFile==0 ){ 577 async.ioError = SQLITE_OK; 578 } 579 async.nFile++; 580 async_mutex_leave(ASYNC_MUTEX_QUEUE); 581 } 582 583 /* 584 ** This is a utility function to allocate and populate a new AsyncWrite 585 ** structure and insert it (via addAsyncWrite() ) into the global list. 586 */ 587 static int addNewAsyncWrite( 588 AsyncFileData *pFileData, 589 int op, 590 sqlite3_int64 iOffset, 591 int nByte, 592 const char *zByte 593 ){ 594 AsyncWrite *p; 595 if( op!=ASYNC_CLOSE && async.ioError ){ 596 return async.ioError; 597 } 598 p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0)); 599 if( !p ){ 600 /* The upper layer does not expect operations like OsWrite() to 601 ** return SQLITE_NOMEM. This is partly because under normal conditions 602 ** SQLite is required to do rollback without calling malloc(). So 603 ** if malloc() fails here, treat it as an I/O error. The above 604 ** layer knows how to handle that. 605 */ 606 return SQLITE_IOERR; 607 } 608 p->op = op; 609 p->iOffset = iOffset; 610 p->nByte = nByte; 611 p->pFileData = pFileData; 612 p->pNext = 0; 613 if( zByte ){ 614 p->zBuf = (char *)&p[1]; 615 memcpy(p->zBuf, zByte, nByte); 616 }else{ 617 p->zBuf = 0; 618 } 619 addAsyncWrite(p); 620 return SQLITE_OK; 621 } 622 623 /* 624 ** Close the file. This just adds an entry to the write-op list, the file is 625 ** not actually closed. 626 */ 627 static int asyncClose(sqlite3_file *pFile){ 628 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 629 630 /* Unlock the file, if it is locked */ 631 async_mutex_enter(ASYNC_MUTEX_LOCK); 632 p->lock.eLock = 0; 633 async_mutex_leave(ASYNC_MUTEX_LOCK); 634 635 addAsyncWrite(&p->closeOp); 636 return SQLITE_OK; 637 } 638 639 /* 640 ** Implementation of sqlite3OsWrite() for asynchronous files. Instead of 641 ** writing to the underlying file, this function adds an entry to the end of 642 ** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be 643 ** returned. 644 */ 645 static int asyncWrite( 646 sqlite3_file *pFile, 647 const void *pBuf, 648 int amt, 649 sqlite3_int64 iOff 650 ){ 651 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 652 return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf); 653 } 654 655 /* 656 ** Read data from the file. First we read from the filesystem, then adjust 657 ** the contents of the buffer based on ASYNC_WRITE operations in the 658 ** write-op queue. 659 ** 660 ** This method holds the mutex from start to finish. 661 */ 662 static int asyncRead( 663 sqlite3_file *pFile, 664 void *zOut, 665 int iAmt, 666 sqlite3_int64 iOffset 667 ){ 668 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 669 int rc = SQLITE_OK; 670 sqlite3_int64 filesize = 0; 671 sqlite3_file *pBase = p->pBaseRead; 672 sqlite3_int64 iAmt64 = (sqlite3_int64)iAmt; 673 674 /* Grab the write queue mutex for the duration of the call */ 675 async_mutex_enter(ASYNC_MUTEX_QUEUE); 676 677 /* If an I/O error has previously occurred in this virtual file 678 ** system, then all subsequent operations fail. 679 */ 680 if( async.ioError!=SQLITE_OK ){ 681 rc = async.ioError; 682 goto asyncread_out; 683 } 684 685 if( pBase->pMethods ){ 686 sqlite3_int64 nRead; 687 rc = pBase->pMethods->xFileSize(pBase, &filesize); 688 if( rc!=SQLITE_OK ){ 689 goto asyncread_out; 690 } 691 nRead = MIN(filesize - iOffset, iAmt64); 692 if( nRead>0 ){ 693 rc = pBase->pMethods->xRead(pBase, zOut, (int)nRead, iOffset); 694 ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset)); 695 } 696 } 697 698 if( rc==SQLITE_OK ){ 699 AsyncWrite *pWrite; 700 char *zName = p->zName; 701 702 for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ 703 if( pWrite->op==ASYNC_WRITE && ( 704 (pWrite->pFileData==p) || 705 (zName && pWrite->pFileData->zName==zName) 706 )){ 707 sqlite3_int64 nCopy; 708 sqlite3_int64 nByte64 = (sqlite3_int64)pWrite->nByte; 709 710 /* Set variable iBeginIn to the offset in buffer pWrite->zBuf[] from 711 ** which data should be copied. Set iBeginOut to the offset within 712 ** the output buffer to which data should be copied. If either of 713 ** these offsets is a negative number, set them to 0. 