1 2 /* png.c - location for general purpose libpng functions 3 * 4 * Last changed in libpng 1.6.9 [February 6, 2014] 5 * Copyright (c) 1998-2014 Glenn Randers-Pehrson 6 * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) 7 * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) 8 * 9 * This code is released under the libpng license. 10 * For conditions of distribution and use, see the disclaimer 11 * and license in png.h 12 */ 13 14 #include "pngpriv.h" 15 16 /* Generate a compiler error if there is an old png.h in the search path. */ 17 typedef png_libpng_version_1_6_10 Your_png_h_is_not_version_1_6_10; 18 19 /* Tells libpng that we have already handled the first "num_bytes" bytes 20 * of the PNG file signature. If the PNG data is embedded into another 21 * stream we can set num_bytes = 8 so that libpng will not attempt to read 22 * or write any of the magic bytes before it starts on the IHDR. 23 */ 24 25 #ifdef PNG_READ_SUPPORTED 26 void PNGAPI 27 png_set_sig_bytes(png_structrp png_ptr, int num_bytes) 28 { 29 png_debug(1, "in png_set_sig_bytes"); 30 31 if (png_ptr == NULL) 32 return; 33 34 if (num_bytes > 8) 35 png_error(png_ptr, "Too many bytes for PNG signature"); 36 37 png_ptr->sig_bytes = (png_byte)(num_bytes < 0 ? 0 : num_bytes); 38 } 39 40 /* Checks whether the supplied bytes match the PNG signature. We allow 41 * checking less than the full 8-byte signature so that those apps that 42 * already read the first few bytes of a file to determine the file type 43 * can simply check the remaining bytes for extra assurance. Returns 44 * an integer less than, equal to, or greater than zero if sig is found, 45 * respectively, to be less than, to match, or be greater than the correct 46 * PNG signature (this is the same behavior as strcmp, memcmp, etc). 47 */ 48 int PNGAPI 49 png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check) 50 { 51 png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10}; 52 53 if (num_to_check > 8) 54 num_to_check = 8; 55 56 else if (num_to_check < 1) 57 return (-1); 58 59 if (start > 7) 60 return (-1); 61 62 if (start + num_to_check > 8) 63 num_to_check = 8 - start; 64 65 return ((int)(memcmp(&sig[start], &png_signature[start], num_to_check))); 66 } 67 68 #endif /* PNG_READ_SUPPORTED */ 69 70 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) 71 /* Function to allocate memory for zlib */ 72 PNG_FUNCTION(voidpf /* PRIVATE */, 73 png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED) 74 { 75 png_alloc_size_t num_bytes = size; 76 77 if (png_ptr == NULL) 78 return NULL; 79 80 if (items >= (~(png_alloc_size_t)0)/size) 81 { 82 png_warning (png_voidcast(png_structrp, png_ptr), 83 "Potential overflow in png_zalloc()"); 84 return NULL; 85 } 86 87 num_bytes *= items; 88 return png_malloc_warn(png_voidcast(png_structrp, png_ptr), num_bytes); 89 } 90 91 /* Function to free memory for zlib */ 92 void /* PRIVATE */ 93 png_zfree(voidpf png_ptr, voidpf ptr) 94 { 95 png_free(png_voidcast(png_const_structrp,png_ptr), ptr); 96 } 97 98 /* Reset the CRC variable to 32 bits of 1's. Care must be taken 99 * in case CRC is > 32 bits to leave the top bits 0. 100 */ 101 void /* PRIVATE */ 102 png_reset_crc(png_structrp png_ptr) 103 { 104 /* The cast is safe because the crc is a 32 bit value. */ 105 png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0); 106 } 107 108 /* Calculate the CRC over a section of data. We can only pass as 109 * much data to this routine as the largest single buffer size. We 110 * also check that this data will actually be used before going to the 111 * trouble of calculating it. 112 */ 113 void /* PRIVATE */ 114 png_calculate_crc(png_structrp png_ptr, png_const_bytep ptr, png_size_t length) 115 { 116 int need_crc = 1; 117 118 if (PNG_CHUNK_ANCILLARY(png_ptr->chunk_name)) 119 { 120 if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) == 121 (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN)) 122 need_crc = 0; 123 } 124 125 else /* critical */ 126 { 127 if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) 128 need_crc = 0; 129 } 130 131 /* 'uLong' is defined in zlib.h as unsigned long; this means that on some 132 * systems it is a 64 bit value. crc32, however, returns 32 bits so the 133 * following cast is safe. 'uInt' may be no more than 16 bits, so it is 134 * necessary to perform a loop here. 135 */ 136 if (need_crc && length > 0) 137 { 138 uLong crc = png_ptr->crc; /* Should never issue a warning */ 139 140 do 141 { 142 uInt safe_length = (uInt)length; 143 if (safe_length == 0) 144 safe_length = (uInt)-1; /* evil, but safe */ 145 146 crc = crc32(crc, ptr, safe_length); 147 148 /* The following should never issue compiler warnings; if they do the 149 * target system has characteristics that will probably violate other 150 * assumptions within the libpng code. 151 */ 152 ptr += safe_length; 153 length -= safe_length; 154 } 155 while (length > 0); 156 157 /* And the following is always safe because the crc is only 32 bits. */ 158 png_ptr->crc = (png_uint_32)crc; 159 } 160 } 161 162 /* Check a user supplied version number, called from both read and write 163 * functions that create a png_struct. 164 */ 165 int 166 png_user_version_check(png_structrp png_ptr, png_const_charp user_png_ver) 167 { 168 if (user_png_ver) 169 { 170 int i = 0; 171 172 do 173 { 174 if (user_png_ver[i] != png_libpng_ver[i]) 175 png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; 176 } while (png_libpng_ver[i++]); 177 } 178 179 else 180 png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; 181 182 if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) 183 { 184 /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so 185 * we must recompile any applications that use any older library version. 186 * For versions after libpng 1.0, we will be compatible, so we need 187 * only check the first and third digits (note that when we reach version 188 * 1.10 we will need to check the fourth symbol, namely user_png_ver[3]). 189 */ 190 if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] || 191 (user_png_ver[0] == '1' && (user_png_ver[2] != png_libpng_ver[2] || 192 user_png_ver[3] != png_libpng_ver[3])) || 193 (user_png_ver[0] == '0' && user_png_ver[2] < '9')) 194 { 195 #ifdef PNG_WARNINGS_SUPPORTED 196 size_t pos = 0; 197 char m[128]; 198 199 pos = png_safecat(m, (sizeof m), pos, 200 "Application built with libpng-"); 201 pos = png_safecat(m, (sizeof m), pos, user_png_ver); 202 pos = png_safecat(m, (sizeof m), pos, " but running with "); 203 pos = png_safecat(m, (sizeof m), pos, png_libpng_ver); 204 PNG_UNUSED(pos) 205 206 png_warning(png_ptr, m); 207 #endif 208 209 #ifdef PNG_ERROR_NUMBERS_SUPPORTED 210 png_ptr->flags = 0; 211 #endif 212 213 return 0; 214 } 215 } 216 217 /* Success return. */ 218 return 1; 219 } 220 221 /* Generic function to create a png_struct for either read or write - this 222 * contains the common initialization. 223 */ 224 PNG_FUNCTION(png_structp /* PRIVATE */, 225 png_create_png_struct,(png_const_charp user_png_ver, png_voidp error_ptr, 226 png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr, 227 png_malloc_ptr malloc_fn, png_free_ptr free_fn),PNG_ALLOCATED) 228 { 229 png_struct create_struct; 230 # ifdef PNG_SETJMP_SUPPORTED 231 jmp_buf create_jmp_buf; 232 # endif 233 234 /* This temporary stack-allocated structure is used to provide a place to 235 * build enough context to allow the user provided memory allocator (if any) 236 * to be called. 237 */ 238 memset(&create_struct, 0, (sizeof create_struct)); 239 240 /* Added at libpng-1.2.6 */ 241 # ifdef PNG_USER_LIMITS_SUPPORTED 242 create_struct.user_width_max = PNG_USER_WIDTH_MAX; 243 create_struct.user_height_max = PNG_USER_HEIGHT_MAX; 244 245 # ifdef PNG_USER_CHUNK_CACHE_MAX 246 /* Added at libpng-1.2.43 and 1.4.0 */ 247 create_struct.user_chunk_cache_max = PNG_USER_CHUNK_CACHE_MAX; 248 # endif 249 250 # ifdef PNG_USER_CHUNK_MALLOC_MAX 251 /* Added at libpng-1.2.43 and 1.4.1, required only for read but exists 252 * in png_struct regardless. 253 */ 254 create_struct.user_chunk_malloc_max = PNG_USER_CHUNK_MALLOC_MAX; 255 # endif 256 # endif 257 258 /* The following two API calls simply set fields in png_struct, so it is safe 259 * to do them now even though error handling is not yet set up. 260 */ 261 # ifdef PNG_USER_MEM_SUPPORTED 262 png_set_mem_fn(&create_struct, mem_ptr, malloc_fn, free_fn); 263 # else 264 PNG_UNUSED(mem_ptr) 265 PNG_UNUSED(malloc_fn) 266 PNG_UNUSED(free_fn) 267 # endif 268 269 /* (*error_fn) can return control to the caller after the error_ptr is set, 270 * this will result in a memory leak unless the error_fn does something 271 * extremely sophisticated. The design lacks merit but is implicit in the 272 * API. 273 */ 274 png_set_error_fn(&create_struct, error_ptr, error_fn, warn_fn); 275 276 # ifdef PNG_SETJMP_SUPPORTED 277 if (!setjmp(create_jmp_buf)) 278 { 279 /* Temporarily fake out the longjmp information until we have 280 * successfully completed this function. This only works if we have 281 * setjmp() support compiled in, but it is safe - this stuff should 282 * never happen. 283 */ 284 create_struct.jmp_buf_ptr = &create_jmp_buf; 285 create_struct.jmp_buf_size = 0; /*stack allocation*/ 286 create_struct.longjmp_fn = longjmp; 287 # else 288 { 289 # endif 290 /* Call the general version checker (shared with read and write code): 291 */ 292 if (png_user_version_check(&create_struct, user_png_ver)) 293 { 294 png_structrp png_ptr = png_voidcast(png_structrp, 295 png_malloc_warn(&create_struct, (sizeof *png_ptr))); 296 297 if (png_ptr != NULL) 298 { 299 /* png_ptr->zstream holds a back-pointer to the png_struct, so 300 * this can only be done now: 301 */ 302 create_struct.zstream.zalloc = png_zalloc; 303 create_struct.zstream.zfree = png_zfree; 304 create_struct.zstream.opaque = png_ptr; 305 306 # ifdef PNG_SETJMP_SUPPORTED 307 /* Eliminate the local error handling: */ 308 create_struct.jmp_buf_ptr = NULL; 309 create_struct.jmp_buf_size = 0; 310 create_struct.longjmp_fn = 0; 311 # endif 312 313 *png_ptr = create_struct; 314 315 /* This is the successful return point */ 316 return png_ptr; 317 } 318 } 319 } 320 321 /* A longjmp because of a bug in the application storage allocator or a 322 * simple failure to allocate the png_struct. 323 */ 324 return NULL; 325 } 326 327 /* Allocate the memory for an info_struct for the application. */ 328 PNG_FUNCTION(png_infop,PNGAPI 329 png_create_info_struct,(png_const_structrp png_ptr),PNG_ALLOCATED) 330 { 331 png_inforp info_ptr; 332 333 png_debug(1, "in png_create_info_struct"); 334 335 if (png_ptr == NULL) 336 return NULL; 337 338 /* Use the internal API that does not (or at least should not) error out, so 339 * that this call always returns ok. The application typically sets up the 340 * error handling *after* creating the info_struct because this is the way it 341 * has always been done in 'example.c'. 342 */ 343 info_ptr = png_voidcast(png_inforp, png_malloc_base(png_ptr, 344 (sizeof *info_ptr))); 345 346 if (info_ptr != NULL) 347 memset(info_ptr, 0, (sizeof *info_ptr)); 348 349 return info_ptr; 350 } 351 352 /* This function frees the memory associated with a single info struct. 353 * Normally, one would use either png_destroy_read_struct() or 354 * png_destroy_write_struct() to free an info struct, but this may be 355 * useful for some applications. From libpng 1.6.0 this function is also used 356 * internally to implement the png_info release part of the 'struct' destroy 357 * APIs. This ensures that all possible approaches free the same data (all of 358 * it). 359 */ 360 void PNGAPI 361 png_destroy_info_struct(png_const_structrp png_ptr, png_infopp info_ptr_ptr) 362 { 363 png_inforp info_ptr = NULL; 364 365 png_debug(1, "in png_destroy_info_struct"); 366 367 if (png_ptr == NULL) 368 return; 369 370 if (info_ptr_ptr != NULL) 371 info_ptr = *info_ptr_ptr; 372 373 if (info_ptr != NULL) 374 { 375 /* Do this first in case of an error below; if the app implements its own 376 * memory management this can lead to png_free calling png_error, which 377 * will abort this routine and return control to the app error handler. 378 * An infinite loop may result if it then tries to free the same info 379 * ptr. 380 */ 381 *info_ptr_ptr = NULL; 382 383 png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1); 384 memset(info_ptr, 0, (sizeof *info_ptr)); 385 png_free(png_ptr, info_ptr); 386 } 387 } 388 389 /* Initialize the info structure. This is now an internal function (0.89) 390 * and applications using it are urged to use png_create_info_struct() 391 * instead. Use deprecated in 1.6.0, internal use removed (used internally it 392 * is just a memset). 393 * 394 * NOTE: it is almost inconceivable that this API is used because it bypasses 395 * the user-memory mechanism and the user error handling/warning mechanisms in 396 * those cases where it does anything other than a memset. 397 */ 398 PNG_FUNCTION(void,PNGAPI 399 png_info_init_3,(png_infopp ptr_ptr, png_size_t png_info_struct_size), 400 PNG_DEPRECATED) 401 { 402 png_inforp info_ptr = *ptr_ptr; 403 404 png_debug(1, "in png_info_init_3"); 405 406 if (info_ptr == NULL) 407 return; 408 409 if ((sizeof (png_info)) > png_info_struct_size) 410 { 411 *ptr_ptr = NULL; 412 /* The following line is why this API should not be used: */ 413 free(info_ptr); 414 info_ptr = png_voidcast(png_inforp, png_malloc_base(NULL, 415 (sizeof *info_ptr))); 416 *ptr_ptr = info_ptr; 417 } 418 419 /* Set everything to 0 */ 420 memset(info_ptr, 0, (sizeof *info_ptr)); 421 } 422 423 /* The following API is not called internally */ 424 void PNGAPI 425 png_data_freer(png_const_structrp png_ptr, png_inforp info_ptr, 426 int freer, png_uint_32 mask) 427 { 428 png_debug(1, "in png_data_freer"); 429 430 if (png_ptr == NULL || info_ptr == NULL) 431 return; 432 433 if (freer == PNG_DESTROY_WILL_FREE_DATA) 434 info_ptr->free_me |= mask; 435 436 else if (freer == PNG_USER_WILL_FREE_DATA) 437 info_ptr->free_me &= ~mask; 438 439 else 440 png_error(png_ptr, "Unknown freer parameter in png_data_freer"); 441 } 442 443 void PNGAPI 444 png_free_data(png_const_structrp png_ptr, png_inforp info_ptr, png_uint_32 mask, 445 int num) 446 { 447 png_debug(1, "in png_free_data"); 448 449 if (png_ptr == NULL || info_ptr == NULL) 450 return; 451 452 #ifdef PNG_TEXT_SUPPORTED 453 /* Free text item num or (if num == -1) all text items */ 454 if ((mask & PNG_FREE_TEXT) & info_ptr->free_me) 455 { 456 if (num != -1) 457 { 458 if (info_ptr->text && info_ptr->text[num].key) 459 { 460 png_free(png_ptr, info_ptr->text[num].key); 461 info_ptr->text[num].key = NULL; 462 } 463 } 464 465 else 466 { 467 int i; 468 for (i = 0; i < info_ptr->num_text; i++) 469 png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, i); 470 png_free(png_ptr, info_ptr->text); 471 info_ptr->text = NULL; 472 info_ptr->num_text=0; 473 } 474 } 475 #endif 476 477 #ifdef PNG_tRNS_SUPPORTED 478 /* Free any tRNS entry */ 479 if ((mask & PNG_FREE_TRNS) & info_ptr->free_me) 480 { 481 png_free(png_ptr, info_ptr->trans_alpha); 482 info_ptr->trans_alpha = NULL; 483 info_ptr->valid &= ~PNG_INFO_tRNS; 484 } 485 #endif 486 487 #ifdef PNG_sCAL_SUPPORTED 488 /* Free any sCAL entry */ 489 if ((mask & PNG_FREE_SCAL) & info_ptr->free_me) 490 { 491 png_free(png_ptr, info_ptr->scal_s_width); 492 png_free(png_ptr, info_ptr->scal_s_height); 493 info_ptr->scal_s_width = NULL; 494 info_ptr->scal_s_height = NULL; 495 info_ptr->valid &= ~PNG_INFO_sCAL; 496 } 497 #endif 498 499 #ifdef PNG_pCAL_SUPPORTED 500 /* Free any pCAL entry */ 501 if ((mask & PNG_FREE_PCAL) & info_ptr->free_me) 502 { 503 png_free(png_ptr, info_ptr->pcal_purpose); 504 png_free(png_ptr, info_ptr->pcal_units); 505 info_ptr->pcal_purpose = NULL; 506 info_ptr->pcal_units = NULL; 507 if (info_ptr->pcal_params != NULL) 508 { 509 unsigned int i; 510 for (i = 0; i < info_ptr->pcal_nparams; i++) 511 { 512 png_free(png_ptr, info_ptr->pcal_params[i]); 513 info_ptr->pcal_params[i] = NULL; 514 } 515 png_free(png_ptr, info_ptr->pcal_params); 516 info_ptr->pcal_params = NULL; 517 } 518 info_ptr->valid &= ~PNG_INFO_pCAL; 519 } 520 #endif 521 522 #ifdef PNG_iCCP_SUPPORTED 523 /* Free any profile entry */ 524 if ((mask & PNG_FREE_ICCP) & info_ptr->free_me) 525 { 526 png_free(png_ptr, info_ptr->iccp_name); 527 png_free(png_ptr, info_ptr->iccp_profile); 528 info_ptr->iccp_name = NULL; 529 info_ptr->iccp_profile = NULL; 530 info_ptr->valid &= ~PNG_INFO_iCCP; 531 } 532 #endif 533 534 #ifdef PNG_sPLT_SUPPORTED 535 /* Free a given sPLT entry, or (if num == -1) all sPLT entries */ 536 if ((mask & PNG_FREE_SPLT) & info_ptr->free_me) 537 { 538 if (num != -1) 539 { 540 if (info_ptr->splt_palettes) 541 { 542 png_free(png_ptr, info_ptr->splt_palettes[num].name); 543 png_free(png_ptr, info_ptr->splt_palettes[num].entries); 544 info_ptr->splt_palettes[num].name = NULL; 545 info_ptr->splt_palettes[num].entries = NULL; 546 } 547 } 548 549 else 550 { 551 if (info_ptr->splt_palettes_num) 552 { 553 int i; 554 for (i = 0; i < info_ptr->splt_palettes_num; i++) 555 png_free_data(png_ptr, info_ptr, PNG_FREE_SPLT, (int)i); 556 557 png_free(png_ptr, info_ptr->splt_palettes); 558 info_ptr->splt_palettes = NULL; 559 info_ptr->splt_palettes_num = 0; 560 } 561 info_ptr->valid &= ~PNG_INFO_sPLT; 562 } 563 } 564 #endif 565 566 #ifdef PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED 567 if ((mask & PNG_FREE_UNKN) & info_ptr->free_me) 568 { 569 if (num != -1) 570 { 571 if (info_ptr->unknown_chunks) 572 { 573 png_free(png_ptr, info_ptr->unknown_chunks[num].data); 574 info_ptr->unknown_chunks[num].data = NULL; 575 } 576 } 577 578 else 579 { 580 int i; 581 582 if (info_ptr->unknown_chunks_num) 583 { 584 for (i = 0; i < info_ptr->unknown_chunks_num; i++) 585 png_free_data(png_ptr, info_ptr, PNG_FREE_UNKN, (int)i); 586 587 png_free(png_ptr, info_ptr->unknown_chunks); 588 info_ptr->unknown_chunks = NULL; 589 info_ptr->unknown_chunks_num = 0; 590 } 591 } 592 } 593 #endif 594 595 #ifdef PNG_hIST_SUPPORTED 596 /* Free any hIST entry */ 597 if ((mask & PNG_FREE_HIST) & info_ptr->free_me) 598 { 599 png_free(png_ptr, info_ptr->hist); 600 info_ptr->hist = NULL; 601 info_ptr->valid &= ~PNG_INFO_hIST; 602 } 603 #endif 604 605 /* Free any PLTE entry that was internally allocated */ 606 if ((mask & PNG_FREE_PLTE) & info_ptr->free_me) 607 { 608 png_free(png_ptr, info_ptr->palette); 609 info_ptr->palette = NULL; 610 info_ptr->valid &= ~PNG_INFO_PLTE; 611 info_ptr->num_palette = 0; 612 } 613 614 #ifdef PNG_INFO_IMAGE_SUPPORTED 615 /* Free any image bits attached to the info structure */ 616 if ((mask & PNG_FREE_ROWS) & info_ptr->free_me) 617 { 618 if (info_ptr->row_pointers) 619 { 620 png_uint_32 row; 621 for (row = 0; row < info_ptr->height; row++) 622 { 623 png_free(png_ptr, info_ptr->row_pointers[row]); 624 info_ptr->row_pointers[row] = NULL; 625 } 626 png_free(png_ptr, info_ptr->row_pointers); 627 info_ptr->row_pointers = NULL; 628 } 629 info_ptr->valid &= ~PNG_INFO_IDAT; 630 } 631 #endif 632 633 if (num != -1) 634 mask &= ~PNG_FREE_MUL; 635 636 info_ptr->free_me &= ~mask; 637 } 638 #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ 639 640 /* This function returns a pointer to the io_ptr associated with the user 641 * functions. The application should free any memory associated with this 642 * pointer before png_write_destroy() or png_read_destroy() are called. 643 */ 644 png_voidp PNGAPI 645 png_get_io_ptr(png_const_structrp png_ptr) 646 { 647 if (png_ptr == NULL) 648 return (NULL); 649 650 return (png_ptr->io_ptr); 651 } 652 653 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) 654 # ifdef PNG_STDIO_SUPPORTED 655 /* Initialize the default input/output functions for the PNG file. If you 656 * use your own read or write routines, you can call either png_set_read_fn() 657 * or png_set_write_fn() instead of png_init_io(). If you have defined 658 * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a 659 * function of your own because "FILE *" isn't necessarily available. 660 */ 661 void PNGAPI 662 png_init_io(png_structrp png_ptr, png_FILE_p fp) 663 { 664 png_debug(1, "in png_init_io"); 665 666 if (png_ptr == NULL) 667 return; 668 669 png_ptr->io_ptr = (png_voidp)fp; 670 } 671 # endif 672 673 #ifdef PNG_SAVE_INT_32_SUPPORTED 674 /* The png_save_int_32 function assumes integers are stored in two's 675 * complement format. If this isn't the case, then this routine needs to 676 * be modified to write data in two's complement format. Note that, 677 * the following works correctly even if png_int_32 has more than 32 bits 678 * (compare the more complex code required on read for sign extension.) 679 */ 680 void PNGAPI 681 png_save_int_32(png_bytep buf, png_int_32 i) 682 { 683 buf[0] = (png_byte)((i >> 24) & 0xff); 684 buf[1] = (png_byte)((i >> 16) & 0xff); 685 buf[2] = (png_byte)((i >> 8) & 0xff); 686 buf[3] = (png_byte)(i & 0xff); 687 } 688 #endif 689 690 # ifdef PNG_TIME_RFC1123_SUPPORTED 691 /* Convert the supplied time into an RFC 1123 string suitable for use in 692 * a "Creation Time" or other text-based time string. 693 */ 694 int PNGAPI 695 png_convert_to_rfc1123_buffer(char out[29], png_const_timep ptime) 696 { 697 static PNG_CONST char short_months[12][4] = 698 {"Jan", "Feb", "Mar", "Apr", "May", "Jun", 699 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"}; 700 701 if (out == NULL) 702 return 0; 703 704 if (ptime->year > 9999 /* RFC1123 limitation */ || 705 ptime->month == 0 || ptime->month > 12 || 706 ptime->day == 0 || ptime->day > 31 || 707 ptime->hour > 23 || ptime->minute > 59 || 708 ptime->second > 60) 709 return 0; 710 711 { 712 size_t pos = 0; 713 char number_buf[5]; /* enough for a four-digit year */ 714 715 # define APPEND_STRING(string) pos = png_safecat(out, 29, pos, (string)) 716 # define APPEND_NUMBER(format, value)\ 717 APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value))) 718 # define APPEND(ch) if (pos < 28) out[pos++] = (ch) 719 720 APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day); 721 APPEND(' '); 722 APPEND_STRING(short_months[(ptime->month - 1)]); 723 APPEND(' '); 724 APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year); 725 APPEND(' '); 726 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour); 727 APPEND(':'); 728 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute); 729 APPEND(':'); 730 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second); 731 APPEND_STRING(" +0000"); /* This reliably terminates the buffer */ 732 733 # undef APPEND 734 # undef APPEND_NUMBER 735 # undef APPEND_STRING 736 } 737 738 return 1; 739 } 740 741 # if PNG_LIBPNG_VER < 10700 742 /* To do: remove the following from libpng-1.7 */ 743 /* Original API that uses a private buffer in png_struct. 744 * Deprecated because it causes png_struct to carry a spurious temporary 745 * buffer (png_struct::time_buffer), better to have the caller pass this in. 746 */ 747 png_const_charp PNGAPI 748 png_convert_to_rfc1123(png_structrp png_ptr, png_const_timep ptime) 749 { 750 if (png_ptr != NULL) 751 { 752 /* The only failure above if png_ptr != NULL is from an invalid ptime */ 753 if (!png_convert_to_rfc1123_buffer(png_ptr->time_buffer, ptime)) 754 png_warning(png_ptr, "Ignoring invalid time value"); 755 756 else 757 return png_ptr->time_buffer; 758 } 759 760 return NULL; 761 } 762 # endif 763 # endif /* PNG_TIME_RFC1123_SUPPORTED */ 764 765 #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ 766 767 png_const_charp PNGAPI 768 png_get_copyright(png_const_structrp png_ptr) 769 { 770 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ 771 #ifdef PNG_STRING_COPYRIGHT 772 return PNG_STRING_COPYRIGHT 773 #else 774 # ifdef __STDC__ 775 return PNG_STRING_NEWLINE \ 776 "libpng version 1.6.10 - March 6, 2014" PNG_STRING_NEWLINE \ 777 "Copyright (c) 1998-2014 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \ 778 "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \ 779 "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \ 780 PNG_STRING_NEWLINE; 781 # else 782 return "libpng version 1.6.10 - March 6, 2014\ 783 Copyright (c) 1998-2014 Glenn Randers-Pehrson\ 784 Copyright (c) 1996-1997 Andreas Dilger\ 785 Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc."; 786 # endif 787 #endif 788 } 789 790 /* The following return the library version as a short string in the 791 * format 1.0.0 through 99.99.99zz. To get the version of *.h files 792 * used with your application, print out PNG_LIBPNG_VER_STRING, which 793 * is defined in png.h. 794 * Note: now there is no difference between png_get_libpng_ver() and 795 * png_get_header_ver(). Due to the version_nn_nn_nn typedef guard, 796 * it is guaranteed that png.c uses the correct version of png.h. 797 */ 798 png_const_charp PNGAPI 799 png_get_libpng_ver(png_const_structrp png_ptr) 800 { 801 /* Version of *.c files used when building libpng */ 802 return png_get_header_ver(png_ptr); 803 } 804 805 png_const_charp PNGAPI 806 png_get_header_ver(png_const_structrp png_ptr) 807 { 808 /* Version of *.h files used when building libpng */ 809 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ 810 return PNG_LIBPNG_VER_STRING; 811 } 812 813 png_const_charp PNGAPI 814 png_get_header_version(png_const_structrp png_ptr) 815 { 816 /* Returns longer string containing both version and date */ 817 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ 818 #ifdef __STDC__ 819 return PNG_HEADER_VERSION_STRING 820 # ifndef PNG_READ_SUPPORTED 821 " (NO READ SUPPORT)" 822 # endif 823 PNG_STRING_NEWLINE; 824 #else 825 return PNG_HEADER_VERSION_STRING; 826 #endif 827 } 828 829 #ifdef PNG_BUILD_GRAYSCALE_PALETTE_SUPPORTED 830 /* NOTE: this routine is not used internally! */ 831 /* Build a grayscale palette. Palette is assumed to be 1 << bit_depth 832 * large of png_color. This lets grayscale images be treated as 833 * paletted. Most useful for gamma correction and simplification 834 * of code. This API is not used internally. 835 */ 836 void PNGAPI 837 png_build_grayscale_palette(int bit_depth, png_colorp palette) 838 { 839 int num_palette; 840 int color_inc; 841 int i; 842 int v; 843 844 png_debug(1, "in png_do_build_grayscale_palette"); 845 846 if (palette == NULL) 847 return; 848 849 switch (bit_depth) 850 { 851 case 1: 852 num_palette = 2; 853 color_inc = 0xff; 854 break; 855 856 case 2: 857 num_palette = 4; 858 color_inc = 0x55; 859 break; 860 861 case 4: 862 num_palette = 16; 863 color_inc = 0x11; 864 break; 865 866 case 8: 867 num_palette = 256; 868 color_inc = 1; 869 break; 870 871 default: 872 num_palette = 0; 873 color_inc = 0; 874 break; 875 } 876 877 for (i = 0, v = 0; i < num_palette; i++, v += color_inc) 878 { 879 palette[i].red = (png_byte)v; 880 palette[i].green = (png_byte)v; 881 palette[i].blue = (png_byte)v; 882 } 883 } 884 #endif 885 886 #ifdef PNG_SET_UNKNOWN_CHUNKS_SUPPORTED 887 int PNGAPI 888 png_handle_as_unknown(png_const_structrp png_ptr, png_const_bytep chunk_name) 889 { 890 /* Check chunk_name and return "keep" value if it's on the list, else 0 */ 891 png_const_bytep p, p_end; 892 893 if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list == 0) 894 return PNG_HANDLE_CHUNK_AS_DEFAULT; 895 896 p_end = png_ptr->chunk_list; 897 p = p_end + png_ptr->num_chunk_list*5; /* beyond end */ 898 899 /* The code is the fifth byte after each four byte string. Historically this 900 * code was always searched from the end of the list, this is no longer 901 * necessary because the 'set' routine handles duplicate entries correcty. 902 */ 903 do /* num_chunk_list > 0, so at least one */ 904 { 905 p -= 5; 906 907 if (!memcmp(chunk_name, p, 4)) 908 return p[4]; 909 } 910 while (p > p_end); 911 912 /* This means that known chunks should be processed and unknown chunks should 913 * be handled according to the value of png_ptr->unknown_default; this can be 914 * confusing because, as a result, there are two levels of defaulting for 915 * unknown chunks. 916 */ 917 return PNG_HANDLE_CHUNK_AS_DEFAULT; 918 } 919 920 #if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) ||\ 921 defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED) 922 int /* PRIVATE */ 923 png_chunk_unknown_handling(png_const_structrp png_ptr, png_uint_32 chunk_name) 924 { 925 png_byte chunk_string[5]; 926 927 PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name); 928 return png_handle_as_unknown(png_ptr, chunk_string); 929 } 930 #endif /* READ_UNKNOWN_CHUNKS || HANDLE_AS_UNKNOWN */ 931 #endif /* SET_UNKNOWN_CHUNKS */ 932 933 #ifdef PNG_READ_SUPPORTED 934 /* This function, added to libpng-1.0.6g, is untested. */ 935 int PNGAPI 936 png_reset_zstream(png_structrp png_ptr) 937 { 938 if (png_ptr == NULL) 939 return Z_STREAM_ERROR; 940 941 /* WARNING: this resets the window bits to the maximum! */ 942 return (inflateReset(&png_ptr->zstream)); 943 } 944 #endif /* PNG_READ_SUPPORTED */ 945 946 /* This function was added to libpng-1.0.7 */ 947 png_uint_32 PNGAPI 948 png_access_version_number(void) 949 { 950 /* Version of *.c files used when building libpng */ 951 return((png_uint_32)PNG_LIBPNG_VER); 952 } 953 954 955 956 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) 957 /* Ensure that png_ptr->zstream.msg holds some appropriate error message string. 958 * If it doesn't 'ret' is used to set it to something appropriate, even in cases 959 * like Z_OK or Z_STREAM_END where the error code is apparently a success code. 960 */ 961 void /* PRIVATE */ 962 png_zstream_error(png_structrp png_ptr, int ret) 963 { 964 /* Translate 'ret' into an appropriate error string, priority is given to the 965 * one in zstream if set. This always returns a string, even in cases like 966 * Z_OK or Z_STREAM_END where the error code is a success code. 967 */ 968 if (png_ptr->zstream.msg == NULL) switch (ret) 969 { 970 default: 971 case Z_OK: 972 png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return code"); 973 break; 974 975 case Z_STREAM_END: 976 /* Normal exit */ 977 png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected end of LZ stream"); 978 break; 979 980 case Z_NEED_DICT: 981 /* This means the deflate stream did not have a dictionary; this 982 * indicates a bogus PNG. 983 */ 984 png_ptr->zstream.msg = PNGZ_MSG_CAST("missing LZ dictionary"); 985 break; 986 987 case Z_ERRNO: 988 /* gz APIs only: should not happen */ 989 png_ptr->zstream.msg = PNGZ_MSG_CAST("zlib IO error"); 990 break; 991 992 case Z_STREAM_ERROR: 993 /* internal libpng error */ 994 png_ptr->zstream.msg = PNGZ_MSG_CAST("bad parameters to zlib"); 995 break; 996 997 case Z_DATA_ERROR: 998 png_ptr->zstream.msg = PNGZ_MSG_CAST("damaged LZ stream"); 999 break; 1000 1001 case Z_MEM_ERROR: 1002 png_ptr->zstream.msg = PNGZ_MSG_CAST("insufficient memory"); 1003 break; 1004 1005 case Z_BUF_ERROR: 1006 /* End of input or output; not a problem if the caller is doing 1007 * incremental read or write. 1008 */ 1009 png_ptr->zstream.msg = PNGZ_MSG_CAST("truncated"); 1010 break; 1011 1012 case Z_VERSION_ERROR: 1013 png_ptr->zstream.msg = PNGZ_MSG_CAST("unsupported zlib version"); 1014 break; 1015 1016 case PNG_UNEXPECTED_ZLIB_RETURN: 1017 /* Compile errors here mean that zlib now uses the value co-opted in 1018 * pngpriv.h for PNG_UNEXPECTED_ZLIB_RETURN; update the switch above 1019 * and change pngpriv.h. Note that this message is "... return", 1020 * whereas the default/Z_OK one is "... return code". 1021 */ 1022 png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return"); 1023 break; 1024 } 1025 } 1026 1027 /* png_convert_size: a PNGAPI but no longer in png.h, so deleted 1028 * at libpng 1.5.5! 1029 */ 1030 1031 /* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */ 1032 #ifdef PNG_GAMMA_SUPPORTED /* always set if COLORSPACE */ 1033 static int 1034 png_colorspace_check_gamma(png_const_structrp png_ptr, 1035 png_colorspacerp colorspace, png_fixed_point gAMA, int from) 1036 /* This is called to check a new gamma value against an existing one. The 1037 * routine returns false if the new gamma value should not be written. 1038 * 1039 * 'from' says where the new gamma value comes from: 1040 * 1041 * 0: the new gamma value is the libpng estimate for an ICC profile 1042 * 1: the new gamma value comes from a gAMA chunk 1043 * 2: the new gamma value comes from an sRGB chunk 1044 */ 1045 { 1046 png_fixed_point gtest; 1047 1048 if ((colorspace->flags & PNG_COLORSPACE_HAVE_GAMMA) != 0 && 1049 (!png_muldiv(>est, colorspace->gamma, PNG_FP_1, gAMA) || 1050 png_gamma_significant(gtest))) 1051 { 1052 /* Either this is an sRGB image, in which case the calculated gamma 1053 * approximation should match, or this is an image with a profile and the 1054 * value libpng calculates for the gamma of the profile does not match the 1055 * value recorded in the file. The former, sRGB, case is an error, the 1056 * latter is just a warning. 1057 */ 1058 if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0 || from == 2) 1059 { 1060 png_chunk_report(png_ptr, "gamma value does not match sRGB", 1061 PNG_CHUNK_ERROR); 1062 /* Do not overwrite an sRGB value */ 1063 return from == 2; 1064 } 1065 1066 else /* sRGB tag not involved */ 1067 { 1068 png_chunk_report(png_ptr, "gamma value does not match libpng estimate", 1069 PNG_CHUNK_WARNING); 1070 return from == 1; 1071 } 1072 } 1073 1074 return 1; 1075 } 1076 1077 void /* PRIVATE */ 1078 png_colorspace_set_gamma(png_const_structrp png_ptr, 1079 png_colorspacerp colorspace, png_fixed_point gAMA) 1080 { 1081 /* Changed in libpng-1.5.4 to limit the values to ensure overflow can't 1082 * occur. Since the fixed point representation is assymetrical it is 1083 * possible for 1/gamma to overflow the limit of 21474 and this means the 1084 * gamma value must be at least 5/100000 and hence at most 20000.0. For 1085 * safety the limits here are a little narrower. The values are 0.00016 to 1086 * 6250.0, which are truly ridiculous gamma values (and will produce 1087 * displays that are all black or all white.) 1088 * 1089 * In 1.6.0 this test replaces the ones in pngrutil.c, in the gAMA chunk 1090 * handling code, which only required the value to be >0. 1091 */ 1092 png_const_charp errmsg; 1093 1094 if (gAMA < 16 || gAMA > 625000000) 1095 errmsg = "gamma value out of range"; 1096 1097 # ifdef PNG_READ_gAMA_SUPPORTED 1098 /* Allow the application to set the gamma value more than once */ 1099 else if ((png_ptr->mode & PNG_IS_READ_STRUCT) != 0 && 1100 (colorspace->flags & PNG_COLORSPACE_FROM_gAMA) != 0) 1101 errmsg = "duplicate"; 1102 # endif 1103 1104 /* Do nothing if the colorspace is already invalid */ 1105 else if (colorspace->flags & PNG_COLORSPACE_INVALID) 1106 return; 1107 1108 else 1109 { 1110 if (png_colorspace_check_gamma(png_ptr, colorspace, gAMA, 1/*from gAMA*/)) 1111 { 1112 /* Store this gamma value. */ 1113 colorspace->gamma = gAMA; 1114 colorspace->flags |= 1115 (PNG_COLORSPACE_HAVE_GAMMA | PNG_COLORSPACE_FROM_gAMA); 1116 } 1117 1118 /* At present if the check_gamma test fails the gamma of the colorspace is 1119 * not updated however the colorspace is not invalidated. This 1120 * corresponds to the case where the existing gamma comes from an sRGB 1121 * chunk or profile. An error message has already been output. 1122 */ 1123 return; 1124 } 1125 1126 /* Error exit - errmsg has been set. */ 1127 colorspace->flags |= PNG_COLORSPACE_INVALID; 1128 png_chunk_report(png_ptr, errmsg, PNG_CHUNK_WRITE_ERROR); 1129 } 1130 1131 void /* PRIVATE */ 1132 png_colorspace_sync_info(png_const_structrp png_ptr, png_inforp info_ptr) 1133 { 1134 if (info_ptr->colorspace.flags & PNG_COLORSPACE_INVALID) 1135 { 1136 /* Everything is invalid */ 1137 info_ptr->valid &= ~(PNG_INFO_gAMA|PNG_INFO_cHRM|PNG_INFO_sRGB| 1138 PNG_INFO_iCCP); 1139 1140 # ifdef PNG_COLORSPACE_SUPPORTED 1141 /* Clean up the iCCP profile now if it won't be used. */ 1142 png_free_data(png_ptr, info_ptr, PNG_FREE_ICCP, -1/*not used*/); 1143 # else 1144 PNG_UNUSED(png_ptr) 1145 # endif 1146 } 1147 1148 else 1149 { 1150 # ifdef PNG_COLORSPACE_SUPPORTED 1151 /* Leave the INFO_iCCP flag set if the pngset.c code has already set 1152 * it; this allows a PNG to contain a profile which matches sRGB and 1153 * yet still have that profile retrievable by the application. 