714 */ 715 sqlite3_int64 iBeginOut = (pWrite->iOffset-iOffset); 716 sqlite3_int64 iBeginIn = -iBeginOut; 717 if( iBeginIn<0 ) iBeginIn = 0; 718 if( iBeginOut<0 ) iBeginOut = 0; 719 720 filesize = MAX(filesize, pWrite->iOffset+nByte64); 721 722 nCopy = MIN(nByte64-iBeginIn, iAmt64-iBeginOut); 723 if( nCopy>0 ){ 724 memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], (size_t)nCopy); 725 ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset)); 726 } 727 } 728 } 729 } 730 731 asyncread_out: 732 async_mutex_leave(ASYNC_MUTEX_QUEUE); 733 if( rc==SQLITE_OK && filesize<(iOffset+iAmt) ){ 734 rc = SQLITE_IOERR_SHORT_READ; 735 } 736 return rc; 737 } 738 739 /* 740 ** Truncate the file to nByte bytes in length. This just adds an entry to 741 ** the write-op list, no IO actually takes place. 742 */ 743 static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){ 744 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 745 return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0); 746 } 747 748 /* 749 ** Sync the file. This just adds an entry to the write-op list, the 750 ** sync() is done later by sqlite3_async_flush(). 751 */ 752 static int asyncSync(sqlite3_file *pFile, int flags){ 753 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 754 return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0); 755 } 756 757 /* 758 ** Read the size of the file. First we read the size of the file system 759 ** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations 760 ** currently in the write-op list. 761 ** 762 ** This method holds the mutex from start to finish. 763 */ 764 int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){ 765 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 766 int rc = SQLITE_OK; 767 sqlite3_int64 s = 0; 768 sqlite3_file *pBase; 769 770 async_mutex_enter(ASYNC_MUTEX_QUEUE); 771 772 /* Read the filesystem size from the base file. If pMethods is NULL, this 773 ** means the file hasn't been opened yet. In this case all relevant data 774 ** must be in the write-op queue anyway, so we can omit reading from the 775 ** file-system. 776 */ 777 pBase = p->pBaseRead; 778 if( pBase->pMethods ){ 779 rc = pBase->pMethods->xFileSize(pBase, &s); 780 } 781 782 if( rc==SQLITE_OK ){ 783 AsyncWrite *pWrite; 784 for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ 785 if( pWrite->op==ASYNC_DELETE 786 && p->zName 787 && strcmp(p->zName, pWrite->zBuf)==0 788 ){ 789 s = 0; 790 }else if( pWrite->pFileData && ( 791 (pWrite->pFileData==p) 792 || (p->zName && pWrite->pFileData->zName==p->zName) 793 )){ 794 switch( pWrite->op ){ 795 case ASYNC_WRITE: 796 s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s); 797 break; 798 case ASYNC_TRUNCATE: 799 s = MIN(s, pWrite->iOffset); 800 break; 801 } 802 } 803 } 804 *piSize = s; 805 } 806 async_mutex_leave(ASYNC_MUTEX_QUEUE); 807 return rc; 808 } 809 810 /* 811 ** Lock or unlock the actual file-system entry. 812 */ 813 static int getFileLock(AsyncLock *pLock){ 814 int rc = SQLITE_OK; 815 AsyncFileLock *pIter; 816 int eRequired = 0; 817 818 if( pLock->pFile ){ 819 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ 820 assert(pIter->eAsyncLock>=pIter->eLock); 821 if( pIter->eAsyncLock>eRequired ){ 822 eRequired = pIter->eAsyncLock; 823 assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE); 824 } 825 } 826 827 if( eRequired>pLock->eLock ){ 828 rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired); 829 if( rc==SQLITE_OK ){ 830 pLock->eLock = eRequired; 831 } 832 } 833 else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){ 834 rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired); 835 if( rc==SQLITE_OK ){ 836 pLock->eLock = eRequired; 837 } 838 } 839 } 840 841 return rc; 842 } 843 844 /* 845 ** Return the AsyncLock structure from the global async.pLock list 846 ** associated with the file-system entry identified by path zName 847 ** (a string of nName bytes). If no such structure exists, return 0. 848 */ 849 static AsyncLock *findLock(const char *zName, int nName){ 850 AsyncLock *p = async.pLock; 851 while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){ 852 p = p->pNext; 853 } 854 return p; 855 } 856 857 /* 858 ** The following two methods - asyncLock() and asyncUnlock() - are used 859 ** to obtain and release locks on database files opened with the 860 ** asynchronous backend. 861 */ 862 static int asyncLock(sqlite3_file *pFile, int eLock){ 863 int rc = SQLITE_OK; 864 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 865 866 if( p->zName ){ 867 async_mutex_enter(ASYNC_MUTEX_LOCK); 868 if( p->lock.eLock<eLock ){ 869 AsyncLock *pLock = p->pLock; 870 AsyncFileLock *pIter; 871 assert(pLock && pLock->pList); 872 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ 873 if( pIter!=&p->lock && ( 874 (eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) || 875 (eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) || 876 (eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) || 877 (eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING) 878 )){ 879 rc = SQLITE_BUSY; 880 } 881 } 882 if( rc==SQLITE_OK ){ 883 p->lock.eLock = eLock; 884 p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock); 885 } 886 assert(p->lock.eAsyncLock>=p->lock.eLock); 887 if( rc==SQLITE_OK ){ 888 rc = getFileLock(pLock); 889 } 890 } 891 async_mutex_leave(ASYNC_MUTEX_LOCK); 892 } 893 894 ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc)); 895 return rc; 896 } 897 static int asyncUnlock(sqlite3_file *pFile, int eLock){ 898 int rc = SQLITE_OK; 899 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 900 if( p->zName ){ 901 AsyncFileLock *pLock = &p->lock; 902 async_mutex_enter(ASYNC_MUTEX_QUEUE); 903 async_mutex_enter(ASYNC_MUTEX_LOCK); 904 pLock->eLock = MIN(pLock->eLock, eLock); 905 rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0); 906 async_mutex_leave(ASYNC_MUTEX_LOCK); 907 async_mutex_leave(ASYNC_MUTEX_QUEUE); 908 } 909 return rc; 910 } 911 912 /* 913 ** This function is called when the pager layer first opens a database file 914 ** and is checking for a hot-journal. 915 */ 916 static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){ 917 int ret = 0; 918 AsyncFileLock *pIter; 919 AsyncFileData *p = ((AsyncFile *)pFile)->pData; 920 921 async_mutex_enter(ASYNC_MUTEX_LOCK); 922 for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){ 923 if( pIter->eLock>=SQLITE_LOCK_RESERVED ){ 924 ret = 1; 925 break; 926 } 927 } 928 async_mutex_leave(ASYNC_MUTEX_LOCK); 929 930 ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName)); 931 *pResOut = ret; 932 return SQLITE_OK; 933 } 934 935 /* 936 ** sqlite3_file_control() implementation. 937 */ 938 static int asyncFileControl(sqlite3_file *id, int op, void *pArg){ 939 switch( op ){ 940 case SQLITE_FCNTL_LOCKSTATE: { 941 async_mutex_enter(ASYNC_MUTEX_LOCK); 942 *(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock; 943 async_mutex_leave(ASYNC_MUTEX_LOCK); 944 return SQLITE_OK; 945 } 946 } 947 return SQLITE_ERROR; 948 } 949 950 /* 951 ** Return the device characteristics and sector-size of the device. It 952 ** is tricky to implement these correctly, as this backend might 953 ** not have an open file handle at this point. 954 */ 955 static int asyncSectorSize(sqlite3_file *pFile){ 956 UNUSED_PARAMETER(pFile); 957 return 512; 958 } 959 static int asyncDeviceCharacteristics(sqlite3_file *pFile){ 960 UNUSED_PARAMETER(pFile); 961 return 0; 962 } 963 964 static int unlinkAsyncFile(AsyncFileData *pData){ 965 AsyncFileLock **ppIter; 966 int rc = SQLITE_OK; 967 968 if( pData->zName ){ 969 AsyncLock *pLock = pData->pLock; 970 for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){ 971 if( (*ppIter)==&pData->lock ){ 972 *ppIter = pData->lock.pNext; 973 break; 974 } 975 } 976 if( !pLock->pList ){ 977 AsyncLock **pp; 978 if( pLock->pFile ){ 979 pLock->pFile->pMethods->xClose(pLock->pFile); 980 } 981 for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext)); 982 *pp = pLock->pNext; 983 sqlite3_free(pLock); 984 }else{ 985 rc = getFileLock(pLock); 986 } 987 } 988 989 return rc; 990 } 991 992 /* 993 ** The parameter passed to this function is a copy of a 'flags' parameter 994 ** passed to this modules xOpen() method. This function returns true 995 ** if the file should be opened asynchronously, or false if it should 996 ** be opened immediately. 997 ** 998 ** If the file is to be opened asynchronously, then asyncOpen() will add 999 ** an entry to the event queue and the file will not actually be opened 1000 ** until the event is processed. Otherwise, the file is opened directly 1001 ** by the caller. 