1154 */ 1155 if (info_ptr->colorspace.flags & PNG_COLORSPACE_MATCHES_sRGB) 1156 info_ptr->valid |= PNG_INFO_sRGB; 1157 1158 else 1159 info_ptr->valid &= ~PNG_INFO_sRGB; 1160 1161 if (info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) 1162 info_ptr->valid |= PNG_INFO_cHRM; 1163 1164 else 1165 info_ptr->valid &= ~PNG_INFO_cHRM; 1166 # endif 1167 1168 if (info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_GAMMA) 1169 info_ptr->valid |= PNG_INFO_gAMA; 1170 1171 else 1172 info_ptr->valid &= ~PNG_INFO_gAMA; 1173 } 1174 } 1175 1176 #ifdef PNG_READ_SUPPORTED 1177 void /* PRIVATE */ 1178 png_colorspace_sync(png_const_structrp png_ptr, png_inforp info_ptr) 1179 { 1180 if (info_ptr == NULL) /* reduce code size; check here not in the caller */ 1181 return; 1182 1183 info_ptr->colorspace = png_ptr->colorspace; 1184 png_colorspace_sync_info(png_ptr, info_ptr); 1185 } 1186 #endif 1187 #endif 1188 1189 #ifdef PNG_COLORSPACE_SUPPORTED 1190 /* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for 1191 * cHRM, as opposed to using chromaticities. These internal APIs return 1192 * non-zero on a parameter error. The X, Y and Z values are required to be 1193 * positive and less than 1.0. 1194 */ 1195 static int 1196 png_xy_from_XYZ(png_xy *xy, const png_XYZ *XYZ) 1197 { 1198 png_int_32 d, dwhite, whiteX, whiteY; 1199 1200 d = XYZ->red_X + XYZ->red_Y + XYZ->red_Z; 1201 if (!png_muldiv(&xy->redx, XYZ->red_X, PNG_FP_1, d)) return 1; 1202 if (!png_muldiv(&xy->redy, XYZ->red_Y, PNG_FP_1, d)) return 1; 1203 dwhite = d; 1204 whiteX = XYZ->red_X; 1205 whiteY = XYZ->red_Y; 1206 1207 d = XYZ->green_X + XYZ->green_Y + XYZ->green_Z; 1208 if (!png_muldiv(&xy->greenx, XYZ->green_X, PNG_FP_1, d)) return 1; 1209 if (!png_muldiv(&xy->greeny, XYZ->green_Y, PNG_FP_1, d)) return 1; 1210 dwhite += d; 1211 whiteX += XYZ->green_X; 1212 whiteY += XYZ->green_Y; 1213 1214 d = XYZ->blue_X + XYZ->blue_Y + XYZ->blue_Z; 1215 if (!png_muldiv(&xy->bluex, XYZ->blue_X, PNG_FP_1, d)) return 1; 1216 if (!png_muldiv(&xy->bluey, XYZ->blue_Y, PNG_FP_1, d)) return 1; 1217 dwhite += d; 1218 whiteX += XYZ->blue_X; 1219 whiteY += XYZ->blue_Y; 1220 1221 /* The reference white is simply the sum of the end-point (X,Y,Z) vectors, 1222 * thus: 1223 */ 1224 if (!png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite)) return 1; 1225 if (!png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite)) return 1; 1226 1227 return 0; 1228 } 1229 1230 static int 1231 png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy) 1232 { 1233 png_fixed_point red_inverse, green_inverse, blue_scale; 1234 png_fixed_point left, right, denominator; 1235 1236 /* Check xy and, implicitly, z. Note that wide gamut color spaces typically 1237 * have end points with 0 tristimulus values (these are impossible end 1238 * points, but they are used to cover the possible colors.) 1239 */ 1240 if (xy->redx < 0 || xy->redx > PNG_FP_1) return 1; 1241 if (xy->redy < 0 || xy->redy > PNG_FP_1-xy->redx) return 1; 1242 if (xy->greenx < 0 || xy->greenx > PNG_FP_1) return 1; 1243 if (xy->greeny < 0 || xy->greeny > PNG_FP_1-xy->greenx) return 1; 1244 if (xy->bluex < 0 || xy->bluex > PNG_FP_1) return 1; 1245 if (xy->bluey < 0 || xy->bluey > PNG_FP_1-xy->bluex) return 1; 1246 if (xy->whitex < 0 || xy->whitex > PNG_FP_1) return 1; 1247 if (xy->whitey < 0 || xy->whitey > PNG_FP_1-xy->whitex) return 1; 1248 1249 /* The reverse calculation is more difficult because the original tristimulus 1250 * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8 1251 * derived values were recorded in the cHRM chunk; 1252 * (red,green,blue,white)x(x,y). This loses one degree of freedom and 1253 * therefore an arbitrary ninth value has to be introduced to undo the 1254 * original transformations. 1255 * 1256 * Think of the original end-points as points in (X,Y,Z) space. The 1257 * chromaticity values (c) have the property: 1258 * 1259 * C 1260 * c = --------- 1261 * X + Y + Z 1262 * 1263 * For each c (x,y,z) from the corresponding original C (X,Y,Z). Thus the 1264 * three chromaticity values (x,y,z) for each end-point obey the 1265 * relationship: 1266 * 1267 * x + y + z = 1 1268 * 1269 * This describes the plane in (X,Y,Z) space that intersects each axis at the 1270 * value 1.0; call this the chromaticity plane. Thus the chromaticity 1271 * calculation has scaled each end-point so that it is on the x+y+z=1 plane 1272 * and chromaticity is the intersection of the vector from the origin to the 1273 * (X,Y,Z) value with the chromaticity plane. 1274 * 1275 * To fully invert the chromaticity calculation we would need the three 1276 * end-point scale factors, (red-scale, green-scale, blue-scale), but these 1277 * were not recorded. Instead we calculated the reference white (X,Y,Z) and 1278 * recorded the chromaticity of this. The reference white (X,Y,Z) would have 1279 * given all three of the scale factors since: 1280 * 1281 * color-C = color-c * color-scale 1282 * white-C = red-C + green-C + blue-C 1283 * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale 1284 * 1285 * But cHRM records only white-x and white-y, so we have lost the white scale 1286 * factor: 1287 * 1288 * white-C = white-c*white-scale 1289 * 1290 * To handle this the inverse transformation makes an arbitrary assumption 1291 * about white-scale: 1292 * 1293 * Assume: white-Y = 1.0 1294 * Hence: white-scale = 1/white-y 1295 * Or: red-Y + green-Y + blue-Y = 1.0 1296 * 1297 * Notice the last statement of the assumption gives an equation in three of 1298 * the nine values we want to calculate. 8 more equations come from the 1299 * above routine as summarised at the top above (the chromaticity 1300 * calculation): 1301 * 1302 * Given: color-x = color-X / (color-X + color-Y + color-Z) 1303 * Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0 1304 * 1305 * This is 9 simultaneous equations in the 9 variables "color-C" and can be 1306 * solved by Cramer's rule. Cramer's rule requires calculating 10 9x9 matrix 1307 * determinants, however this is not as bad as it seems because only 28 of 1308 * the total of 90 terms in the various matrices are non-zero. Nevertheless 1309 * Cramer's rule is notoriously numerically unstable because the determinant 1310 * calculation involves the difference of large, but similar, numbers. It is 1311 * difficult to be sure that the calculation is stable for real world values 1312 * and it is certain that it becomes unstable where the end points are close 1313 * together. 1314 * 1315 * So this code uses the perhaps slightly less optimal but more 1316 * understandable and totally obvious approach of calculating color-scale. 1317 * 1318 * This algorithm depends on the precision in white-scale and that is 1319 * (1/white-y), so we can immediately see that as white-y approaches 0 the 1320 * accuracy inherent in the cHRM chunk drops off substantially. 1321 * 1322 * libpng arithmetic: a simple invertion of the above equations 1323 * ------------------------------------------------------------ 1324 * 1325 * white_scale = 1/white-y 1326 * white-X = white-x * white-scale 1327 * white-Y = 1.0 1328 * white-Z = (1 - white-x - white-y) * white_scale 1329 * 1330 * white-C = red-C + green-C + blue-C 1331 * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale 1332 * 1333 * This gives us three equations in (red-scale,green-scale,blue-scale) where 1334 * all the coefficients are now known: 1335 * 1336 * red-x*red-scale + green-x*green-scale + blue-x*blue-scale 1337 * = white-x/white-y 1338 * red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1 1339 * red-z*red-scale + green-z*green-scale + blue-z*blue-scale 1340 * = (1 - white-x - white-y)/white-y 1341 * 1342 * In the last equation color-z is (1 - color-x - color-y) so we can add all 1343 * three equations together to get an alternative third: 1344 * 1345 * red-scale + green-scale + blue-scale = 1/white-y = white-scale 1346 * 1347 * So now we have a Cramer's rule solution where the determinants are just 1348 * 3x3 - far more tractible. Unfortunately 3x3 determinants still involve 1349 * multiplication of three coefficients so we can't guarantee to avoid 1350 * overflow in the libpng fixed point representation. Using Cramer's rule in 1351 * floating point is probably a good choice here, but it's not an option for 1352 * fixed point. Instead proceed to simplify the first two equations by 1353 * eliminating what is likely to be the largest value, blue-scale: 1354 * 1355 * blue-scale = white-scale - red-scale - green-scale 1356 * 1357 * Hence: 1358 * 1359 * (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale = 1360 * (white-x - blue-x)*white-scale 1361 * 1362 * (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale = 1363 * 1 - blue-y*white-scale 1364 * 1365 * And now we can trivially solve for (red-scale,green-scale): 1366 * 1367 * green-scale = 1368 * (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale 1369 * ----------------------------------------------------------- 1370 * green-x - blue-x 1371 * 1372 * red-scale = 1373 * 1 - blue-y*white-scale - (green-y - blue-y) * green-scale 1374 * --------------------------------------------------------- 1375 * red-y - blue-y 1376 * 1377 * Hence: 1378 * 1379 * red-scale = 1380 * ( (green-x - blue-x) * (white-y - blue-y) - 1381 * (green-y - blue-y) * (white-x - blue-x) ) / white-y 1382 * ------------------------------------------------------------------------- 1383 * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) 1384 * 1385 * green-scale = 1386 * ( (red-y - blue-y) * (white-x - blue-x) - 1387 * (red-x - blue-x) * (white-y - blue-y) ) / white-y 1388 * ------------------------------------------------------------------------- 1389 * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) 1390 * 1391 * Accuracy: 1392 * The input values have 5 decimal digits of accuracy. The values are all in 1393 * the range 0 < value < 1, so simple products are in the same range but may 1394 * need up to 10 decimal digits to preserve the original precision and avoid 1395 * underflow. Because we are using a 32-bit signed representation we cannot 1396 * match this; the best is a little over 9 decimal digits, less than 10. 1397 * 1398 * The approach used here is to preserve the maximum precision within the 1399 * signed representation. Because the red-scale calculation above uses the 1400 * difference between two products of values that must be in the range -1..+1 1401 * it is sufficient to divide the product by 7; ceil(100,000/32767*2). The 1402 * factor is irrelevant in the calculation because it is applied to both 1403 * numerator and denominator. 1404 * 1405 * Note that the values of the differences of the products of the 1406 * chromaticities in the above equations tend to be small, for example for 1407 * the sRGB chromaticities they are: 1408 * 1409 * red numerator: -0.04751 1410 * green numerator: -0.08788 1411 * denominator: -0.2241 (without white-y multiplication) 1412 * 1413 * The resultant Y coefficients from the chromaticities of some widely used 1414 * color space definitions are (to 15 decimal places): 1415 * 1416 * sRGB 1417 * 0.212639005871510 0.715168678767756 0.072192315360734 1418 * Kodak ProPhoto 1419 * 0.288071128229293 0.711843217810102 0.000085653960605 1420 * Adobe RGB 1421 * 0.297344975250536 0.627363566255466 0.075291458493998 1422 * Adobe Wide Gamut RGB 1423 * 0.258728243040113 0.724682314948566 0.016589442011321 1424 */ 1425 /* By the argument, above overflow should be impossible here. The return 1426 * value of 2 indicates an internal error to the caller. 1427 */ 1428 if (!png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 7)) 1429 return 2; 1430 if (!png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 7)) 1431 return 2; 1432 denominator = left - right; 1433 1434 /* Now find the red numerator. */ 1435 if (!png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 7)) 1436 return 2; 1437 if (!png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 7)) 1438 return 2; 1439 1440 /* Overflow is possible here and it indicates an extreme set of PNG cHRM 1441 * chunk values. This calculation actually returns the reciprocal of the 1442 * scale value because this allows us to delay the multiplication of white-y 1443 * into the denominator, which tends to produce a small number. 1444 */ 1445 if (!png_muldiv(&red_inverse, xy->whitey, denominator, left-right) || 1446 red_inverse <= xy->whitey /* r+g+b scales = white scale */) 1447 return 1; 1448 1449 /* Similarly for green_inverse: */ 1450 if (!png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 7)) 1451 return 2; 1452 if (!png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 7)) 1453 return 2; 1454 if (!png_muldiv(&green_inverse, xy->whitey, denominator, left-right) || 1455 green_inverse <= xy->whitey) 1456 return 1; 1457 1458 /* And the blue scale, the checks above guarantee this can't overflow but it 1459 * can still produce 0 for extreme cHRM values. 1460 */ 1461 blue_scale = png_reciprocal(xy->whitey) - png_reciprocal(red_inverse) - 1462 png_reciprocal(green_inverse); 1463 if (blue_scale <= 0) return 1; 1464 1465 1466 /* And fill in the png_XYZ: */ 1467 if (!png_muldiv(&XYZ->red_X, xy->redx, PNG_FP_1, red_inverse)) return 1; 1468 if (!png_muldiv(&XYZ->red_Y, xy->redy, PNG_FP_1, red_inverse)) return 1; 1469 if (!png_muldiv(&XYZ->red_Z, PNG_FP_1 - xy->redx - xy->redy, PNG_FP_1, 1470 red_inverse)) 1471 return 1; 1472 1473 if (!png_muldiv(&XYZ->green_X, xy->greenx, PNG_FP_1, green_inverse)) 1474 return 1; 1475 if (!png_muldiv(&XYZ->green_Y, xy->greeny, PNG_FP_1, green_inverse)) 1476 return 1; 1477 if (!png_muldiv(&XYZ->green_Z, PNG_FP_1 - xy->greenx - xy->greeny, PNG_FP_1, 1478 green_inverse)) 1479 return 1; 1480 1481 if (!png_muldiv(&XYZ->blue_X, xy->bluex, blue_scale, PNG_FP_1)) return 1; 1482 if (!png_muldiv(&XYZ->blue_Y, xy->bluey, blue_scale, PNG_FP_1)) return 1; 1483 if (!png_muldiv(&XYZ->blue_Z, PNG_FP_1 - xy->bluex - xy->bluey, blue_scale, 1484 PNG_FP_1)) 1485 return 1; 1486 1487 return 0; /*success*/ 1488 } 1489 1490 static int 1491 png_XYZ_normalize(png_XYZ *XYZ) 1492 { 1493 png_int_32 Y; 1494 1495 if (XYZ->red_Y < 0 || XYZ->green_Y < 0 || XYZ->blue_Y < 0 || 1496 XYZ->red_X < 0 || XYZ->green_X < 0 || XYZ->blue_X < 0 || 1497 XYZ->red_Z < 0 || XYZ->green_Z < 0 || XYZ->blue_Z < 0) 1498 return 1; 1499 1500 /* Normalize by scaling so the sum of the end-point Y values is PNG_FP_1. 1501 * IMPLEMENTATION NOTE: ANSI requires signed overflow not to occur, therefore 1502 * relying on addition of two positive values producing a negative one is not 1503 * safe. 1504 */ 1505 Y = XYZ->red_Y; 1506 if (0x7fffffff - Y < XYZ->green_X) return 1; 1507 Y += XYZ->green_Y; 1508 if (0x7fffffff - Y < XYZ->blue_X) return 1; 1509 Y += XYZ->blue_Y; 1510 1511 if (Y != PNG_FP_1) 1512 { 1513 if (!png_muldiv(&XYZ->red_X, XYZ->red_X, PNG_FP_1, Y)) return 1; 1514 if (!png_muldiv(&XYZ->red_Y, XYZ->red_Y, PNG_FP_1, Y)) return 1; 1515 if (!png_muldiv(&XYZ->red_Z, XYZ->red_Z, PNG_FP_1, Y)) return 1; 1516 1517 if (!png_muldiv(&XYZ->green_X, XYZ->green_X, PNG_FP_1, Y)) return 1; 1518 if (!png_muldiv(&XYZ->green_Y, XYZ->green_Y, PNG_FP_1, Y)) return 1; 1519 if (!png_muldiv(&XYZ->green_Z, XYZ->green_Z, PNG_FP_1, Y)) return 1; 1520 1521 if (!png_muldiv(&XYZ->blue_X, XYZ->blue_X, PNG_FP_1, Y)) return 1; 1522 if (!png_muldiv(&XYZ->blue_Y, XYZ->blue_Y, PNG_FP_1, Y)) return 1; 1523 if (!png_muldiv(&XYZ->blue_Z, XYZ->blue_Z, PNG_FP_1, Y)) return 1; 1524 } 1525 1526 return 0; 1527 } 1528 1529 static int 1530 png_colorspace_endpoints_match(const png_xy *xy1, const png_xy *xy2, int delta) 1531 { 1532 /* Allow an error of +/-0.01 (absolute value) on each chromaticity */ 1533 return !(PNG_OUT_OF_RANGE(xy1->whitex, xy2->whitex,delta) || 1534 PNG_OUT_OF_RANGE(xy1->whitey, xy2->whitey,delta) || 1535 PNG_OUT_OF_RANGE(xy1->redx, xy2->redx, delta) || 1536 PNG_OUT_OF_RANGE(xy1->redy, xy2->redy, delta) || 1537 PNG_OUT_OF_RANGE(xy1->greenx, xy2->greenx,delta) || 1538 PNG_OUT_OF_RANGE(xy1->greeny, xy2->greeny,delta) || 1539 PNG_OUT_OF_RANGE(xy1->bluex, xy2->bluex, delta) || 1540 PNG_OUT_OF_RANGE(xy1->bluey, xy2->bluey, delta)); 1541 } 1542 1543 /* Added in libpng-1.6.0, a different check for the validity of a set of cHRM 1544 * chunk chromaticities. Earlier checks used to simply look for the overflow 1545 * condition (where the determinant of the matrix to solve for XYZ ends up zero 1546 * because the chromaticity values are not all distinct.) Despite this it is 1547 * theoretically possible to produce chromaticities that are apparently valid 1548 * but that rapidly degrade to invalid, potentially crashing, sets because of 1549 * arithmetic inaccuracies when calculations are performed on them. The new 1550 * check is to round-trip xy -> XYZ -> xy and then check that the result is 1551 * within a small percentage of the original. 1552 */ 1553 static int 1554 png_colorspace_check_xy(png_XYZ *XYZ, const png_xy *xy) 1555 { 1556 int result; 1557 png_xy xy_test; 1558 1559 /* As a side-effect this routine also returns the XYZ endpoints. */ 1560 result = png_XYZ_from_xy(XYZ, xy); 1561 if (result) return result; 1562 1563 result = png_xy_from_XYZ(&xy_test, XYZ); 1564 if (result) return result; 1565 1566 if (png_colorspace_endpoints_match(xy, &xy_test, 1567 5/*actually, the math is pretty accurate*/)) 1568 return 0; 1569 1570 /* Too much slip */ 1571 return 1; 1572 } 1573 1574 /* This is the check going the other way. The XYZ is modified to normalize it 1575 * (another side-effect) and the xy chromaticities are returned. 1576 */ 1577 static int 1578 png_colorspace_check_XYZ(png_xy *xy, png_XYZ *XYZ) 1579 { 1580 int result; 1581 png_XYZ XYZtemp; 1582 1583 result = png_XYZ_normalize(XYZ); 1584 if (result) return result; 1585 1586 result = png_xy_from_XYZ(xy, XYZ); 1587 if (result) return result; 1588 1589 XYZtemp = *XYZ; 1590 return png_colorspace_check_xy(&XYZtemp, xy); 1591 } 1592 1593 /* Used to check for an endpoint match against sRGB */ 1594 static const png_xy sRGB_xy = /* From ITU-R BT.709-3 */ 1595 { 1596 /* color x y */ 1597 /* red */ 64000, 33000, 1598 /* green */ 30000, 60000, 1599 /* blue */ 15000, 6000, 1600 /* white */ 31270, 32900 1601 }; 1602 1603 static int 1604 png_colorspace_set_xy_and_XYZ(png_const_structrp png_ptr, 1605 png_colorspacerp colorspace, const png_xy *xy, const png_XYZ *XYZ, 1606 int preferred) 1607 { 1608 if (colorspace->flags & PNG_COLORSPACE_INVALID) 1609 return 0; 1610 1611 /* The consistency check is performed on the chromaticities; this factors out 1612 * variations because of the normalization (or not) of the end point Y 1613 * values. 1614 */ 1615 if (preferred < 2 && (colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS)) 1616 { 1617 /* The end points must be reasonably close to any we already have. The 1618 * following allows an error of up to +/-.001 1619 */ 1620 if (!png_colorspace_endpoints_match(xy, &colorspace->end_points_xy, 100)) 1621 { 1622 colorspace->flags |= PNG_COLORSPACE_INVALID; 1623 png_benign_error(png_ptr, "inconsistent chromaticities"); 1624 return 0; /* failed */ 1625 } 1626 1627 /* Only overwrite with preferred values */ 1628 if (!preferred) 1629 return 1; /* ok, but no change */ 1630 } 1631 1632 colorspace->end_points_xy = *xy; 1633 colorspace->end_points_XYZ = *XYZ; 1634 colorspace->flags |= PNG_COLORSPACE_HAVE_ENDPOINTS; 1635 1636 /* The end points are normally quoted to two decimal digits, so allow +/-0.01 1637 * on this test. 1638 */ 1639 if (png_colorspace_endpoints_match(xy, &sRGB_xy, 1000)) 1640 colorspace->flags |= PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB; 1641 1642 else 1643 colorspace->flags &= PNG_COLORSPACE_CANCEL( 1644 PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB); 1645 1646 return 2; /* ok and changed */ 1647 } 1648 1649 int /* PRIVATE */ 1650 png_colorspace_set_chromaticities(png_const_structrp png_ptr, 1651 png_colorspacerp colorspace, const png_xy *xy, int preferred) 1652 { 1653 /* We must check the end points to ensure they are reasonable - in the past 1654 * color management systems have crashed as a result of getting bogus 1655 * colorant values, while this isn't the fault of libpng it is the 1656 * responsibility of libpng because PNG carries the bomb and libpng is in a 1657 * position to protect against it. 1658 */ 1659 png_XYZ XYZ; 1660 1661 switch (png_colorspace_check_xy(&XYZ, xy)) 1662 { 1663 case 0: /* success */ 1664 return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, xy, &XYZ, 1665 preferred); 1666 1667 case 1: 1668 /* We can't invert the chromaticities so we can't produce value XYZ 1669 * values. Likely as not a color management system will fail too. 1670 */ 1671 colorspace->flags |= PNG_COLORSPACE_INVALID; 1672 png_benign_error(png_ptr, "invalid chromaticities"); 1673 break; 1674 1675 default: 1676 /* libpng is broken; this should be a warning but if it happens we 1677 * want error reports so for the moment it is an error. 1678 */ 1679 colorspace->flags |= PNG_COLORSPACE_INVALID; 1680 png_error(png_ptr, "internal error checking chromaticities"); 1681 break; 1682 } 1683 1684 return 0; /* failed */ 1685 } 1686 1687 int /* PRIVATE */ 1688 png_colorspace_set_endpoints(png_const_structrp png_ptr, 1689 png_colorspacerp colorspace, const png_XYZ *XYZ_in, int preferred) 1690 { 1691 png_XYZ XYZ = *XYZ_in; 1692 png_xy xy; 1693 1694 switch (png_colorspace_check_XYZ(&xy, &XYZ)) 1695 { 1696 case 0: 1697 return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, &xy, &XYZ, 1698 preferred); 1699 1700 case 1: 1701 /* End points are invalid. */ 1702 colorspace->flags |= PNG_COLORSPACE_INVALID; 1703 png_benign_error(png_ptr, "invalid end points"); 1704 break; 1705 1706 default: 1707 colorspace->flags |= PNG_COLORSPACE_INVALID; 1708 png_error(png_ptr, "internal error checking chromaticities"); 1709 break; 1710 } 1711 1712 return 0; /* failed */ 1713 } 1714 1715 #if defined(PNG_sRGB_SUPPORTED) || defined(PNG_iCCP_SUPPORTED) 1716 /* Error message generation */ 1717 static char 1718 png_icc_tag_char(png_uint_32 byte) 1719 { 1720 byte &= 0xff; 1721 if (byte >= 32 && byte <= 126) 1722 return (char)byte; 1723 else 1724 return '?'; 1725 } 1726 1727 static void 1728 png_icc_tag_name(char *name, png_uint_32 tag) 1729 { 1730 name[0] = '\''; 1731 name[1] = png_icc_tag_char(tag >> 24); 1732 name[2] = png_icc_tag_char(tag >> 16); 1733 name[3] = png_icc_tag_char(tag >> 8); 1734 name[4] = png_icc_tag_char(tag ); 1735 name[5] = '\''; 1736 } 1737 1738 static int 1739 is_ICC_signature_char(png_alloc_size_t it) 1740 { 1741 return it == 32 || (it >= 48 && it <= 57) || (it >= 65 && it <= 90) || 1742 (it >= 97 && it <= 122); 1743 } 1744 1745 static int 1746 is_ICC_signature(png_alloc_size_t it) 1747 { 1748 return is_ICC_signature_char(it >> 24) /* checks all the top bits */ && 1749 is_ICC_signature_char((it >> 16) & 0xff) && 1750 is_ICC_signature_char((it >> 8) & 0xff) && 1751 is_ICC_signature_char(it & 0xff); 1752 } 1753 1754 static int 1755 png_icc_profile_error(png_const_structrp png_ptr, png_colorspacerp colorspace, 1756 png_const_charp name, png_alloc_size_t value, png_const_charp reason) 1757 { 1758 size_t pos; 1759 char message[196]; /* see below for calculation */ 1760 1761 if (colorspace != NULL) 1762 colorspace->flags |= PNG_COLORSPACE_INVALID; 1763 1764 pos = png_safecat(message, (sizeof message), 0, "profile '"); /* 9 chars */ 1765 pos = png_safecat(message, pos+79, pos, name); /* Truncate to 79 chars */ 1766 pos = png_safecat(message, (sizeof message), pos, "': "); /* +2 = 90 */ 1767 if (is_ICC_signature(value)) 1768 { 1769 /* So 'value' is at most 4 bytes and the following cast is safe */ 1770 png_icc_tag_name(message+pos, (png_uint_32)value); 1771 pos += 6; /* total +8; less than the else clause */ 1772 message[pos++] = ':'; 1773 message[pos++] = ' '; 1774 } 1775 # ifdef PNG_WARNINGS_SUPPORTED 1776 else 1777 { 1778 char number[PNG_NUMBER_BUFFER_SIZE]; /* +24 = 114*/ 1779 1780 pos = png_safecat(message, (sizeof message), pos, 1781 png_format_number(number, number+(sizeof number), 1782 PNG_NUMBER_FORMAT_x, value)); 1783 pos = png_safecat(message, (sizeof message), pos, "h: "); /*+2 = 116*/ 1784 } 1785 # endif 1786 /* The 'reason' is an arbitrary message, allow +79 maximum 195 */ 1787 pos = png_safecat(message, (sizeof message), pos, reason); 1788 PNG_UNUSED(pos) 1789 1790 /* This is recoverable, but make it unconditionally an app_error on write to 1791 * avoid writing invalid ICC profiles into PNG files. (I.e. we handle them 1792 * on read, with a warning, but on write unless the app turns off 1793 * application errors the PNG won't be written.) 1794 */ 1795 png_chunk_report(png_ptr, message, 1796 (colorspace != NULL) ? PNG_CHUNK_ERROR : PNG_CHUNK_WRITE_ERROR); 1797 1798 return 0; 1799 } 1800 #endif /* sRGB || iCCP */ 1801 1802 #ifdef PNG_sRGB_SUPPORTED 1803 int /* PRIVATE */ 1804 png_colorspace_set_sRGB(png_const_structrp png_ptr, png_colorspacerp colorspace, 1805 int intent) 1806 { 1807 /* sRGB sets known gamma, end points and (from the chunk) intent. */ 1808 /* IMPORTANT: these are not necessarily the values found in an ICC profile 1809 * because ICC profiles store values adapted to a D50 environment; it is 1810 * expected that the ICC profile mediaWhitePointTag will be D50, see the 1811 * checks and code elsewhere to understand this better. 1812 * 1813 * These XYZ values, which are accurate to 5dp, produce rgb to gray 1814 * coefficients of (6968,23435,2366), which are reduced (because they add up 1815 * to 32769 not 32768) to (6968,23434,2366). These are the values that 1816 * libpng has traditionally used (and are the best values given the 15bit 1817 * algorithm used by the rgb to gray code.) 1818 */ 1819 static const png_XYZ sRGB_XYZ = /* D65 XYZ (*not* the D50 adapted values!) */ 1820 { 1821 /* color X Y Z */ 1822 /* red */ 41239, 21264, 1933, 1823 /* green */ 35758, 71517, 11919, 1824 /* blue */ 18048, 7219, 95053 1825 }; 1826 1827 /* Do nothing if the colorspace is already invalidated. */ 1828 if (colorspace->flags & PNG_COLORSPACE_INVALID) 1829 return 0; 1830 1831 /* Check the intent, then check for existing settings. It is valid for the 1832 * PNG file to have cHRM or gAMA chunks along with sRGB, but the values must 1833 * be consistent with the correct values. If, however, this function is 1834 * called below because an iCCP chunk matches sRGB then it is quite 1835 * conceivable that an older app recorded incorrect gAMA and cHRM because of 1836 * an incorrect calculation based on the values in the profile - this does 1837 * *not* invalidate the profile (though it still produces an error, which can 1838 * be ignored.) 1839 */ 1840 if (intent < 0 || intent >= PNG_sRGB_INTENT_LAST) 1841 return png_icc_profile_error(png_ptr, colorspace, "sRGB", 1842 (unsigned)intent, "invalid sRGB rendering intent"); 1843 1844 if ((colorspace->flags & PNG_COLORSPACE_HAVE_INTENT) != 0 && 1845 colorspace->rendering_intent != intent) 1846 return png_icc_profile_error(png_ptr, colorspace, "sRGB", 1847 (unsigned)intent, "inconsistent rendering intents"); 1848 1849 if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0) 1850 { 1851 png_benign_error(png_ptr, "duplicate sRGB information ignored"); 1852 return 0; 1853 } 1854 1855 /* If the standard sRGB cHRM chunk does not match the one from the PNG file 1856 * warn but overwrite the value with the correct one. 1857 */ 1858 if ((colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0 && 1859 !png_colorspace_endpoints_match(&sRGB_xy, &colorspace->end_points_xy, 1860 100)) 1861 png_chunk_report(png_ptr, "cHRM chunk does not match sRGB", 1862 PNG_CHUNK_ERROR); 1863 1864 /* This check is just done for the error reporting - the routine always 1865 * returns true when the 'from' argument corresponds to sRGB (2). 1866 */ 1867 (void)png_colorspace_check_gamma(png_ptr, colorspace, PNG_GAMMA_sRGB_INVERSE, 1868 2/*from sRGB*/); 1869 1870 /* intent: bugs in GCC force 'int' to be used as the parameter type. */ 1871 colorspace->rendering_intent = (png_uint_16)intent; 1872 colorspace->flags |= PNG_COLORSPACE_HAVE_INTENT; 1873 1874 /* endpoints */ 1875 colorspace->end_points_xy = sRGB_xy; 1876 colorspace->end_points_XYZ = sRGB_XYZ; 1877 colorspace->flags |= 1878 (PNG_COLORSPACE_HAVE_ENDPOINTS|PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB); 1879 1880 /* gamma */ 1881 colorspace->gamma = PNG_GAMMA_sRGB_INVERSE; 1882 colorspace->flags |= PNG_COLORSPACE_HAVE_GAMMA; 1883 1884 /* Finally record that we have an sRGB profile */ 1885 colorspace->flags |= 1886 (PNG_COLORSPACE_MATCHES_sRGB|PNG_COLORSPACE_FROM_sRGB); 1887 1888 return 1; /* set */ 1889 } 1890 #endif /* sRGB */ 1891 1892 #ifdef PNG_iCCP_SUPPORTED 1893 /* Encoded value of D50 as an ICC XYZNumber. From the ICC 2010 spec the value 1894 * is XYZ(0.9642,1.0,0.8249), which scales to: 1895 * 1896 * (63189.8112, 65536, 54060.6464) 1897 */ 1898 static const png_byte D50_nCIEXYZ[12] = 1899 { 0x00, 0x00, 0xf6, 0xd6, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0xd3, 0x2d }; 1900 1901 int /* PRIVATE */ 1902 png_icc_check_length(png_const_structrp png_ptr, png_colorspacerp colorspace, 1903 png_const_charp name, png_uint_32 profile_length) 1904 { 1905 if (profile_length < 132) 1906 return png_icc_profile_error(png_ptr, colorspace, name, profile_length, 1907 "too short"); 1908 1909 if (profile_length & 3) 1910 return png_icc_profile_error(png_ptr, colorspace, name, profile_length, 1911 "invalid length"); 1912 1913 return 1; 1914 } 1915 1916 int /* PRIVATE */ 1917 png_icc_check_header(png_const_structrp png_ptr, png_colorspacerp colorspace, 1918 png_const_charp name, png_uint_32 profile_length, 1919 png_const_bytep profile/* first 132 bytes only */, int color_type) 1920 { 1921 png_uint_32 temp; 1922 1923 /* Length check; this cannot be ignored in this code because profile_length 1924 * is used later to check the tag table, so even if the profile seems over 1925 * long profile_length from the caller must be correct. The caller can fix 1926 * this up on read or write by just passing in the profile header length. 1927 */ 1928 temp = png_get_uint_32(profile); 1929 if (temp != profile_length) 1930 return png_icc_profile_error(png_ptr, colorspace, name, temp, 1931 "length does not match profile"); 1932 1933 temp = png_get_uint_32(profile+128); /* tag count: 12 bytes/tag */ 1934 if (temp > 357913930 || /* (2^32-4-132)/12: maximum possible tag count */ 1935 profile_length < 132+12*temp) /* truncated tag table */ 1936 return png_icc_profile_error(png_ptr, colorspace, name, temp, 1937 "tag count too large"); 1938 1939 /* The 'intent' must be valid or we can't store it, ICC limits the intent to 1940 * 16 bits. 1941 */ 1942 temp = png_get_uint_32(profile+64); 1943 if (temp >= 0xffff) /* The ICC limit */ 1944 return png_icc_profile_error(png_ptr, colorspace, name, temp, 1945 "invalid rendering intent"); 1946 1947 /* This is just a warning because the profile may be valid in future 1948 * versions. 1949 */ 1950 if (temp >= PNG_sRGB_INTENT_LAST) 1951 (void)png_icc_profile_error(png_ptr, NULL, name, temp, 1952 "intent outside defined range"); 1953 1954 /* At this point the tag table can't be checked because it hasn't necessarily 1955 * been loaded; however, various header fields can be checked. These checks 1956 * are for values permitted by the PNG spec in an ICC profile; the PNG spec 1957 * restricts the profiles that can be passed in an iCCP chunk (they must be 1958 * appropriate to processing PNG data!) 1959 */ 1960 1961 /* Data checks (could be skipped). These checks must be independent of the 1962 * version number; however, the version number doesn't accomodate changes in 1963 * the header fields (just the known tags and the interpretation of the 1964 * data.) 1965 */ 1966 temp = png_get_uint_32(profile+36); /* signature 'ascp' */ 1967 if (temp != 0x61637370) 1968 return png_icc_profile_error(png_ptr, colorspace, name, temp, 1969 "invalid signature"); 1970 1971 /* Currently the PCS illuminant/adopted white point (the computational 1972 * white point) are required to be D50, 1973 * however the profile contains a record of the illuminant so perhaps ICC 1974 * expects to be able to change this in the future (despite the rationale in 1975 * the introduction for using a fixed PCS adopted white.) Consequently the 1976 * following is just a warning. 1977 */ 1978 if (memcmp(profile+68, D50_nCIEXYZ, 12) != 0) 1979 (void)png_icc_profile_error(png_ptr, NULL, name, 0/*no tag value*/, 1980 "PCS illuminant is not D50"); 1981 1982 /* The PNG spec requires this: 1983 * "If the iCCP chunk is present, the image samples conform to the colour 1984 * space represented by the embedded ICC profile as defined by the 1985 * International Color Consortium [ICC]. The colour space of the ICC profile 1986 * shall be an RGB colour space for colour images (PNG colour types 2, 3, and 1987 * 6), or a greyscale colour space for greyscale images (PNG colour types 0 1988 * and 4)." 1989 * 1990 * This checking code ensures the embedded profile (on either read or write) 1991 * conforms to the specification requirements. Notice that an ICC 'gray' 1992 * color-space profile contains the information to transform the monochrome 1993 * data to XYZ or L*a*b (according to which PCS the profile uses) and this 1994 * should be used in preference to the standard libpng K channel replication 1995 * into R, G and B channels. 1996 * 1997 * Previously it was suggested that an RGB profile on grayscale data could be 1998 * handled. However it it is clear that using an RGB profile in this context 1999 * must be an error - there is no specification of what it means. Thus it is 2000 * almost certainly more correct to ignore the profile. 2001 */ 2002 temp = png_get_uint_32(profile+16); /* data colour space field */ 2003 switch (temp) 2004 { 2005 case 0x52474220: /* 'RGB ' */ 2006 if (!(color_type & PNG_COLOR_MASK_COLOR)) 2007 return png_icc_profile_error(png_ptr, colorspace, name, temp, 2008 "RGB color space not permitted on grayscale PNG"); 2009 break; 2010 2011 case 0x47524159: /* 'GRAY' */ 2012 if (color_type & PNG_COLOR_MASK_COLOR) 2013 return png_icc_profile_error(png_ptr, colorspace, name, temp, 2014 "Gray color space not permitted on RGB PNG"); 2015 break; 2016 2017 default: 2018 return png_icc_profile_error(png_ptr, colorspace, name, temp, 2019 "invalid ICC profile color space"); 2020 } 2021 2022 /* It is up to the application to check that the profile class matches the 2023 * application requirements; the spec provides no guidance, but it's pretty 2024 * weird if the profile is not scanner ('scnr'), monitor ('mntr'), printer 2025 * ('prtr') or 'spac' (for generic color spaces). Issue a warning in these 2026 * cases. Issue an error for device link or abstract profiles - these don't 2027 * contain the records necessary to transform the color-space to anything 2028 * other than the target device (and not even that for an abstract profile). 2029 * Profiles of these classes may not be embedded in images. 2030 */ 2031 temp = png_get_uint_32(profile+12); /* profile/device class */ 2032 switch (temp) 2033 { 2034 case 0x73636E72: /* 'scnr' */ 2035 case 0x6D6E7472: /* 'mntr' */ 2036 case 0x70727472: /* 'prtr' */ 2037 case 0x73706163: /* 'spac' */ 2038 /* All supported */ 2039 break; 2040 2041 case 0x61627374: /* 'abst' */ 2042 /* May not be embedded in an image */ 2043 return png_icc_profile_error(png_ptr, colorspace, name, temp, 2044 "invalid embedded Abstract ICC profile"); 2045 2046 case 0x6C696E6B: /* 'link' */ 2047 /* DeviceLink profiles cannnot be interpreted in a non-device specific 2048 * fashion, if an app uses the AToB0Tag in the profile the results are 2049 * undefined unless the result is sent to the intended device, 2050 * therefore a DeviceLink profile should not be found embedded in a 2051 * PNG. 2052 */ 2053 return png_icc_profile_error(png_ptr, colorspace, name, temp, 2054 "unexpected DeviceLink ICC profile class"); 2055 2056 case 0x6E6D636C: /* 'nmcl' */ 2057 /* A NamedColor profile is also device specific, however it doesn't 2058 * contain an AToB0 tag that is open to misintrepretation. Almost 2059 * certainly it will fail the tests below. 