1002 */ 1003 static int doAsynchronousOpen(int flags){ 1004 return (flags&SQLITE_OPEN_CREATE) && ( 1005 (flags&SQLITE_OPEN_MAIN_JOURNAL) || 1006 (flags&SQLITE_OPEN_TEMP_JOURNAL) || 1007 (flags&SQLITE_OPEN_DELETEONCLOSE) 1008 ); 1009 } 1010 1011 /* 1012 ** Open a file. 1013 */ 1014 static int asyncOpen( 1015 sqlite3_vfs *pAsyncVfs, 1016 const char *zName, 1017 sqlite3_file *pFile, 1018 int flags, 1019 int *pOutFlags 1020 ){ 1021 static sqlite3_io_methods async_methods = { 1022 1, /* iVersion */ 1023 asyncClose, /* xClose */ 1024 asyncRead, /* xRead */ 1025 asyncWrite, /* xWrite */ 1026 asyncTruncate, /* xTruncate */ 1027 asyncSync, /* xSync */ 1028 asyncFileSize, /* xFileSize */ 1029 asyncLock, /* xLock */ 1030 asyncUnlock, /* xUnlock */ 1031 asyncCheckReservedLock, /* xCheckReservedLock */ 1032 asyncFileControl, /* xFileControl */ 1033 asyncSectorSize, /* xSectorSize */ 1034 asyncDeviceCharacteristics /* xDeviceCharacteristics */ 1035 }; 1036 1037 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1038 AsyncFile *p = (AsyncFile *)pFile; 1039 int nName = 0; 1040 int rc = SQLITE_OK; 1041 int nByte; 1042 AsyncFileData *pData; 1043 AsyncLock *pLock = 0; 1044 char *z; 1045 int isAsyncOpen = doAsynchronousOpen(flags); 1046 1047 /* If zName is NULL, then the upper layer is requesting an anonymous file */ 1048 if( zName ){ 1049 nName = (int)strlen(zName)+1; 1050 } 1051 1052 nByte = ( 1053 sizeof(AsyncFileData) + /* AsyncFileData structure */ 1054 2 * pVfs->szOsFile + /* AsyncFileData.pBaseRead and pBaseWrite */ 1055 nName /* AsyncFileData.zName */ 1056 ); 1057 z = sqlite3_malloc(nByte); 1058 if( !z ){ 1059 return SQLITE_NOMEM; 1060 } 1061 memset(z, 0, nByte); 1062 pData = (AsyncFileData*)z; 1063 z += sizeof(pData[0]); 1064 pData->pBaseRead = (sqlite3_file*)z; 1065 z += pVfs->szOsFile; 1066 pData->pBaseWrite = (sqlite3_file*)z; 1067 pData->closeOp.pFileData = pData; 1068 pData->closeOp.op = ASYNC_CLOSE; 1069 1070 if( zName ){ 1071 z += pVfs->szOsFile; 1072 pData->zName = z; 1073 pData->nName = nName; 1074 memcpy(pData->zName, zName, nName); 1075 } 1076 1077 if( !isAsyncOpen ){ 1078 int flagsout; 1079 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, &flagsout); 1080 if( rc==SQLITE_OK 1081 && (flagsout&SQLITE_OPEN_READWRITE) 1082 && (flags&SQLITE_OPEN_EXCLUSIVE)==0 1083 ){ 1084 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseWrite, flags, 0); 1085 } 1086 if( pOutFlags ){ 1087 *pOutFlags = flagsout; 1088 } 1089 } 1090 1091 async_mutex_enter(ASYNC_MUTEX_LOCK); 1092 1093 if( zName && rc==SQLITE_OK ){ 1094 pLock = findLock(pData->zName, pData->nName); 1095 if( !pLock ){ 1096 int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1; 1097 pLock = (AsyncLock *)sqlite3_malloc(nByte); 1098 if( pLock ){ 1099 memset(pLock, 0, nByte); 1100 if( async.bLockFiles && (flags&SQLITE_OPEN_MAIN_DB) ){ 1101 pLock->pFile = (sqlite3_file *)&pLock[1]; 1102 rc = pVfs->xOpen(pVfs, pData->zName, pLock->pFile, flags, 0); 1103 if( rc!=SQLITE_OK ){ 1104 sqlite3_free(pLock); 1105 pLock = 0; 1106 } 1107 } 1108 if( pLock ){ 1109 pLock->nFile = pData->nName; 1110 pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile]; 1111 memcpy(pLock->zFile, pData->zName, pLock->nFile); 1112 pLock->pNext = async.pLock; 1113 async.pLock = pLock; 1114 } 1115 }else{ 1116 rc = SQLITE_NOMEM; 1117 } 1118 } 1119 } 1120 1121 if( rc==SQLITE_OK ){ 1122 p->pMethod = &async_methods; 1123 p->pData = pData; 1124 1125 /* Link AsyncFileData.lock into the linked list of 1126 ** AsyncFileLock structures for this file. 1127 */ 1128 if( zName ){ 1129 pData->lock.pNext = pLock->pList; 1130 pLock->pList = &pData->lock; 1131 pData->zName = pLock->zFile; 1132 } 1133 }else{ 1134 if( pData->pBaseRead->pMethods ){ 1135 pData->pBaseRead->pMethods->xClose(pData->pBaseRead); 1136 } 1137 if( pData->pBaseWrite->pMethods ){ 1138 pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); 1139 } 1140 sqlite3_free(pData); 1141 } 1142 1143 async_mutex_leave(ASYNC_MUTEX_LOCK); 1144 1145 if( rc==SQLITE_OK ){ 1146 pData->pLock = pLock; 1147 } 1148 1149 if( rc==SQLITE_OK && isAsyncOpen ){ 1150 rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0); 1151 if( rc==SQLITE_OK ){ 1152 if( pOutFlags ) *pOutFlags = flags; 1153 }else{ 1154 async_mutex_enter(ASYNC_MUTEX_LOCK); 1155 unlinkAsyncFile(pData); 1156 async_mutex_leave(ASYNC_MUTEX_LOCK); 1157 sqlite3_free(pData); 1158 } 1159 } 1160 if( rc!