2060 */ 2061 (void)png_icc_profile_error(png_ptr, NULL, name, temp, 2062 "unexpected NamedColor ICC profile class"); 2063 break; 2064 2065 default: 2066 /* To allow for future enhancements to the profile accept unrecognized 2067 * profile classes with a warning, these then hit the test below on the 2068 * tag content to ensure they are backward compatible with one of the 2069 * understood profiles. 2070 */ 2071 (void)png_icc_profile_error(png_ptr, NULL, name, temp, 2072 "unrecognized ICC profile class"); 2073 break; 2074 } 2075 2076 /* For any profile other than a device link one the PCS must be encoded 2077 * either in XYZ or Lab. 2078 */ 2079 temp = png_get_uint_32(profile+20); 2080 switch (temp) 2081 { 2082 case 0x58595A20: /* 'XYZ ' */ 2083 case 0x4C616220: /* 'Lab ' */ 2084 break; 2085 2086 default: 2087 return png_icc_profile_error(png_ptr, colorspace, name, temp, 2088 "unexpected ICC PCS encoding"); 2089 } 2090 2091 return 1; 2092 } 2093 2094 int /* PRIVATE */ 2095 png_icc_check_tag_table(png_const_structrp png_ptr, png_colorspacerp colorspace, 2096 png_const_charp name, png_uint_32 profile_length, 2097 png_const_bytep profile /* header plus whole tag table */) 2098 { 2099 png_uint_32 tag_count = png_get_uint_32(profile+128); 2100 png_uint_32 itag; 2101 png_const_bytep tag = profile+132; /* The first tag */ 2102 2103 /* First scan all the tags in the table and add bits to the icc_info value 2104 * (temporarily in 'tags'). 2105 */ 2106 for (itag=0; itag < tag_count; ++itag, tag += 12) 2107 { 2108 png_uint_32 tag_id = png_get_uint_32(tag+0); 2109 png_uint_32 tag_start = png_get_uint_32(tag+4); /* must be aligned */ 2110 png_uint_32 tag_length = png_get_uint_32(tag+8);/* not padded */ 2111 2112 /* The ICC specification does not exclude zero length tags, therefore the 2113 * start might actually be anywhere if there is no data, but this would be 2114 * a clear abuse of the intent of the standard so the start is checked for 2115 * being in range. All defined tag types have an 8 byte header - a 4 byte 2116 * type signature then 0. 2117 */ 2118 if ((tag_start & 3) != 0) 2119 { 2120 /* CNHP730S.icc shipped with Microsoft Windows 64 violates this, it is 2121 * only a warning here because libpng does not care about the 2122 * alignment. 2123 */ 2124 (void)png_icc_profile_error(png_ptr, NULL, name, tag_id, 2125 "ICC profile tag start not a multiple of 4"); 2126 } 2127 2128 /* This is a hard error; potentially it can cause read outside the 2129 * profile. 2130 */ 2131 if (tag_start > profile_length || tag_length > profile_length - tag_start) 2132 return png_icc_profile_error(png_ptr, colorspace, name, tag_id, 2133 "ICC profile tag outside profile"); 2134 } 2135 2136 return 1; /* success, maybe with warnings */ 2137 } 2138 2139 #ifdef PNG_sRGB_SUPPORTED 2140 /* Information about the known ICC sRGB profiles */ 2141 static const struct 2142 { 2143 png_uint_32 adler, crc, length; 2144 png_uint_32 md5[4]; 2145 png_byte have_md5; 2146 png_byte is_broken; 2147 png_uint_16 intent; 2148 2149 # define PNG_MD5(a,b,c,d) { a, b, c, d }, (a!=0)||(b!=0)||(c!=0)||(d!=0) 2150 # define PNG_ICC_CHECKSUM(adler, crc, md5, intent, broke, date, length, fname)\ 2151 { adler, crc, length, md5, broke, intent }, 2152 2153 } png_sRGB_checks[] = 2154 { 2155 /* This data comes from contrib/tools/checksum-icc run on downloads of 2156 * all four ICC sRGB profiles from www.color.org. 2157 */ 2158 /* adler32, crc32, MD5[4], intent, date, length, file-name */ 2159 PNG_ICC_CHECKSUM(0x0a3fd9f6, 0x3b8772b9, 2160 PNG_MD5(0x29f83dde, 0xaff255ae, 0x7842fae4, 0xca83390d), 0, 0, 2161 "2009/03/27 21:36:31", 3048, "sRGB_IEC61966-2-1_black_scaled.icc") 2162 2163 /* ICC sRGB v2 perceptual no black-compensation: */ 2164 PNG_ICC_CHECKSUM(0x4909e5e1, 0x427ebb21, 2165 PNG_MD5(0xc95bd637, 0xe95d8a3b, 0x0df38f99, 0xc1320389), 1, 0, 2166 "2009/03/27 21:37:45", 3052, "sRGB_IEC61966-2-1_no_black_scaling.icc") 2167 2168 PNG_ICC_CHECKSUM(0xfd2144a1, 0x306fd8ae, 2169 PNG_MD5(0xfc663378, 0x37e2886b, 0xfd72e983, 0x8228f1b8), 0, 0, 2170 "2009/08/10 17:28:01", 60988, "sRGB_v4_ICC_preference_displayclass.icc") 2171 2172 /* ICC sRGB v4 perceptual */ 2173 PNG_ICC_CHECKSUM(0x209c35d2, 0xbbef7812, 2174 PNG_MD5(0x34562abf, 0x994ccd06, 0x6d2c5721, 0xd0d68c5d), 0, 0, 2175 "2007/07/25 00:05:37", 60960, "sRGB_v4_ICC_preference.icc") 2176 2177 /* The following profiles have no known MD5 checksum. If there is a match 2178 * on the (empty) MD5 the other fields are used to attempt a match and 2179 * a warning is produced. The first two of these profiles have a 'cprt' tag 2180 * which suggests that they were also made by Hewlett Packard. 2181 */ 2182 PNG_ICC_CHECKSUM(0xa054d762, 0x5d5129ce, 2183 PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 0, 2184 "2004/07/21 18:57:42", 3024, "sRGB_IEC61966-2-1_noBPC.icc") 2185 2186 /* This is a 'mntr' (display) profile with a mediaWhitePointTag that does not 2187 * match the D50 PCS illuminant in the header (it is in fact the D65 values, 2188 * so the white point is recorded as the un-adapted value.) The profiles 2189 * below only differ in one byte - the intent - and are basically the same as 2190 * the previous profile except for the mediaWhitePointTag error and a missing 2191 * chromaticAdaptationTag. 2192 */ 2193 PNG_ICC_CHECKSUM(0xf784f3fb, 0x182ea552, 2194 PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 0, 1/*broken*/, 2195 "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 perceptual") 2196 2197 PNG_ICC_CHECKSUM(0x0398f3fc, 0xf29e526d, 2198 PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 1/*broken*/, 2199 "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 media-relative") 2200 }; 2201 2202 static int 2203 png_compare_ICC_profile_with_sRGB(png_const_structrp png_ptr, 2204 png_const_bytep profile, uLong adler) 2205 { 2206 /* The quick check is to verify just the MD5 signature and trust the 2207 * rest of the data. Because the profile has already been verified for 2208 * correctness this is safe. png_colorspace_set_sRGB will check the 'intent' 2209 * field too, so if the profile has been edited with an intent not defined 2210 * by sRGB (but maybe defined by a later ICC specification) the read of 2211 * the profile will fail at that point. 2212 */ 2213 png_uint_32 length = 0; 2214 png_uint_32 intent = 0x10000; /* invalid */ 2215 #if PNG_sRGB_PROFILE_CHECKS > 1 2216 uLong crc = 0; /* the value for 0 length data */ 2217 #endif 2218 unsigned int i; 2219 2220 for (i=0; i < (sizeof png_sRGB_checks) / (sizeof png_sRGB_checks[0]); ++i) 2221 { 2222 if (png_get_uint_32(profile+84) == png_sRGB_checks[i].md5[0] && 2223 png_get_uint_32(profile+88) == png_sRGB_checks[i].md5[1] && 2224 png_get_uint_32(profile+92) == png_sRGB_checks[i].md5[2] && 2225 png_get_uint_32(profile+96) == png_sRGB_checks[i].md5[3]) 2226 { 2227 /* This may be one of the old HP profiles without an MD5, in that 2228 * case we can only use the length and Adler32 (note that these 2229 * are not used by default if there is an MD5!) 2230 */ 2231 # if PNG_sRGB_PROFILE_CHECKS == 0 2232 if (png_sRGB_checks[i].have_md5) 2233 return 1+png_sRGB_checks[i].is_broken; 2234 # endif 2235 2236 /* Profile is unsigned or more checks have been configured in. */ 2237 if (length == 0) 2238 { 2239 length = png_get_uint_32(profile); 2240 intent = png_get_uint_32(profile+64); 2241 } 2242 2243 /* Length *and* intent must match */ 2244 if (length == png_sRGB_checks[i].length && 2245 intent == png_sRGB_checks[i].intent) 2246 { 2247 /* Now calculate the adler32 if not done already. */ 2248 if (adler == 0) 2249 { 2250 adler = adler32(0, NULL, 0); 2251 adler = adler32(adler, profile, length); 2252 } 2253 2254 if (adler == png_sRGB_checks[i].adler) 2255 { 2256 /* These basic checks suggest that the data has not been 2257 * modified, but if the check level is more than 1 perform 2258 * our own crc32 checksum on the data. 2259 */ 2260 # if PNG_sRGB_PROFILE_CHECKS > 1 2261 if (crc == 0) 2262 { 2263 crc = crc32(0, NULL, 0); 2264 crc = crc32(crc, profile, length); 2265 } 2266 2267 /* So this check must pass for the 'return' below to happen. 2268 */ 2269 if (crc == png_sRGB_checks[i].crc) 2270 # endif 2271 { 2272 if (png_sRGB_checks[i].is_broken) 2273 { 2274 /* These profiles are known to have bad data that may cause 2275 * problems if they are used, therefore attempt to 2276 * discourage their use, skip the 'have_md5' warning below, 2277 * which is made irrelevant by this error. 2278 */ 2279 png_chunk_report(png_ptr, "known incorrect sRGB profile", 2280 PNG_CHUNK_ERROR); 2281 } 2282 2283 /* Warn that this being done; this isn't even an error since 2284 * the profile is perfectly valid, but it would be nice if 2285 * people used the up-to-date ones. 2286 */ 2287 else if (!png_sRGB_checks[i].have_md5) 2288 { 2289 png_chunk_report(png_ptr, 2290 "out-of-date sRGB profile with no signature", 2291 PNG_CHUNK_WARNING); 2292 } 2293 2294 return 1+png_sRGB_checks[i].is_broken; 2295 } 2296 } 2297 } 2298 2299 # if PNG_sRGB_PROFILE_CHECKS > 0 2300 /* The signature matched, but the profile had been changed in some 2301 * way. This probably indicates a data error or uninformed hacking. 2302 * Fall through to "no match". 2303 */ 2304 png_chunk_report(png_ptr, 2305 "Not recognizing known sRGB profile that has been edited", 2306 PNG_CHUNK_WARNING); 2307 break; 2308 # endif 2309 } 2310 } 2311 2312 return 0; /* no match */ 2313 } 2314 #endif 2315 2316 #ifdef PNG_sRGB_SUPPORTED 2317 void /* PRIVATE */ 2318 png_icc_set_sRGB(png_const_structrp png_ptr, 2319 png_colorspacerp colorspace, png_const_bytep profile, uLong adler) 2320 { 2321 /* Is this profile one of the known ICC sRGB profiles? If it is, just set 2322 * the sRGB information. 2323 */ 2324 if (png_compare_ICC_profile_with_sRGB(png_ptr, profile, adler)) 2325 (void)png_colorspace_set_sRGB(png_ptr, colorspace, 2326 (int)/*already checked*/png_get_uint_32(profile+64)); 2327 } 2328 #endif /* PNG_READ_sRGB_SUPPORTED */ 2329 2330 int /* PRIVATE */ 2331 png_colorspace_set_ICC(png_const_structrp png_ptr, png_colorspacerp colorspace, 2332 png_const_charp name, png_uint_32 profile_length, png_const_bytep profile, 2333 int color_type) 2334 { 2335 if (colorspace->flags & PNG_COLORSPACE_INVALID) 2336 return 0; 2337 2338 if (png_icc_check_length(png_ptr, colorspace, name, profile_length) && 2339 png_icc_check_header(png_ptr, colorspace, name, profile_length, profile, 2340 color_type) && 2341 png_icc_check_tag_table(png_ptr, colorspace, name, profile_length, 2342 profile)) 2343 { 2344 # ifdef PNG_sRGB_SUPPORTED 2345 /* If no sRGB support, don't try storing sRGB information */ 2346 png_icc_set_sRGB(png_ptr, colorspace, profile, 0); 2347 # endif 2348 return 1; 2349 } 2350 2351 /* Failure case */ 2352 return 0; 2353 } 2354 #endif /* iCCP */ 2355 2356 #ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED 2357 void /* PRIVATE */ 2358 png_colorspace_set_rgb_coefficients(png_structrp png_ptr) 2359 { 2360 /* Set the rgb_to_gray coefficients from the colorspace. */ 2361 if (!png_ptr->rgb_to_gray_coefficients_set && 2362 (png_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0) 2363 { 2364 /* png_set_background has not been called, get the coefficients from the Y 2365 * values of the colorspace colorants. 2366 */ 2367 png_fixed_point r = png_ptr->colorspace.end_points_XYZ.red_Y; 2368 png_fixed_point g = png_ptr->colorspace.end_points_XYZ.green_Y; 2369 png_fixed_point b = png_ptr->colorspace.end_points_XYZ.blue_Y; 2370 png_fixed_point total = r+g+b; 2371 2372 if (total > 0 && 2373 r >= 0 && png_muldiv(&r, r, 32768, total) && r >= 0 && r <= 32768 && 2374 g >= 0 && png_muldiv(&g, g, 32768, total) && g >= 0 && g <= 32768 && 2375 b >= 0 && png_muldiv(&b, b, 32768, total) && b >= 0 && b <= 32768 && 2376 r+g+b <= 32769) 2377 { 2378 /* We allow 0 coefficients here. r+g+b may be 32769 if two or 2379 * all of the coefficients were rounded up. Handle this by 2380 * reducing the *largest* coefficient by 1; this matches the 2381 * approach used for the default coefficients in pngrtran.c 2382 */ 2383 int add = 0; 2384 2385 if (r+g+b > 32768) 2386 add = -1; 2387 else if (r+g+b < 32768) 2388 add = 1; 2389 2390 if (add != 0) 2391 { 2392 if (g >= r && g >= b) 2393 g += add; 2394 else if (r >= g && r >= b) 2395 r += add; 2396 else 2397 b += add; 2398 } 2399 2400 /* Check for an internal error. */ 2401 if (r+g+b != 32768) 2402 png_error(png_ptr, 2403 "internal error handling cHRM coefficients"); 2404 2405 else 2406 { 2407 png_ptr->rgb_to_gray_red_coeff = (png_uint_16)r; 2408 png_ptr->rgb_to_gray_green_coeff = (png_uint_16)g; 2409 } 2410 } 2411 2412 /* This is a png_error at present even though it could be ignored - 2413 * it should never happen, but it is important that if it does, the 2414 * bug is fixed. 2415 */ 2416 else 2417 png_error(png_ptr, "internal error handling cHRM->XYZ"); 2418 } 2419 } 2420 #endif 2421 2422 #endif /* COLORSPACE */ 2423 2424 void /* PRIVATE */ 2425 png_check_IHDR(png_const_structrp png_ptr, 2426 png_uint_32 width, png_uint_32 height, int bit_depth, 2427 int color_type, int interlace_type, int compression_type, 2428 int filter_type) 2429 { 2430 int error = 0; 2431 2432 /* Check for width and height valid values */ 2433 if (width == 0) 2434 { 2435 png_warning(png_ptr, "Image width is zero in IHDR"); 2436 error = 1; 2437 } 2438 2439 if (height == 0) 2440 { 2441 png_warning(png_ptr, "Image height is zero in IHDR"); 2442 error = 1; 2443 } 2444 2445 # ifdef PNG_SET_USER_LIMITS_SUPPORTED 2446 if (width > png_ptr->user_width_max) 2447 2448 # else 2449 if (width > PNG_USER_WIDTH_MAX) 2450 # endif 2451 { 2452 png_warning(png_ptr, "Image width exceeds user limit in IHDR"); 2453 error = 1; 2454 } 2455 2456 # ifdef PNG_SET_USER_LIMITS_SUPPORTED 2457 if (height > png_ptr->user_height_max) 2458 # else 2459 if (height > PNG_USER_HEIGHT_MAX) 2460 # endif 2461 { 2462 png_warning(png_ptr, "Image height exceeds user limit in IHDR"); 2463 error = 1; 2464 } 2465 2466 if (width > PNG_UINT_31_MAX) 2467 { 2468 png_warning(png_ptr, "Invalid image width in IHDR"); 2469 error = 1; 2470 } 2471 2472 if (height > PNG_UINT_31_MAX) 2473 { 2474 png_warning(png_ptr, "Invalid image height in IHDR"); 2475 error = 1; 2476 } 2477 2478 /* Check other values */ 2479 if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 && 2480 bit_depth != 8 && bit_depth != 16) 2481 { 2482 png_warning(png_ptr, "Invalid bit depth in IHDR"); 2483 error = 1; 2484 } 2485 2486 if (color_type < 0 || color_type == 1 || 2487 color_type == 5 || color_type > 6) 2488 { 2489 png_warning(png_ptr, "Invalid color type in IHDR"); 2490 error = 1; 2491 } 2492 2493 if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) || 2494 ((color_type == PNG_COLOR_TYPE_RGB || 2495 color_type == PNG_COLOR_TYPE_GRAY_ALPHA || 2496 color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8)) 2497 { 2498 png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR"); 2499 error = 1; 2500 } 2501 2502 if (interlace_type >= PNG_INTERLACE_LAST) 2503 { 2504 png_warning(png_ptr, "Unknown interlace method in IHDR"); 2505 error = 1; 2506 } 2507 2508 if (compression_type != PNG_COMPRESSION_TYPE_BASE) 2509 { 2510 png_warning(png_ptr, "Unknown compression method in IHDR"); 2511 error = 1; 2512 } 2513 2514 # ifdef PNG_MNG_FEATURES_SUPPORTED 2515 /* Accept filter_method 64 (intrapixel differencing) only if 2516 * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and 2517 * 2. Libpng did not read a PNG signature (this filter_method is only 2518 * used in PNG datastreams that are embedded in MNG datastreams) and 2519 * 3. The application called png_permit_mng_features with a mask that 2520 * included PNG_FLAG_MNG_FILTER_64 and 2521 * 4. The filter_method is 64 and 2522 * 5. The color_type is RGB or RGBA 2523 */ 2524 if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) && 2525 png_ptr->mng_features_permitted) 2526 png_warning(png_ptr, "MNG features are not allowed in a PNG datastream"); 2527 2528 if (filter_type != PNG_FILTER_TYPE_BASE) 2529 { 2530 if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) && 2531 (filter_type == PNG_INTRAPIXEL_DIFFERENCING) && 2532 ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) && 2533 (color_type == PNG_COLOR_TYPE_RGB || 2534 color_type == PNG_COLOR_TYPE_RGB_ALPHA))) 2535 { 2536 png_warning(png_ptr, "Unknown filter method in IHDR"); 2537 error = 1; 2538 } 2539 2540 if (png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) 2541 { 2542 png_warning(png_ptr, "Invalid filter method in IHDR"); 2543 error = 1; 2544 } 2545 } 2546 2547 # else 2548 if (filter_type != PNG_FILTER_TYPE_BASE) 2549 { 2550 png_warning(png_ptr, "Unknown filter method in IHDR"); 2551 error = 1; 2552 } 2553 # endif 2554 2555 if (error == 1) 2556 png_error(png_ptr, "Invalid IHDR data"); 2557 } 2558 2559 #if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED) 2560 /* ASCII to fp functions */ 2561 /* Check an ASCII formated floating point value, see the more detailed 2562 * comments in pngpriv.h 2563 */ 2564 /* The following is used internally to preserve the sticky flags */ 2565 #define png_fp_add(state, flags) ((state) |= (flags)) 2566 #define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY)) 2567 2568 int /* PRIVATE */ 2569 png_check_fp_number(png_const_charp string, png_size_t size, int *statep, 2570 png_size_tp whereami) 2571 { 2572 int state = *statep; 2573 png_size_t i = *whereami; 2574 2575 while (i < size) 2576 { 2577 int type; 2578 /* First find the type of the next character */ 2579 switch (string[i]) 2580 { 2581 case 43: type = PNG_FP_SAW_SIGN; break; 2582 case 45: type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break; 2583 case 46: type = PNG_FP_SAW_DOT; break; 2584 case 48: type = PNG_FP_SAW_DIGIT; break; 2585 case 49: case 50: case 51: case 52: 2586 case 53: case 54: case 55: case 56: 2587 case 57: type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break; 2588 case 69: 2589 case 101: type = PNG_FP_SAW_E; break; 2590 default: goto PNG_FP_End; 2591 } 2592 2593 /* Now deal with this type according to the current 2594 * state, the type is arranged to not overlap the 2595 * bits of the PNG_FP_STATE. 2596 */ 2597 switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY)) 2598 { 2599 case PNG_FP_INTEGER + PNG_FP_SAW_SIGN: 2600 if (state & PNG_FP_SAW_ANY) 2601 goto PNG_FP_End; /* not a part of the number */ 2602 2603 png_fp_add(state, type); 2604 break; 2605 2606 case PNG_FP_INTEGER + PNG_FP_SAW_DOT: 2607 /* Ok as trailer, ok as lead of fraction. */ 2608 if (state & PNG_FP_SAW_DOT) /* two dots */ 2609 goto PNG_FP_End; 2610 2611 else if (state & PNG_FP_SAW_DIGIT) /* trailing dot? */ 2612 png_fp_add(state, type); 2613 2614 else 2615 png_fp_set(state, PNG_FP_FRACTION | type); 2616 2617 break; 2618 2619 case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT: 2620 if (state & PNG_FP_SAW_DOT) /* delayed fraction */ 2621 png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT); 2622 2623 png_fp_add(state, type | PNG_FP_WAS_VALID); 2624 2625 break; 2626 2627 case PNG_FP_INTEGER + PNG_FP_SAW_E: 2628 if ((state & PNG_FP_SAW_DIGIT) == 0) 2629 goto PNG_FP_End; 2630 2631 png_fp_set(state, PNG_FP_EXPONENT); 2632 2633 break; 2634 2635 /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN: 2636 goto PNG_FP_End; ** no sign in fraction */ 2637 2638 /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT: 2639 goto PNG_FP_End; ** Because SAW_DOT is always set */ 2640 2641 case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT: 2642 png_fp_add(state, type | PNG_FP_WAS_VALID); 2643 break; 2644 2645 case PNG_FP_FRACTION + PNG_FP_SAW_E: 2646 /* This is correct because the trailing '.' on an 2647 * integer is handled above - so we can only get here 2648 * with the sequence ".E" (with no preceding digits). 2649 */ 2650 if ((state & PNG_FP_SAW_DIGIT) == 0) 2651 goto PNG_FP_End; 2652 2653 png_fp_set(state, PNG_FP_EXPONENT); 2654 2655 break; 2656 2657 case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN: 2658 if (state & PNG_FP_SAW_ANY) 2659 goto PNG_FP_End; /* not a part of the number */ 2660 2661 png_fp_add(state, PNG_FP_SAW_SIGN); 2662 2663 break; 2664 2665 /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT: 2666 goto PNG_FP_End; */ 2667 2668 case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT: 2669 png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID); 2670 2671 break; 2672 2673 /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E: 2674 goto PNG_FP_End; */ 2675 2676 default: goto PNG_FP_End; /* I.e. break 2 */ 2677 } 2678 2679 /* The character seems ok, continue. */ 2680 ++i; 2681 } 2682 2683 PNG_FP_End: 2684 /* Here at the end, update the state and return the correct 2685 * return code. 2686 */ 2687 *statep = state; 2688 *whereami = i; 2689 2690 return (state & PNG_FP_SAW_DIGIT) != 0; 2691 } 2692 2693 2694 /* The same but for a complete string. */ 2695 int 2696 png_check_fp_string(png_const_charp string, png_size_t size) 2697 { 2698 int state=0; 2699 png_size_t char_index=0; 2700 2701 if (png_check_fp_number(string, size, &state, &char_index) && 2702 (char_index == size || string[char_index] == 0)) 2703 return state /* must be non-zero - see above */; 2704 2705 return 0; /* i.e. fail */ 2706 } 2707 #endif /* pCAL or sCAL */ 2708 2709 #ifdef PNG_sCAL_SUPPORTED 2710 # ifdef PNG_FLOATING_POINT_SUPPORTED 2711 /* Utility used below - a simple accurate power of ten from an integral 2712 * exponent. 2713 */ 2714 static double 2715 png_pow10(int power) 2716 { 2717 int recip = 0; 2718 double d = 1; 2719 2720 /* Handle negative exponent with a reciprocal at the end because 2721 * 10 is exact whereas .1 is inexact in base 2 2722 */ 2723 if (power < 0) 2724 { 2725 if (power < DBL_MIN_10_EXP) return 0; 2726 recip = 1, power = -power; 2727 } 2728 2729 if (power > 0) 2730 { 2731 /* Decompose power bitwise. */ 2732 double mult = 10; 2733 do 2734 { 2735 if (power & 1) d *= mult; 2736 mult *= mult; 2737 power >>= 1; 2738 } 2739 while (power > 0); 2740 2741 if (recip) d = 1/d; 2742 } 2743 /* else power is 0 and d is 1 */ 2744 2745 return d; 2746 } 2747 2748 /* Function to format a floating point value in ASCII with a given 2749 * precision. 2750 */ 2751 void /* PRIVATE */ 2752 png_ascii_from_fp(png_const_structrp png_ptr, png_charp ascii, png_size_t size, 2753 double fp, unsigned int precision) 2754 { 2755 /* We use standard functions from math.h, but not printf because 2756 * that would require stdio. The caller must supply a buffer of 2757 * sufficient size or we will png_error. The tests on size and 2758 * the space in ascii[] consumed are indicated below. 2759 */ 2760 if (precision < 1) 2761 precision = DBL_DIG; 2762 2763 /* Enforce the limit of the implementation precision too. */ 2764 if (precision > DBL_DIG+1) 2765 precision = DBL_DIG+1; 2766 2767 /* Basic sanity checks */ 2768 if (size >= precision+5) /* See the requirements below. */ 2769 { 2770 if (fp < 0) 2771 { 2772 fp = -fp; 2773 *ascii++ = 45; /* '-' PLUS 1 TOTAL 1 */ 2774 --size; 2775 } 2776 2777 if (fp >= DBL_MIN && fp <= DBL_MAX) 2778 { 2779 int exp_b10; /* A base 10 exponent */ 2780 double base; /* 10^exp_b10 */ 2781 2782 /* First extract a base 10 exponent of the number, 2783 * the calculation below rounds down when converting 2784 * from base 2 to base 10 (multiply by log10(2) - 2785 * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to 2786 * be increased. Note that the arithmetic shift 2787 * performs a floor() unlike C arithmetic - using a 2788 * C multiply would break the following for negative 2789 * exponents. 2790 */ 2791 (void)frexp(fp, &exp_b10); /* exponent to base 2 */ 2792 2793 exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */ 2794 2795 /* Avoid underflow here. */ 2796 base = png_pow10(exp_b10); /* May underflow */ 2797 2798 while (base < DBL_MIN || base < fp) 2799 { 2800 /* And this may overflow. */ 2801 double test = png_pow10(exp_b10+1); 2802 2803 if (test <= DBL_MAX) 2804 ++exp_b10, base = test; 2805 2806 else 2807 break; 2808 } 2809 2810 /* Normalize fp and correct exp_b10, after this fp is in the 2811 * range [.1,1) and exp_b10 is both the exponent and the digit 2812 * *before* which the decimal point should be inserted 2813 * (starting with 0 for the first digit). Note that this 2814 * works even if 10^exp_b10 is out of range because of the 2815 * test on DBL_MAX above. 2816 */ 2817 fp /= base; 2818 while (fp >= 1) fp /= 10, ++exp_b10; 2819 2820 /* Because of the code above fp may, at this point, be 2821 * less than .1, this is ok because the code below can 2822 * handle the leading zeros this generates, so no attempt 2823 * is made to correct that here. 2824 */ 2825 2826 { 2827 int czero, clead, cdigits; 2828 char exponent[10]; 2829 2830 /* Allow up to two leading zeros - this will not lengthen 2831 * the number compared to using E-n. 2832 */ 2833 if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */ 2834 { 2835 czero = -exp_b10; /* PLUS 2 digits: TOTAL 3 */ 2836 exp_b10 = 0; /* Dot added below before first output. */ 2837 } 2838 else 2839 czero = 0; /* No zeros to add */ 2840 2841 /* Generate the digit list, stripping trailing zeros and 2842 * inserting a '.' before a digit if the exponent is 0. 2843 */ 2844 clead = czero; /* Count of leading zeros */ 2845 cdigits = 0; /* Count of digits in list. */ 2846 2847 do 2848 { 2849 double d; 2850 2851 fp *= 10; 2852 /* Use modf here, not floor and subtract, so that 2853 * the separation is done in one step. At the end 2854 * of the loop don't break the number into parts so 2855 * that the final digit is rounded. 2856 */ 2857 if (cdigits+czero-clead+1 < (int)precision) 2858 fp = modf(fp, &d); 2859 2860 else 2861 { 2862 d = floor(fp + .5); 2863 2864 if (d > 9) 2865 { 2866 /* Rounding up to 10, handle that here. */ 2867 if (czero > 0) 2868 { 2869 --czero, d = 1; 2870 if (cdigits == 0) --clead; 2871 } 2872 else 2873 { 2874 while (cdigits > 0 && d > 9) 2875 { 2876 int ch = *--ascii; 2877 2878 if (exp_b10 != (-1)) 2879 ++exp_b10; 2880 2881 else if (ch == 46) 2882 { 2883 ch = *--ascii, ++size; 2884 /* Advance exp_b10 to '1', so that the 2885 * decimal point happens after the 2886 * previous digit. 2887 */ 2888 exp_b10 = 1; 2889 } 2890 2891 --cdigits; 2892 d = ch - 47; /* I.e. 1+(ch-48) */ 2893 } 2894 2895 /* Did we reach the beginning? If so adjust the 2896 * exponent but take into account the leading 2897 * decimal point. 2898 */ 2899 if (d > 9) /* cdigits == 0 */ 2900 { 2901 if (exp_b10 == (-1)) 2902 { 2903 /* Leading decimal point (plus zeros?), if 2904 * we lose the decimal point here it must 2905 * be reentered below. 2906 */ 2907 int ch = *--ascii; 2908 2909 if (ch == 46) 2910 ++size, exp_b10 = 1; 2911 2912 /* Else lost a leading zero, so 'exp_b10' is 2913 * still ok at (-1) 2914 */ 2915 } 2916 else 2917 ++exp_b10; 2918 2919 /* In all cases we output a '1' */ 2920 d = 1; 2921 } 2922 } 2923 } 2924 fp = 0; /* Guarantees termination below. */ 2925 } 2926 2927 if (d == 0) 2928 { 2929 ++czero; 2930 if (cdigits == 0) ++clead; 2931 } 2932 else 2933 { 2934 /* Included embedded zeros in the digit count. */ 2935 cdigits += czero - clead; 2936 clead = 0; 2937 2938 while (czero > 0) 2939 { 2940 /* exp_b10 == (-1) means we just output the decimal 2941 * place - after the DP don't adjust 'exp_b10' any 2942 * more! 2943 */ 2944 if (exp_b10 != (-1)) 2945 { 2946 if (exp_b10 == 0) *ascii++ = 46, --size; 2947 /* PLUS 1: TOTAL 4 */ 2948 --exp_b10; 2949 } 2950 *ascii++ = 48, --czero; 2951 } 2952 2953 if (exp_b10 != (-1)) 2954 { 2955 if (exp_b10 == 0) *ascii++ = 46, --size; /* counted 2956 above */ 2957 --exp_b10; 2958 } 2959 *ascii++ = (char)(48 + (int)d), ++cdigits; 2960 } 2961 } 2962 while (cdigits+czero-clead < (int)precision && fp > DBL_MIN); 2963 2964 /* The total output count (max) is now 4+precision */ 2965 2966 /* Check for an exponent, if we don't need one we are 2967 * done and just need to terminate the string. At 2968 * this point exp_b10==(-1) is effectively if flag - it got 2969 * to '-1' because of the decrement after outputing 2970 * the decimal point above (the exponent required is 2971 * *not* -1!) 2972 */ 2973 if (exp_b10 >= (-1) && exp_b10 <= 2) 2974 { 2975 /* The following only happens if we didn't output the 2976 * leading zeros above for negative exponent, so this 2977 * doest add to the digit requirement. Note that the 2978 * two zeros here can only be output if the two leading 2979 * zeros were *not* output, so this doesn't increase 2980 * the output count. 2981 */ 2982 while (--exp_b10 >= 0) *ascii++ = 48; 2983 2984 *ascii = 0; 2985 2986 /* Total buffer requirement (including the '\0') is 2987 * 5+precision - see check at the start. 2988 */ 2989 return; 2990 } 2991 2992 /* Here if an exponent is required, adjust size for 2993 * the digits we output but did not count. The total 2994 * digit output here so far is at most 1+precision - no 2995 * decimal point and no leading or trailing zeros have 2996 * been output. 2997 */ 2998 size -= cdigits; 2999 3000 *ascii++ = 69, --size; /* 'E': PLUS 1 TOTAL 2+precision */ 3001 3002 /* The following use of an unsigned temporary avoids ambiguities in 3003 * the signed arithmetic on exp_b10 and permits GCC at least to do 3004 * better optimization. 3005 */ 3006 { 3007 unsigned int uexp_b10; 3008 3009 if (exp_b10 < 0) 3010 { 3011 *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */ 3012 uexp_b10 = -exp_b10; 3013 } 3014 3015 else 3016 uexp_b10 = exp_b10; 3017 3018 cdigits = 0; 3019 3020 while (uexp_b10 > 0) 3021 { 3022 exponent[cdigits++] = (char)(48 + uexp_b10 % 10); 3023 uexp_b10 /= 10; 3024 } 3025 } 3026 3027 /* Need another size check here for the exponent digits, so 3028 * this need not be considered above. 3029 */ 3030 if ((int)size > cdigits) 3031 { 3032 while (cdigits > 0) *ascii++ = exponent[--cdigits]; 3033 3034 *ascii = 0; 3035 3036 return; 3037 } 3038 } 3039 } 3040 else if (!(fp >= DBL_MIN)) 3041 { 3042 *ascii++ = 48; /* '0' */ 3043 *ascii = 0; 3044 return; 3045 } 3046 else 3047 { 3048 *ascii++ = 105; /* 'i' */ 3049 *ascii++ = 110; /* 'n' */ 3050 *ascii++ = 102; /* 'f' */ 3051 *ascii = 0; 3052 return; 3053 } 3054 } 3055 3056 /* Here on buffer too small. */ 3057 png_error(png_ptr, "ASCII conversion buffer too small"); 3058 } 3059 3060 # endif /* FLOATING_POINT */ 3061 3062 # ifdef PNG_FIXED_POINT_SUPPORTED 3063 /* Function to format a fixed point value in ASCII. 3064 */ 3065 void /* PRIVATE */ 3066 png_ascii_from_fixed(png_const_structrp png_ptr, png_charp ascii, 3067 png_size_t size, png_fixed_point fp) 3068 { 3069 /* Require space for 10 decimal digits, a decimal point, a minus sign and a 3070 * trailing \0, 13 characters: 3071 */ 3072 if (size > 12) 3073 { 3074 png_uint_32 num; 3075 3076 /* Avoid overflow here on the minimum integer. */ 3077 if (fp < 0) 3078 *ascii++ = 45, --size, num = -fp; 3079 else 3080 num = fp; 3081 3082 if (num <= 0x80000000) /* else overflowed */ 3083 { 3084 unsigned int ndigits = 0, first = 16 /* flag value */; 3085 char digits[10]; 3086 3087 while (num) 3088 { 3089 /* Split the low digit off num: */ 3090 unsigned int tmp = num/10; 3091 num -= tmp*10; 3092 digits[ndigits++] = (char)(48 + num); 3093 /* Record the first non-zero digit, note that this is a number 3094 * starting at 1, it's not actually the array index. 3095 */ 3096 if (first == 16 && num > 0) 3097 first = ndigits; 3098 num = tmp; 3099 } 3100 3101 if (ndigits > 0) 3102 { 3103 while (ndigits > 5) *ascii++ = digits[--ndigits]; 3104 /* The remaining digits are fractional digits, ndigits is '5' or 3105 * smaller at this point. It is certainly not zero. Check for a 3106 * non-zero fractional digit: 3107 */ 3108 if (first <= 5) 3109 { 3110 unsigned int i; 3111 *ascii++ = 46; /* decimal point */ 3112 /* ndigits may be <5 for small numbers, output leading zeros 3113 * then ndigits digits to first: 3114 */ 3115 i = 5; 3116 while (ndigits < i) *ascii++ = 48, --i; 3117 while (ndigits >= first) *ascii++ = digits[--ndigits]; 3118 /* Don't output the trailing zeros! */ 3119 } 3120 } 3121 else 3122 *ascii++ = 48; 3123 3124 /* And null terminate the string: */ 3125 *ascii = 0; 3126 return; 3127 } 3128 } 3129 3130 /* Here on buffer too small. */ 3131 png_error(png_ptr, "ASCII conversion buffer too small"); 3132 } 3133 # endif /* FIXED_POINT */ 3134 #endif /* READ_SCAL */ 3135 3136 #if defined(PNG_FLOATING_POINT_SUPPORTED) && \ 3137 !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \ 3138 (defined(PNG_gAMA_SUPPORTED) || defined(PNG_cHRM_SUPPORTED) || \ 3139 defined(PNG_sCAL_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) || \ 3140 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)) || \ 3141 (defined(PNG_sCAL_SUPPORTED) && \ 3142 defined(PNG_FLOATING_ARITHMETIC_SUPPORTED)) 3143 png_fixed_point 3144 png_fixed(png_const_structrp png_ptr, double fp, png_const_charp text) 3145 { 3146 double r = floor(100000 * fp + .5); 3147 3148 if (r > 2147483647. || r < -2147483648.) 3149 png_fixed_error(png_ptr, text); 3150 3151 # ifndef PNG_ERROR_TEXT_SUPPORTED 3152 PNG_UNUSED(text) 3153 # endif 3154 3155 return (png_fixed_point)r; 3156 } 3157 #endif 3158 3159 #if defined(PNG_GAMMA_SUPPORTED) || defined(PNG_COLORSPACE_SUPPORTED) ||\ 3160 defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG_READ_pHYs_SUPPORTED) 3161 /* muldiv functions */ 3162 /* This API takes signed arguments and rounds the result to the nearest 3163 * integer (or, for a fixed point number - the standard argument - to 3164 * the nearest .00001). Overflow and divide by zero are signalled in 3165 * the result, a boolean - true on success, false on overflow. 3166 */ 3167 int 3168 png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times, 3169 png_int_32 divisor) 3170 { 3171 /* Return a * times / divisor, rounded. */ 3172 if (divisor != 0) 3173 { 3174 if (a == 0 || times == 0) 3175 { 3176 *res = 0; 3177 return 1; 3178 } 3179 else 3180 { 3181 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED 3182 double r = a; 3183 r *= times; 3184 r /= divisor; 3185 r = floor(r+.5); 3186 3187 /* A png_fixed_point is a 32-bit integer. */ 3188 if (r <= 2147483647. && r >= -2147483648.) 3189 { 3190 *res = (png_fixed_point)r; 3191 return 1; 3192 } 3193 #else 3194 int negative = 0; 3195 png_uint_32 A, T, D; 3196 png_uint_32 s16, s32, s00; 3197 3198 if (a < 0) 3199 negative = 1, A = -a; 3200 else 3201 A = a; 3202 3203 if (times < 0) 3204 negative = !negative, T = -times; 3205 else 3206 T = times; 3207 3208 if (divisor < 0) 3209 negative = !negative, D = -divisor; 3210 else 3211 D = divisor; 3212 3213 /* Following can't overflow because the arguments only 3214 * have 31 bits each, however the result may be 32 bits. 3215 */ 3216 s16 = (A >> 16) * (T & 0xffff) + 3217 (A & 0xffff) * (T >> 16); 3218 /* Can't overflow because the a*times bit is only 30 3219 * bits at most. 3220 */ 3221 s32 = (A >> 16) * (T >> 16) + (s16 >> 16); 3222 s00 = (A & 0xffff) * (T & 0xffff); 3223 3224 s16 = (s16 & 0xffff) << 16; 3225 s00 += s16; 3226 3227 if (s00 < s16) 3228 ++s32; /* carry */ 3229 3230 if (s32 < D) /* else overflow */ 3231 { 3232 /* s32.s00 is now the 64-bit product, do a standard 3233 * division, we know that s32 < D, so the maximum 3234 * required shift is 31. 