=SQLITE_OK ){ 1161 p->pMethod = 0; 1162 }else{ 1163 incrOpenFileCount(); 1164 } 1165 1166 return rc; 1167 } 1168 1169 /* 1170 ** Implementation of sqlite3OsDelete. Add an entry to the end of the 1171 ** write-op queue to perform the delete. 1172 */ 1173 static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){ 1174 UNUSED_PARAMETER(pAsyncVfs); 1175 return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, (int)strlen(z)+1, z); 1176 } 1177 1178 /* 1179 ** Implementation of sqlite3OsAccess. This method holds the mutex from 1180 ** start to finish. 1181 */ 1182 static int asyncAccess( 1183 sqlite3_vfs *pAsyncVfs, 1184 const char *zName, 1185 int flags, 1186 int *pResOut 1187 ){ 1188 int rc; 1189 int ret; 1190 AsyncWrite *p; 1191 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1192 1193 assert(flags==SQLITE_ACCESS_READWRITE 1194 || flags==SQLITE_ACCESS_READ 1195 || flags==SQLITE_ACCESS_EXISTS 1196 ); 1197 1198 async_mutex_enter(ASYNC_MUTEX_QUEUE); 1199 rc = pVfs->xAccess(pVfs, zName, flags, &ret); 1200 if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){ 1201 for(p=async.pQueueFirst; p; p = p->pNext){ 1202 if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){ 1203 ret = 0; 1204 }else if( p->op==ASYNC_OPENEXCLUSIVE 1205 && p->pFileData->zName 1206 && 0==strcmp(p->pFileData->zName, zName) 1207 ){ 1208 ret = 1; 1209 } 1210 } 1211 } 1212 ASYNC_TRACE(("ACCESS(%s): %s = %d\n", 1213 flags==SQLITE_ACCESS_READWRITE?"read-write": 1214 flags==SQLITE_ACCESS_READ?"read":"exists" 1215 , zName, ret) 1216 ); 1217 async_mutex_leave(ASYNC_MUTEX_QUEUE); 1218 *pResOut = ret; 1219 return rc; 1220 } 1221 1222 /* 1223 ** Fill in zPathOut with the full path to the file identified by zPath. 1224 */ 1225 static int asyncFullPathname( 1226 sqlite3_vfs *pAsyncVfs, 1227 const char *zPath, 1228 int nPathOut, 1229 char *zPathOut 1230 ){ 1231 int rc; 1232 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1233 rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); 1234 1235 /* Because of the way intra-process file locking works, this backend 1236 ** needs to return a canonical path. The following block assumes the 1237 ** file-system uses unix style paths. 1238 */ 1239 if( rc==SQLITE_OK ){ 1240 int i, j; 1241 char *z = zPathOut; 1242 int n = (int)strlen(z); 1243 while( n>1 && z[n-1]=='/' ){ n--; } 1244 for(i=j=0; i<n; i++){ 1245 if( z[i]=='/' ){ 1246 if( z[i+1]=='/' ) continue; 1247 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ 1248 i += 1; 1249 continue; 1250 } 1251 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ 1252 while( j>0 && z[j-1]!='/' ){ j--; } 1253 if( j>0 ){ j--; } 1254 i += 2; 1255 continue; 1256 } 1257 } 1258 z[j++] = z[i]; 1259 } 1260 z[j] = 0; 1261 } 1262 1263 return rc; 1264 } 1265 static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){ 1266 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1267 return pVfs->xDlOpen(pVfs, zPath); 1268 } 1269 static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){ 1270 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1271 pVfs->xDlError(pVfs, nByte, zErrMsg); 1272 } 1273 static void (*asyncDlSym( 1274 sqlite3_vfs *pAsyncVfs, 1275 void *pHandle, 1276 const char *zSymbol 1277 ))(void){ 1278 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1279 return pVfs->xDlSym(pVfs, pHandle, zSymbol); 1280 } 1281 static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){ 1282 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1283 pVfs->xDlClose(pVfs, pHandle); 1284 } 1285 static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){ 1286 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1287 return pVfs->xRandomness(pVfs, nByte, zBufOut); 1288 } 1289 static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){ 1290 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1291 return pVfs->xSleep(pVfs, nMicro); 1292 } 1293 static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){ 1294 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; 1295 return pVfs->xCurrentTime(pVfs, pTimeOut); 1296 } 1297 1298 static sqlite3_vfs async_vfs = { 1299 1, /* iVersion */ 1300 sizeof(AsyncFile), /* szOsFile */ 1301 0, /* mxPathname */ 1302 0, /* pNext */ 1303 SQLITEASYNC_VFSNAME, /* zName */ 1304 0, /* pAppData */ 1305 asyncOpen, /* xOpen */ 1306 asyncDelete, /* xDelete */ 1307 asyncAccess, /* xAccess */ 1308 asyncFullPathname, /* xFullPathname */ 1309 asyncDlOpen, /* xDlOpen */ 1310 asyncDlError, /* xDlError */ 1311 asyncDlSym, /* xDlSym */ 1312 asyncDlClose, /* xDlClose */ 1313 asyncRandomness, /* xDlError */ 1314 asyncSleep, /* xDlSym */ 1315 asyncCurrentTime /* xDlClose */ 1316 }; 1317 1318 /* 1319 ** This procedure runs in a separate thread, reading messages off of the 1320 ** write queue and processing them one by one. 1321 ** 1322 ** If async.writerHaltNow is true, then this procedure exits 1323 ** after processing a single message. 