3235 */ 3236 int bitshift = 32; 3237 png_fixed_point result = 0; /* NOTE: signed */ 3238 3239 while (--bitshift >= 0) 3240 { 3241 png_uint_32 d32, d00; 3242 3243 if (bitshift > 0) 3244 d32 = D >> (32-bitshift), d00 = D << bitshift; 3245 3246 else 3247 d32 = 0, d00 = D; 3248 3249 if (s32 > d32) 3250 { 3251 if (s00 < d00) --s32; /* carry */ 3252 s32 -= d32, s00 -= d00, result += 1<<bitshift; 3253 } 3254 3255 else 3256 if (s32 == d32 && s00 >= d00) 3257 s32 = 0, s00 -= d00, result += 1<<bitshift; 3258 } 3259 3260 /* Handle the rounding. */ 3261 if (s00 >= (D >> 1)) 3262 ++result; 3263 3264 if (negative) 3265 result = -result; 3266 3267 /* Check for overflow. */ 3268 if ((negative && result <= 0) || (!negative && result >= 0)) 3269 { 3270 *res = result; 3271 return 1; 3272 } 3273 } 3274 #endif 3275 } 3276 } 3277 3278 return 0; 3279 } 3280 #endif /* READ_GAMMA || INCH_CONVERSIONS */ 3281 3282 #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED) 3283 /* The following is for when the caller doesn't much care about the 3284 * result. 3285 */ 3286 png_fixed_point 3287 png_muldiv_warn(png_const_structrp png_ptr, png_fixed_point a, png_int_32 times, 3288 png_int_32 divisor) 3289 { 3290 png_fixed_point result; 3291 3292 if (png_muldiv(&result, a, times, divisor)) 3293 return result; 3294 3295 png_warning(png_ptr, "fixed point overflow ignored"); 3296 return 0; 3297 } 3298 #endif 3299 3300 #ifdef PNG_GAMMA_SUPPORTED /* more fixed point functions for gamma */ 3301 /* Calculate a reciprocal, return 0 on div-by-zero or overflow. */ 3302 png_fixed_point 3303 png_reciprocal(png_fixed_point a) 3304 { 3305 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED 3306 double r = floor(1E10/a+.5); 3307 3308 if (r <= 2147483647. && r >= -2147483648.) 3309 return (png_fixed_point)r; 3310 #else 3311 png_fixed_point res; 3312 3313 if (png_muldiv(&res, 100000, 100000, a)) 3314 return res; 3315 #endif 3316 3317 return 0; /* error/overflow */ 3318 } 3319 3320 /* This is the shared test on whether a gamma value is 'significant' - whether 3321 * it is worth doing gamma correction. 3322 */ 3323 int /* PRIVATE */ 3324 png_gamma_significant(png_fixed_point gamma_val) 3325 { 3326 return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED || 3327 gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED; 3328 } 3329 #endif 3330 3331 #ifdef PNG_READ_GAMMA_SUPPORTED 3332 # ifdef PNG_16BIT_SUPPORTED 3333 /* A local convenience routine. */ 3334 static png_fixed_point 3335 png_product2(png_fixed_point a, png_fixed_point b) 3336 { 3337 /* The required result is 1/a * 1/b; the following preserves accuracy. */ 3338 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED 3339 double r = a * 1E-5; 3340 r *= b; 3341 r = floor(r+.5); 3342 3343 if (r <= 2147483647. && r >= -2147483648.) 3344 return (png_fixed_point)r; 3345 # else 3346 png_fixed_point res; 3347 3348 if (png_muldiv(&res, a, b, 100000)) 3349 return res; 3350 # endif 3351 3352 return 0; /* overflow */ 3353 } 3354 # endif /* 16BIT */ 3355 3356 /* The inverse of the above. */ 3357 png_fixed_point 3358 png_reciprocal2(png_fixed_point a, png_fixed_point b) 3359 { 3360 /* The required result is 1/a * 1/b; the following preserves accuracy. */ 3361 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED 3362 double r = 1E15/a; 3363 r /= b; 3364 r = floor(r+.5); 3365 3366 if (r <= 2147483647. && r >= -2147483648.) 3367 return (png_fixed_point)r; 3368 #else 3369 /* This may overflow because the range of png_fixed_point isn't symmetric, 3370 * but this API is only used for the product of file and screen gamma so it 3371 * doesn't matter that the smallest number it can produce is 1/21474, not 3372 * 1/100000 3373 */ 3374 png_fixed_point res = png_product2(a, b); 3375 3376 if (res != 0) 3377 return png_reciprocal(res); 3378 #endif 3379 3380 return 0; /* overflow */ 3381 } 3382 #endif /* READ_GAMMA */ 3383 3384 #ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */ 3385 #ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED 3386 /* Fixed point gamma. 3387 * 3388 * The code to calculate the tables used below can be found in the shell script 3389 * contrib/tools/intgamma.sh 3390 * 3391 * To calculate gamma this code implements fast log() and exp() calls using only 3392 * fixed point arithmetic. This code has sufficient precision for either 8-bit 3393 * or 16-bit sample values. 3394 * 3395 * The tables used here were calculated using simple 'bc' programs, but C double 3396 * precision floating point arithmetic would work fine. 3397 * 3398 * 8-bit log table 3399 * This is a table of -log(value/255)/log(2) for 'value' in the range 128 to 3400 * 255, so it's the base 2 logarithm of a normalized 8-bit floating point 3401 * mantissa. The numbers are 32-bit fractions. 3402 */ 3403 static const png_uint_32 3404 png_8bit_l2[128] = 3405 { 3406 4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U, 3407 3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U, 3408 3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U, 3409 3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U, 3410 3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U, 3411 2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U, 3412 2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U, 3413 2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U, 3414 2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U, 3415 2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U, 3416 1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U, 3417 1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U, 3418 1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U, 3419 1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U, 3420 1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U, 3421 971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U, 3422 803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U, 3423 639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U, 3424 479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U, 3425 324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U, 3426 172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U, 3427 24347096U, 0U 3428 3429 #if 0 3430 /* The following are the values for 16-bit tables - these work fine for the 3431 * 8-bit conversions but produce very slightly larger errors in the 16-bit 3432 * log (about 1.2 as opposed to 0.7 absolute error in the final value). To 3433 * use these all the shifts below must be adjusted appropriately. 3434 */ 3435 65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054, 3436 57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803, 3437 50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068, 3438 43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782, 3439 37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887, 3440 31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339, 3441 25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098, 3442 20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132, 3443 15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415, 3444 10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523, 3445 6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495, 3446 1119, 744, 372 3447 #endif 3448 }; 3449 3450 static png_int_32 3451 png_log8bit(unsigned int x) 3452 { 3453 unsigned int lg2 = 0; 3454 /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log, 3455 * because the log is actually negate that means adding 1. The final 3456 * returned value thus has the range 0 (for 255 input) to 7.994 (for 1 3457 * input), return -1 for the overflow (log 0) case, - so the result is 3458 * always at most 19 bits. 3459 */ 3460 if ((x &= 0xff) == 0) 3461 return -1; 3462 3463 if ((x & 0xf0) == 0) 3464 lg2 = 4, x <<= 4; 3465 3466 if ((x & 0xc0) == 0) 3467 lg2 += 2, x <<= 2; 3468 3469 if ((x & 0x80) == 0) 3470 lg2 += 1, x <<= 1; 3471 3472 /* result is at most 19 bits, so this cast is safe: */ 3473 return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16)); 3474 } 3475 3476 /* The above gives exact (to 16 binary places) log2 values for 8-bit images, 3477 * for 16-bit images we use the most significant 8 bits of the 16-bit value to 3478 * get an approximation then multiply the approximation by a correction factor 3479 * determined by the remaining up to 8 bits. This requires an additional step 3480 * in the 16-bit case. 3481 * 3482 * We want log2(value/65535), we have log2(v'/255), where: 3483 * 3484 * value = v' * 256 + v'' 3485 * = v' * f 3486 * 3487 * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128 3488 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less 3489 * than 258. The final factor also needs to correct for the fact that our 8-bit 3490 * value is scaled by 255, whereas the 16-bit values must be scaled by 65535. 3491 * 3492 * This gives a final formula using a calculated value 'x' which is value/v' and 3493 * scaling by 65536 to match the above table: 3494 * 3495 * log2(x/257) * 65536 3496 * 3497 * Since these numbers are so close to '1' we can use simple linear 3498 * interpolation between the two end values 256/257 (result -368.61) and 258/257 3499 * (result 367.179). The values used below are scaled by a further 64 to give 3500 * 16-bit precision in the interpolation: 3501 * 3502 * Start (256): -23591 3503 * Zero (257): 0 3504 * End (258): 23499 3505 */ 3506 static png_int_32 3507 png_log16bit(png_uint_32 x) 3508 { 3509 unsigned int lg2 = 0; 3510 3511 /* As above, but now the input has 16 bits. */ 3512 if ((x &= 0xffff) == 0) 3513 return -1; 3514 3515 if ((x & 0xff00) == 0) 3516 lg2 = 8, x <<= 8; 3517 3518 if ((x & 0xf000) == 0) 3519 lg2 += 4, x <<= 4; 3520 3521 if ((x & 0xc000) == 0) 3522 lg2 += 2, x <<= 2; 3523 3524 if ((x & 0x8000) == 0) 3525 lg2 += 1, x <<= 1; 3526 3527 /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional 3528 * value. 3529 */ 3530 lg2 <<= 28; 3531 lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4; 3532 3533 /* Now we need to interpolate the factor, this requires a division by the top 3534 * 8 bits. Do this with maximum precision. 3535 */ 3536 x = ((x << 16) + (x >> 9)) / (x >> 8); 3537 3538 /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24, 3539 * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly 3540 * 16 bits to interpolate to get the low bits of the result. Round the 3541 * answer. Note that the end point values are scaled by 64 to retain overall 3542 * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust 3543 * the overall scaling by 6-12. Round at every step. 3544 */ 3545 x -= 1U << 24; 3546 3547 if (x <= 65536U) /* <= '257' */ 3548 lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12); 3549 3550 else 3551 lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12); 3552 3553 /* Safe, because the result can't have more than 20 bits: */ 3554 return (png_int_32)((lg2 + 2048) >> 12); 3555 } 3556 3557 /* The 'exp()' case must invert the above, taking a 20-bit fixed point 3558 * logarithmic value and returning a 16 or 8-bit number as appropriate. In 3559 * each case only the low 16 bits are relevant - the fraction - since the 3560 * integer bits (the top 4) simply determine a shift. 3561 * 3562 * The worst case is the 16-bit distinction between 65535 and 65534, this 3563 * requires perhaps spurious accuracty in the decoding of the logarithm to 3564 * distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance 3565 * of getting this accuracy in practice. 3566 * 3567 * To deal with this the following exp() function works out the exponent of the 3568 * frational part of the logarithm by using an accurate 32-bit value from the 3569 * top four fractional bits then multiplying in the remaining bits. 3570 */ 3571 static const png_uint_32 3572 png_32bit_exp[16] = 3573 { 3574 /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */ 3575 4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U, 3576 3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U, 3577 2553802834U, 2445529972U, 2341847524U, 2242560872U 3578 }; 3579 3580 /* Adjustment table; provided to explain the numbers in the code below. */ 3581 #if 0 3582 for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"} 3583 11 44937.64284865548751208448 3584 10 45180.98734845585101160448 3585 9 45303.31936980687359311872 3586 8 45364.65110595323018870784 3587 7 45395.35850361789624614912 3588 6 45410.72259715102037508096 3589 5 45418.40724413220722311168 3590 4 45422.25021786898173001728 3591 3 45424.17186732298419044352 3592 2 45425.13273269940811464704 3593 1 45425.61317555035558641664 3594 0 45425.85339951654943850496 3595 #endif 3596 3597 static png_uint_32 3598 png_exp(png_fixed_point x) 3599 { 3600 if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */ 3601 { 3602 /* Obtain a 4-bit approximation */ 3603 png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf]; 3604 3605 /* Incorporate the low 12 bits - these decrease the returned value by 3606 * multiplying by a number less than 1 if the bit is set. The multiplier 3607 * is determined by the above table and the shift. Notice that the values 3608 * converge on 45426 and this is used to allow linear interpolation of the 3609 * low bits. 3610 */ 3611 if (x & 0x800) 3612 e -= (((e >> 16) * 44938U) + 16U) >> 5; 3613 3614 if (x & 0x400) 3615 e -= (((e >> 16) * 45181U) + 32U) >> 6; 3616 3617 if (x & 0x200) 3618 e -= (((e >> 16) * 45303U) + 64U) >> 7; 3619 3620 if (x & 0x100) 3621 e -= (((e >> 16) * 45365U) + 128U) >> 8; 3622 3623 if (x & 0x080) 3624 e -= (((e >> 16) * 45395U) + 256U) >> 9; 3625 3626 if (x & 0x040) 3627 e -= (((e >> 16) * 45410U) + 512U) >> 10; 3628 3629 /* And handle the low 6 bits in a single block. */ 3630 e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9; 3631 3632 /* Handle the upper bits of x. */ 3633 e >>= x >> 16; 3634 return e; 3635 } 3636 3637 /* Check for overflow */ 3638 if (x <= 0) 3639 return png_32bit_exp[0]; 3640 3641 /* Else underflow */ 3642 return 0; 3643 } 3644 3645 static png_byte 3646 png_exp8bit(png_fixed_point lg2) 3647 { 3648 /* Get a 32-bit value: */ 3649 png_uint_32 x = png_exp(lg2); 3650 3651 /* Convert the 32-bit value to 0..255 by multiplying by 256-1, note that the 3652 * second, rounding, step can't overflow because of the first, subtraction, 3653 * step. 3654 */ 3655 x -= x >> 8; 3656 return (png_byte)((x + 0x7fffffU) >> 24); 3657 } 3658 3659 #ifdef PNG_16BIT_SUPPORTED 3660 static png_uint_16 3661 png_exp16bit(png_fixed_point lg2) 3662 { 3663 /* Get a 32-bit value: */ 3664 png_uint_32 x = png_exp(lg2); 3665 3666 /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */ 3667 x -= x >> 16; 3668 return (png_uint_16)((x + 32767U) >> 16); 3669 } 3670 #endif /* 16BIT */ 3671 #endif /* FLOATING_ARITHMETIC */ 3672 3673 png_byte 3674 png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val) 3675 { 3676 if (value > 0 && value < 255) 3677 { 3678 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED 3679 double r = floor(255*pow(value/255.,gamma_val*.00001)+.5); 3680 return (png_byte)r; 3681 # else 3682 png_int_32 lg2 = png_log8bit(value); 3683 png_fixed_point res; 3684 3685 if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1)) 3686 return png_exp8bit(res); 3687 3688 /* Overflow. */ 3689 value = 0; 3690 # endif 3691 } 3692 3693 return (png_byte)value; 3694 } 3695 3696 #ifdef PNG_16BIT_SUPPORTED 3697 png_uint_16 3698 png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val) 3699 { 3700 if (value > 0 && value < 65535) 3701 { 3702 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED 3703 double r = floor(65535*pow(value/65535.,gamma_val*.00001)+.5); 3704 return (png_uint_16)r; 3705 # else 3706 png_int_32 lg2 = png_log16bit(value); 3707 png_fixed_point res; 3708 3709 if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1)) 3710 return png_exp16bit(res); 3711 3712 /* Overflow. */ 3713 value = 0; 3714 # endif 3715 } 3716 3717 return (png_uint_16)value; 3718 } 3719 #endif /* 16BIT */ 3720 3721 /* This does the right thing based on the bit_depth field of the 3722 * png_struct, interpreting values as 8-bit or 16-bit. While the result 3723 * is nominally a 16-bit value if bit depth is 8 then the result is 3724 * 8-bit (as are the arguments.) 3725 */ 3726 png_uint_16 /* PRIVATE */ 3727 png_gamma_correct(png_structrp png_ptr, unsigned int value, 3728 png_fixed_point gamma_val) 3729 { 3730 if (png_ptr->bit_depth == 8) 3731 return png_gamma_8bit_correct(value, gamma_val); 3732 3733 #ifdef PNG_16BIT_SUPPORTED 3734 else 3735 return png_gamma_16bit_correct(value, gamma_val); 3736 #else 3737 /* should not reach this */ 3738 return 0; 3739 #endif /* 16BIT */ 3740 } 3741 3742 #ifdef PNG_16BIT_SUPPORTED 3743 /* Internal function to build a single 16-bit table - the table consists of 3744 * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount 3745 * to shift the input values right (or 16-number_of_signifiant_bits). 3746 * 3747 * The caller is responsible for ensuring that the table gets cleaned up on 3748 * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument 3749 * should be somewhere that will be cleaned. 3750 */ 3751 static void 3752 png_build_16bit_table(png_structrp png_ptr, png_uint_16pp *ptable, 3753 PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val) 3754 { 3755 /* Various values derived from 'shift': */ 3756 PNG_CONST unsigned int num = 1U << (8U - shift); 3757 PNG_CONST unsigned int max = (1U << (16U - shift))-1U; 3758 PNG_CONST unsigned int max_by_2 = 1U << (15U-shift); 3759 unsigned int i; 3760 3761 png_uint_16pp table = *ptable = 3762 (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p))); 3763 3764 for (i = 0; i < num; i++) 3765 { 3766 png_uint_16p sub_table = table[i] = 3767 (png_uint_16p)png_malloc(png_ptr, 256 * (sizeof (png_uint_16))); 3768 3769 /* The 'threshold' test is repeated here because it can arise for one of 3770 * the 16-bit tables even if the others don't hit it. 3771 */ 3772 if (png_gamma_significant(gamma_val)) 3773 { 3774 /* The old code would overflow at the end and this would cause the 3775 * 'pow' function to return a result >1, resulting in an 3776 * arithmetic error. This code follows the spec exactly; ig is 3777 * the recovered input sample, it always has 8-16 bits. 3778 * 3779 * We want input * 65535/max, rounded, the arithmetic fits in 32 3780 * bits (unsigned) so long as max <= 32767. 