1324 ** 1325 ** If async.writerHaltWhenIdle is true, then this procedure exits when 1326 ** the write queue is empty. 1327 ** 1328 ** If both of the above variables are false, this procedure runs 1329 ** indefinately, waiting for operations to be added to the write queue 1330 ** and processing them in the order in which they arrive. 1331 ** 1332 ** An artifical delay of async.ioDelay milliseconds is inserted before 1333 ** each write operation in order to simulate the effect of a slow disk. 1334 ** 1335 ** Only one instance of this procedure may be running at a time. 1336 */ 1337 static void asyncWriterThread(void){ 1338 sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData); 1339 AsyncWrite *p = 0; 1340 int rc = SQLITE_OK; 1341 int holdingMutex = 0; 1342 1343 async_mutex_enter(ASYNC_MUTEX_WRITER); 1344 1345 while( async.eHalt!=SQLITEASYNC_HALT_NOW ){ 1346 int doNotFree = 0; 1347 sqlite3_file *pBase = 0; 1348 1349 if( !holdingMutex ){ 1350 async_mutex_enter(ASYNC_MUTEX_QUEUE); 1351 } 1352 while( (p = async.pQueueFirst)==0 ){ 1353 if( async.eHalt!=SQLITEASYNC_HALT_NEVER ){ 1354 async_mutex_leave(ASYNC_MUTEX_QUEUE); 1355 break; 1356 }else{ 1357 ASYNC_TRACE(("IDLE\n")); 1358 async_cond_wait(ASYNC_COND_QUEUE, ASYNC_MUTEX_QUEUE); 1359 ASYNC_TRACE(("WAKEUP\n")); 1360 } 1361 } 1362 if( p==0 ) break; 1363 holdingMutex = 1; 1364 1365 /* Right now this thread is holding the mutex on the write-op queue. 1366 ** Variable 'p' points to the first entry in the write-op queue. In 1367 ** the general case, we hold on to the mutex for the entire body of 1368 ** the loop. 1369 ** 1370 ** However in the cases enumerated below, we relinquish the mutex, 1371 ** perform the IO, and then re-request the mutex before removing 'p' from 1372 ** the head of the write-op queue. The idea is to increase concurrency with 1373 ** sqlite threads. 1374 ** 1375 ** * An ASYNC_CLOSE operation. 1376 ** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish 1377 ** the mutex, call the underlying xOpenExclusive() function, then 1378 ** re-aquire the mutex before seting the AsyncFile.pBaseRead 1379 ** variable. 1380 ** * ASYNC_SYNC and ASYNC_WRITE operations, if 1381 ** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two 1382 ** file-handles are open for the particular file being "synced". 1383 */ 1384 if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){ 1385 p->op = ASYNC_NOOP; 1386 } 1387 if( p->pFileData ){ 1388 pBase = p->pFileData->pBaseWrite; 1389 if( 1390 p->op==ASYNC_CLOSE || 1391 p->op==ASYNC_OPENEXCLUSIVE || 1392 (pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) ) 1393 ){ 1394 async_mutex_leave(ASYNC_MUTEX_QUEUE); 1395 holdingMutex = 0; 1396 } 1397 if( !pBase->pMethods ){ 1398 pBase = p->pFileData->pBaseRead; 1399 } 1400 } 1401 1402 switch( p->op ){ 1403 case ASYNC_NOOP: 1404 break; 1405 1406 case ASYNC_WRITE: 1407 assert( pBase ); 1408 ASYNC_TRACE(("WRITE %s %d bytes at %d\n", 1409 p->pFileData->zName, p->nByte, p->iOffset)); 1410 rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOffset); 1411 break; 1412 1413 case ASYNC_SYNC: 1414 assert( pBase ); 1415 ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName)); 1416 rc = pBase->pMethods->xSync(pBase, p->nByte); 1417 break; 1418 1419 case ASYNC_TRUNCATE: 1420 assert( pBase ); 1421 ASYNC_TRACE(("TRUNCATE %s to %d bytes\n", 1422 p->pFileData->zName, p->iOffset)); 1423 rc = pBase->pMethods->xTruncate(pBase, p->iOffset); 1424 break; 1425 1426 case ASYNC_CLOSE: { 1427 AsyncFileData *pData = p->pFileData; 1428 ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName)); 1429 if( pData->pBaseWrite->pMethods ){ 1430 pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); 1431 } 1432 if( pData->pBaseRead->pMethods ){ 1433 pData->pBaseRead->pMethods->xClose(pData->pBaseRead); 1434 } 1435 1436 /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock 1437 ** structures for this file. Obtain the async.lockMutex mutex 1438 ** before doing so. 1439 */ 1440 async_mutex_enter(ASYNC_MUTEX_LOCK); 1441 rc = unlinkAsyncFile(pData); 1442 async_mutex_leave(ASYNC_MUTEX_LOCK); 1443 1444 if( !holdingMutex ){ 1445 async_mutex_enter(ASYNC_MUTEX_QUEUE); 1446 holdingMutex = 1; 1447 } 1448 assert_mutex_is_held(ASYNC_MUTEX_QUEUE); 1449 async.pQueueFirst = p->pNext; 1450 sqlite3_free(pData); 1451 doNotFree = 1; 1452 break; 1453 } 1454 1455 case ASYNC_UNLOCK: { 1456 AsyncWrite *pIter; 1457 AsyncFileData *pData = p->pFileData; 1458 int eLock = p->nByte; 1459 1460 /* When a file is locked by SQLite using the async backend, it is 1461 ** locked within the 'real' file-system synchronously. When it is 1462 ** unlocked, an ASYNC_UNLOCK event is added to the write-queue to 1463 ** unlock the file asynchronously. The design of the async backend 1464 ** requires that the 'real' file-system file be locked from the 1465 ** time that SQLite first locks it (and probably reads from it) 1466 ** until all asynchronous write events that were scheduled before 1467 ** SQLite unlocked the file have been processed. 1468 ** 1469 ** This is more complex if SQLite locks and unlocks the file multiple 1470 ** times in quick succession. For example, if SQLite does: 1471 ** 1472 ** lock, write, unlock, lock, write, unlock 1473 ** 1474 ** Each "lock" operation locks the file immediately. Each "write" 1475 ** and "unlock" operation adds an event to the event queue. If the 1476 ** second "lock" operation is performed before the first "unlock" 1477 ** operation has been processed asynchronously, then the first 1478 ** "unlock" cannot be safely processed as is, since this would mean 1479 ** the file was unlocked when the second "write" operation is 1480 ** processed. To work around this, when processing an ASYNC_UNLOCK 1481 ** operation, SQLite: 1482 ** 1483 ** 1) Unlocks the file to the minimum of the argument passed to 1484 ** the xUnlock() call and the current lock from SQLite's point 1485 ** of view, and 1486 ** 1487 ** 2) Only unlocks the file at all if this event is the last 1488 ** ASYNC_UNLOCK event on this file in the write-queue. 1489 */ 1490 assert( holdingMutex==1 ); 1491 assert( async.pQueueFirst==p ); 1492 for(pIter=async.pQueueFirst->pNext; pIter; pIter=pIter->pNext){ 1493 if( pIter->pFileData==pData && pIter->op==ASYNC_UNLOCK ) break; 1494 } 1495 if( !pIter ){ 1496 async_mutex_enter(ASYNC_MUTEX_LOCK); 1497 pData->lock.eAsyncLock = MIN( 1498 pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock) 1499 ); 1500 assert(pData->lock.eAsyncLock>=pData->lock.eLock); 1501 rc = getFileLock(pData->pLock); 1502 async_mutex_leave(ASYNC_MUTEX_LOCK); 1503 } 1504 break; 1505 } 1506 1507 case ASYNC_DELETE: 1508 ASYNC_TRACE(("DELETE %s\n", p->zBuf)); 1509 rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset); 1510 break; 1511 1512 case ASYNC_OPENEXCLUSIVE: { 1513 int flags = (int)p->iOffset; 1514 AsyncFileData *pData = p->pFileData; 1515 ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset)); 1516 assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0); 1517 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0); 1518 assert( holdingMutex==0 ); 1519 async_mutex_enter(ASYNC_MUTEX_QUEUE); 1520 holdingMutex = 1; 1521 break; 1522 } 1523 1524 default: assert(!"Illegal value for AsyncWrite.op"); 1525 } 1526 1527 /* If we didn't hang on to the mutex during the IO op, obtain it now 1528 ** so that the AsyncWrite structure can be safely removed from the 1529 ** global write-op queue. 1530 */ 1531 if( !holdingMutex ){ 1532 async_mutex_enter(ASYNC_MUTEX_QUEUE); 1533 holdingMutex = 1; 1534 } 1535 /* ASYNC_TRACE(("UNLINK %p\n", p)); */ 1536 if( p==async.pQueueLast ){ 1537 async.pQueueLast = 0; 1538 } 1539 if( !doNotFree ){ 1540 assert_mutex_is_held(ASYNC_MUTEX_QUEUE); 1541 async.pQueueFirst = p->pNext; 1542 sqlite3_free(p); 1543 } 1544 assert( holdingMutex ); 1545 1546 /* An IO error has occurred. We cannot report the error back to the 1547 ** connection that requested the I/O since the error happened 1548 ** asynchronously. The connection has already moved on. There 1549 ** really is nobody to report the error to. 1550 ** 1551 ** The file for which the error occurred may have been a database or 1552 ** journal file. Regardless, none of the currently queued operations 1553 ** associated with the same database should now be performed. Nor should 1554 ** any subsequently requested IO on either a database or journal file 1555 ** handle for the same database be accepted until the main database 1556 ** file handle has been closed and reopened. 1557 ** 1558 ** Furthermore, no further IO should be queued or performed on any file 1559 ** handle associated with a database that may have been part of a 1560 ** multi-file transaction that included the database associated with 1561 ** the IO error (i.e. a database ATTACHed to the same handle at some 1562 ** point in time). 1563 */ 1564 if( rc!=SQLITE_OK ){ 1565 async.ioError = rc; 1566 } 1567 1568 if( async.ioError && !async.pQueueFirst ){ 1569 async_mutex_enter(ASYNC_MUTEX_LOCK); 1570 if( 0==async.pLock ){ 1571 async.ioError = SQLITE_OK; 1572 } 1573 async_mutex_leave(ASYNC_MUTEX_LOCK); 1574 } 1575 1576 /* Drop the queue mutex before continuing to the next write operation 1577 ** in order to give other threads a chance to work with the write queue. 1578 */ 1579 if( !async.pQueueFirst || !async.ioError ){ 1580 async_mutex_leave(ASYNC_MUTEX_QUEUE); 1581 holdingMutex = 0; 1582 if( async.ioDelay>0 ){ 1583 pVfs->xSleep(pVfs, async.ioDelay*1000); 1584 }else{ 1585 async_sched_yield(); 1586 } 1587 } 1588 } 1589 1590 async_mutex_leave(ASYNC_MUTEX_WRITER); 1591 return; 1592 } 1593 1594 /* 1595 ** Install the asynchronous VFS. 1596 */ 1597 int sqlite3async_initialize(const char *zParent, int isDefault){ 1598 int rc = SQLITE_OK; 1599 if( async_vfs.pAppData==0 ){ 1600 sqlite3_vfs *pParent = sqlite3_vfs_find(zParent); 1601 if( !pParent || async_os_initialize() ){ 1602 rc = SQLITE_ERROR; 1603 }else if( SQLITE_OK!=(rc = sqlite3_vfs_register(&async_vfs, isDefault)) ){ 1604 async_os_shutdown(); 1605 }else{ 1606 async_vfs.pAppData = (void *)pParent; 1607 async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname; 1608 } 1609 } 1610 return rc; 1611 } 1612 1613 /* 1614 ** Uninstall the asynchronous VFS. 1615 */ 1616 void sqlite3async_shutdown(void){ 1617 if( async_vfs.pAppData ){ 1618 async_os_shutdown(); 1619 sqlite3_vfs_unregister((sqlite3_vfs *)&async_vfs); 1620 async_vfs.pAppData = 0; 1621 } 1622 } 1623 1624 /* 1625 ** Process events on the write-queue. 1626 */ 1627 void sqlite3async_run(void){ 1628 asyncWriterThread(); 1629 } 1630 1631 /* 1632 ** Control/configure the asynchronous IO system. 1633 */ 1634 int sqlite3async_control(int op, ...){ 1635 va_list ap; 1636 va_start(ap, op); 1637 switch( op ){ 1638 case SQLITEASYNC_HALT: { 1639 int eWhen = va_arg(ap, int); 1640 if( eWhen!=SQLITEASYNC_HALT_NEVER 1641 && eWhen!=SQLITEASYNC_HALT_NOW 1642 && eWhen!=SQLITEASYNC_HALT_IDLE 1643 ){ 1644 return SQLITE_MISUSE; 1645 } 1646 async.eHalt = eWhen; 1647 async_mutex_enter(ASYNC_MUTEX_QUEUE); 1648 async_cond_signal(ASYNC_COND_QUEUE); 1649 async_mutex_leave(ASYNC_MUTEX_QUEUE); 1650 break; 1651 } 1652 1653 case SQLITEASYNC_DELAY: { 1654 int iDelay = va_arg(ap, int); 1655 if( iDelay<0 ){ 1656 return SQLITE_MISUSE; 1657 } 1658 async.ioDelay = iDelay; 1659 break; 1660 } 1661 1662 case SQLITEASYNC_LOCKFILES: { 1663 int bLock = va_arg(ap, int); 1664 async_mutex_enter(ASYNC_MUTEX_QUEUE); 1665 if( async.nFile || async.pQueueFirst ){ 1666 async_mutex_leave(ASYNC_MUTEX_QUEUE); 1667 return SQLITE_MISUSE; 1668 } 1669 async.bLockFiles = bLock; 1670 async_mutex_leave(ASYNC_MUTEX_QUEUE); 1671 break; 1672 } 1673 1674 case SQLITEASYNC_GET_HALT: { 1675 int *peWhen = va_arg(ap, int *); 1676 *peWhen = async.eHalt; 1677 break; 1678 } 1679 case SQLITEASYNC_GET_DELAY: { 1680 int *piDelay = va_arg(ap, int *); 1681 *piDelay = async.ioDelay; 1682 break; 1683 } 1684 case SQLITEASYNC_GET_LOCKFILES: { 1685 int *piDelay = va_arg(ap, int *); 1686 *piDelay = async.bLockFiles; 1687 break; 1688 } 1689 1690 default: 1691 return SQLITE_ERROR; 1692 } 1693 return SQLITE_OK; 1694 } 1695 1696 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) */ 1697 1698