3781 */ 3782 unsigned int j; 3783 for (j = 0; j < 256; j++) 3784 { 3785 png_uint_32 ig = (j << (8-shift)) + i; 3786 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED 3787 /* Inline the 'max' scaling operation: */ 3788 double d = floor(65535*pow(ig/(double)max, gamma_val*.00001)+.5); 3789 sub_table[j] = (png_uint_16)d; 3790 # else 3791 if (shift) 3792 ig = (ig * 65535U + max_by_2)/max; 3793 3794 sub_table[j] = png_gamma_16bit_correct(ig, gamma_val); 3795 # endif 3796 } 3797 } 3798 else 3799 { 3800 /* We must still build a table, but do it the fast way. */ 3801 unsigned int j; 3802 3803 for (j = 0; j < 256; j++) 3804 { 3805 png_uint_32 ig = (j << (8-shift)) + i; 3806 3807 if (shift) 3808 ig = (ig * 65535U + max_by_2)/max; 3809 3810 sub_table[j] = (png_uint_16)ig; 3811 } 3812 } 3813 } 3814 } 3815 3816 /* NOTE: this function expects the *inverse* of the overall gamma transformation 3817 * required. 3818 */ 3819 static void 3820 png_build_16to8_table(png_structrp png_ptr, png_uint_16pp *ptable, 3821 PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val) 3822 { 3823 PNG_CONST unsigned int num = 1U << (8U - shift); 3824 PNG_CONST unsigned int max = (1U << (16U - shift))-1U; 3825 unsigned int i; 3826 png_uint_32 last; 3827 3828 png_uint_16pp table = *ptable = 3829 (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p))); 3830 3831 /* 'num' is the number of tables and also the number of low bits of low 3832 * bits of the input 16-bit value used to select a table. Each table is 3833 * itself index by the high 8 bits of the value. 3834 */ 3835 for (i = 0; i < num; i++) 3836 table[i] = (png_uint_16p)png_malloc(png_ptr, 3837 256 * (sizeof (png_uint_16))); 3838 3839 /* 'gamma_val' is set to the reciprocal of the value calculated above, so 3840 * pow(out,g) is an *input* value. 'last' is the last input value set. 3841 * 3842 * In the loop 'i' is used to find output values. Since the output is 3843 * 8-bit there are only 256 possible values. The tables are set up to 3844 * select the closest possible output value for each input by finding 3845 * the input value at the boundary between each pair of output values 3846 * and filling the table up to that boundary with the lower output 3847 * value. 3848 * 3849 * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit 3850 * values the code below uses a 16-bit value in i; the values start at 3851 * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last 3852 * entries are filled with 255). Start i at 128 and fill all 'last' 3853 * table entries <= 'max' 3854 */ 3855 last = 0; 3856 for (i = 0; i < 255; ++i) /* 8-bit output value */ 3857 { 3858 /* Find the corresponding maximum input value */ 3859 png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */ 3860 3861 /* Find the boundary value in 16 bits: */ 3862 png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val); 3863 3864 /* Adjust (round) to (16-shift) bits: */ 3865 bound = (bound * max + 32768U)/65535U + 1U; 3866 3867 while (last < bound) 3868 { 3869 table[last & (0xffU >> shift)][last >> (8U - shift)] = out; 3870 last++; 3871 } 3872 } 3873 3874 /* And fill in the final entries. */ 3875 while (last < (num << 8)) 3876 { 3877 table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U; 3878 last++; 3879 } 3880 } 3881 #endif /* 16BIT */ 3882 3883 /* Build a single 8-bit table: same as the 16-bit case but much simpler (and 3884 * typically much faster). Note that libpng currently does no sBIT processing 3885 * (apparently contrary to the spec) so a 256 entry table is always generated. 3886 */ 3887 static void 3888 png_build_8bit_table(png_structrp png_ptr, png_bytepp ptable, 3889 PNG_CONST png_fixed_point gamma_val) 3890 { 3891 unsigned int i; 3892 png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256); 3893 3894 if (png_gamma_significant(gamma_val)) for (i=0; i<256; i++) 3895 table[i] = png_gamma_8bit_correct(i, gamma_val); 3896 3897 else for (i=0; i<256; ++i) 3898 table[i] = (png_byte)i; 3899 } 3900 3901 /* Used from png_read_destroy and below to release the memory used by the gamma 3902 * tables. 3903 */ 3904 void /* PRIVATE */ 3905 png_destroy_gamma_table(png_structrp png_ptr) 3906 { 3907 png_free(png_ptr, png_ptr->gamma_table); 3908 png_ptr->gamma_table = NULL; 3909 3910 #ifdef PNG_16BIT_SUPPORTED 3911 if (png_ptr->gamma_16_table != NULL) 3912 { 3913 int i; 3914 int istop = (1 << (8 - png_ptr->gamma_shift)); 3915 for (i = 0; i < istop; i++) 3916 { 3917 png_free(png_ptr, png_ptr->gamma_16_table[i]); 3918 } 3919 png_free(png_ptr, png_ptr->gamma_16_table); 3920 png_ptr->gamma_16_table = NULL; 3921 } 3922 #endif /* 16BIT */ 3923 3924 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ 3925 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ 3926 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) 3927 png_free(png_ptr, png_ptr->gamma_from_1); 3928 png_ptr->gamma_from_1 = NULL; 3929 png_free(png_ptr, png_ptr->gamma_to_1); 3930 png_ptr->gamma_to_1 = NULL; 3931 3932 #ifdef PNG_16BIT_SUPPORTED 3933 if (png_ptr->gamma_16_from_1 != NULL) 3934 { 3935 int i; 3936 int istop = (1 << (8 - png_ptr->gamma_shift)); 3937 for (i = 0; i < istop; i++) 3938 { 3939 png_free(png_ptr, png_ptr->gamma_16_from_1[i]); 3940 } 3941 png_free(png_ptr, png_ptr->gamma_16_from_1); 3942 png_ptr->gamma_16_from_1 = NULL; 3943 } 3944 if (png_ptr->gamma_16_to_1 != NULL) 3945 { 3946 int i; 3947 int istop = (1 << (8 - png_ptr->gamma_shift)); 3948 for (i = 0; i < istop; i++) 3949 { 3950 png_free(png_ptr, png_ptr->gamma_16_to_1[i]); 3951 } 3952 png_free(png_ptr, png_ptr->gamma_16_to_1); 3953 png_ptr->gamma_16_to_1 = NULL; 3954 } 3955 #endif /* 16BIT */ 3956 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ 3957 } 3958 3959 /* We build the 8- or 16-bit gamma tables here. Note that for 16-bit 3960 * tables, we don't make a full table if we are reducing to 8-bit in 3961 * the future. Note also how the gamma_16 tables are segmented so that 3962 * we don't need to allocate > 64K chunks for a full 16-bit table. 3963 */ 3964 void /* PRIVATE */ 3965 png_build_gamma_table(png_structrp png_ptr, int bit_depth) 3966 { 3967 png_debug(1, "in png_build_gamma_table"); 3968 3969 /* Remove any existing table; this copes with multiple calls to 3970 * png_read_update_info. The warning is because building the gamma tables 3971 * multiple times is a performance hit - it's harmless but the ability to call 3972 * png_read_update_info() multiple times is new in 1.5.6 so it seems sensible 3973 * to warn if the app introduces such a hit. 3974 */ 3975 if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL) 3976 { 3977 png_warning(png_ptr, "gamma table being rebuilt"); 3978 png_destroy_gamma_table(png_ptr); 3979 } 3980 3981 if (bit_depth <= 8) 3982 { 3983 png_build_8bit_table(png_ptr, &png_ptr->gamma_table, 3984 png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->colorspace.gamma, 3985 png_ptr->screen_gamma) : PNG_FP_1); 3986 3987 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ 3988 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ 3989 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) 3990 if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) 3991 { 3992 png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1, 3993 png_reciprocal(png_ptr->colorspace.gamma)); 3994 3995 png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1, 3996 png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) : 3997 png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */); 3998 } 3999 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ 4000 } 4001 #ifdef PNG_16BIT_SUPPORTED 4002 else 4003 { 4004 png_byte shift, sig_bit; 4005 4006 if (png_ptr->color_type & PNG_COLOR_MASK_COLOR) 4007 { 4008 sig_bit = png_ptr->sig_bit.red; 4009 4010 if (png_ptr->sig_bit.green > sig_bit) 4011 sig_bit = png_ptr->sig_bit.green; 4012 4013 if (png_ptr->sig_bit.blue > sig_bit) 4014 sig_bit = png_ptr->sig_bit.blue; 4015 } 4016 else 4017 sig_bit = png_ptr->sig_bit.gray; 4018 4019 /* 16-bit gamma code uses this equation: 4020 * 4021 * ov = table[(iv & 0xff) >> gamma_shift][iv >> 8] 4022 * 4023 * Where 'iv' is the input color value and 'ov' is the output value - 4024 * pow(iv, gamma). 4025 * 4026 * Thus the gamma table consists of up to 256 256 entry tables. The table 4027 * is selected by the (8-gamma_shift) most significant of the low 8 bits of 4028 * the color value then indexed by the upper 8 bits: 4029 * 4030 * table[low bits][high 8 bits] 4031 * 4032 * So the table 'n' corresponds to all those 'iv' of: 4033 * 4034 * <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1> 4035 * 4036 */ 4037 if (sig_bit > 0 && sig_bit < 16U) 4038 shift = (png_byte)(16U - sig_bit); /* shift == insignificant bits */ 4039 4040 else 4041 shift = 0; /* keep all 16 bits */ 4042 4043 if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) 4044 { 4045 /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively 4046 * the significant bits in the *input* when the output will 4047 * eventually be 8 bits. By default it is 11. 4048 */ 4049 if (shift < (16U - PNG_MAX_GAMMA_8)) 4050 shift = (16U - PNG_MAX_GAMMA_8); 4051 } 4052 4053 if (shift > 8U) 4054 shift = 8U; /* Guarantees at least one table! */ 4055 4056 png_ptr->gamma_shift = shift; 4057 4058 /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now 4059 * PNG_COMPOSE). This effectively smashed the background calculation for 4060 * 16-bit output because the 8-bit table assumes the result will be reduced 4061 * to 8 bits. 4062 */ 4063 if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) 4064 png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift, 4065 png_ptr->screen_gamma > 0 ? png_product2(png_ptr->colorspace.gamma, 4066 png_ptr->screen_gamma) : PNG_FP_1); 4067 4068 else 4069 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift, 4070 png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->colorspace.gamma, 4071 png_ptr->screen_gamma) : PNG_FP_1); 4072 4073 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ 4074 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ 4075 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) 4076 if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) 4077 { 4078 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift, 4079 png_reciprocal(png_ptr->colorspace.gamma)); 4080 4081 /* Notice that the '16 from 1' table should be full precision, however 4082 * the lookup on this table still uses gamma_shift, so it can't be. 4083 * TODO: fix this. 4084 */ 4085 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift, 4086 png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) : 4087 png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */); 4088 } 4089 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ 4090 } 4091 #endif /* 16BIT */ 4092 } 4093 #endif /* READ_GAMMA */ 4094 4095 /* HARDWARE OPTION SUPPORT */ 4096 #ifdef PNG_SET_OPTION_SUPPORTED 4097 int PNGAPI 4098 png_set_option(png_structrp png_ptr, int option, int onoff) 4099 { 4100 if (png_ptr != NULL && option >= 0 && option < PNG_OPTION_NEXT && 4101 (option & 1) == 0) 4102 { 4103 int mask = 3 << option; 4104 int setting = (2 + (onoff != 0)) << option; 4105 int current = png_ptr->options; 4106 4107 png_ptr->options = (png_byte)((current & ~mask) | setting); 4108 4109 return (current & mask) >> option; 4110 } 4111 4112 return PNG_OPTION_INVALID; 4113 } 4114 #endif 4115 4116 /* sRGB support */ 4117 #if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\ 4118 defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) 4119 /* sRGB conversion tables; these are machine generated with the code in 4120 * contrib/tools/makesRGB.c. The actual sRGB transfer curve defined in the 4121 * specification (see the article at http://en.wikipedia.org/wiki/SRGB) 4122 * is used, not the gamma=1/2.2 approximation use elsewhere in libpng. 4123 * The sRGB to linear table is exact (to the nearest 16 bit linear fraction). 4124 * The inverse (linear to sRGB) table has accuracies as follows: 4125 * 4126 * For all possible (255*65535+1) input values: 4127 * 4128 * error: -0.515566 - 0.625971, 79441 (0.475369%) of readings inexact 4129 * 4130 * For the input values corresponding to the 65536 16-bit values: 4131 * 4132 * error: -0.513727 - 0.607759, 308 (0.469978%) of readings inexact 4133 * 4134 * In all cases the inexact readings are off by one. 4135 */ 4136 4137 #ifdef PNG_SIMPLIFIED_READ_SUPPORTED 4138 /* The convert-to-sRGB table is only currently required for read. */ 4139 const png_uint_16 png_sRGB_table[256] = 4140 { 4141 0,20,40,60,80,99,119,139, 4142 159,179,199,219,241,264,288,313, 4143 340,367,396,427,458,491,526,562, 4144 599,637,677,718,761,805,851,898, 4145 947,997,1048,1101,1156,1212,1270,1330, 4146 1391,1453,1517,1583,1651,1720,1790,1863, 4147 1937,2013,2090,2170,2250,2333,2418,2504, 4148 2592,2681,2773,2866,2961,3058,3157,3258, 4149 3360,3464,3570,3678,3788,3900,4014,4129, 4150 4247,4366,4488,4611,4736,4864,4993,5124, 4151 5257,5392,5530,5669,5810,5953,6099,6246, 4152 6395,6547,6700,6856,7014,7174,7335,7500, 4153 7666,7834,8004,8177,8352,8528,8708,8889, 4154 9072,9258,9445,9635,9828,10022,10219,10417, 4155 10619,10822,11028,11235,11446,11658,11873,12090, 4156 12309,12530,12754,12980,13209,13440,13673,13909, 4157 14146,14387,14629,14874,15122,15371,15623,15878, 4158 16135,16394,16656,16920,17187,17456,17727,18001, 4159 18277,18556,18837,19121,19407,19696,19987,20281, 4160 20577,20876,21177,21481,21787,22096,22407,22721, 4161 23038,23357,23678,24002,24329,24658,24990,25325, 4162 25662,26001,26344,26688,27036,27386,27739,28094, 4163 28452,28813,29176,29542,29911,30282,30656,31033, 4164 31412,31794,32179,32567,32957,33350,33745,34143, 4165 34544,34948,35355,35764,36176,36591,37008,37429, 4166 37852,38278,38706,39138,39572,40009,40449,40891, 4167 41337,41785,42236,42690,43147,43606,44069,44534, 4168 45002,45473,45947,46423,46903,47385,47871,48359, 4169 48850,49344,49841,50341,50844,51349,51858,52369, 4170 52884,53401,53921,54445,54971,55500,56032,56567, 4171 57105,57646,58190,58737,59287,59840,60396,60955, 4172 61517,62082,62650,63221,63795,64372,64952,65535 4173 }; 4174 4175 #endif /* simplified read only */ 4176 4177 /* The base/delta tables are required for both read and write (but currently 4178 * only the simplified versions.) 4179 */ 4180 const png_uint_16 png_sRGB_base[512] = 4181 { 4182 128,1782,3383,4644,5675,6564,7357,8074, 4183 8732,9346,9921,10463,10977,11466,11935,12384, 4184 12816,13233,13634,14024,14402,14769,15125,15473, 4185 15812,16142,16466,16781,17090,17393,17690,17981, 4186 18266,18546,18822,19093,19359,19621,19879,20133, 4187 20383,20630,20873,21113,21349,21583,21813,22041, 4188 22265,22487,22707,22923,23138,23350,23559,23767, 4189 23972,24175,24376,24575,24772,24967,25160,25352, 4190 25542,25730,25916,26101,26284,26465,26645,26823, 4191 27000,27176,27350,27523,27695,27865,28034,28201, 4192 28368,28533,28697,28860,29021,29182,29341,29500, 4193 29657,29813,29969,30123,30276,30429,30580,30730, 4194 30880,31028,31176,31323,31469,31614,31758,31902, 4195 32045,32186,32327,32468,32607,32746,32884,33021, 4196 33158,33294,33429,33564,33697,33831,33963,34095, 4197 34226,34357,34486,34616,34744,34873,35000,35127, 4198 35253,35379,35504,35629,35753,35876,35999,36122, 4199 36244,36365,36486,36606,36726,36845,36964,37083, 4200 37201,37318,37435,37551,37668,37783,37898,38013, 4201 38127,38241,38354,38467,38580,38692,38803,38915, 4202 39026,39136,39246,39356,39465,39574,39682,39790, 4203 39898,40005,40112,40219,40325,40431,40537,40642, 4204 40747,40851,40955,41059,41163,41266,41369,41471, 4205 41573,41675,41777,41878,41979,42079,42179,42279, 4206 42379,42478,42577,42676,42775,42873,42971,43068, 4207 43165,43262,43359,43456,43552,43648,43743,43839, 4208 43934,44028,44123,44217,44311,44405,44499,44592, 4209 44685,44778,44870,44962,45054,45146,45238,45329, 4210 45420,45511,45601,45692,45782,45872,45961,46051, 4211 46140,46229,46318,46406,46494,46583,46670,46758, 4212 46846,46933,47020,47107,47193,47280,47366,47452, 4213 47538,47623,47709,47794,47879,47964,48048,48133, 4214 48217,48301,48385,48468,48552,48635,48718,48801, 4215 48884,48966,49048,49131,49213,49294,49376,49458, 4216 49539,49620,49701,49782,49862,49943,50023,50103, 4217 50183,50263,50342,50422,50501,50580,50659,50738, 4218 50816,50895,50973,51051,51129,51207,51285,51362, 4219 51439,51517,51594,51671,51747,51824,51900,51977, 4220 52053,52129,52205,52280,52356,52432,52507,52582, 4221 52657,52732,52807,52881,52956,53030,53104,53178, 4222 53252,53326,53400,53473,53546,53620,53693,53766, 4223 53839,53911,53984,54056,54129,54201,54273,54345, 4224 54417,54489,54560,54632,54703,54774,54845,54916, 4225 54987,55058,55129,55199,55269,55340,55410,55480, 4226 55550,55620,55689,55759,55828,55898,55967,56036, 4227 56105,56174,56243,56311,56380,56448,56517,56585, 4228 56653,56721,56789,56857,56924,56992,57059,57127, 4229 57194,57261,57328,57395,57462,57529,57595,57662, 4230 57728,57795,57861,57927,57993,58059,58125,58191, 4231 58256,58322,58387,58453,58518,58583,58648,58713, 4232 58778,58843,58908,58972,59037,59101,59165,59230, 4233 59294,59358,59422,59486,59549,59613,59677,59740, 4234 59804,59867,59930,59993,60056,60119,60182,60245, 4235 60308,60370,60433,60495,60558,60620,60682,60744, 4236 60806,60868,60930,60992,61054,61115,61177,61238, 4237 61300,61361,61422,61483,61544,61605,61666,61727, 4238 61788,61848,61909,61969,62030,62090,62150,62211, 4239 62271,62331,62391,62450,62510,62570,62630,62689, 4240 62749,62808,62867,62927,62986,63045,63104,63163, 4241 63222,63281,63340,63398,63457,63515,63574,63632, 4242 63691,63749,63807,63865,63923,63981,64039,64097, 4243 64155,64212,64270,64328,64385,64443,64500,64557, 4244 64614,64672,64729,64786,64843,64900,64956,65013, 4245 65070,65126,65183,65239,65296,65352,65409,65465 4246 }; 4247 4248 const png_byte png_sRGB_delta[512] = 4249 { 4250 207,201,158,129,113,100,90,82,77,72,68,64,61,59,56,54, 4251 52,50,49,47,46,45,43,42,41,40,39,39,38,37,36,36, 4252 35,34,34,33,33,32,32,31,31,30,30,30,29,29,28,28, 4253 28,27,27,27,27,26,26,26,25,25,25,25,24,24,24,24, 4254 23,23,23,23,23,22,22,22,22,22,22,21,21,21,21,21, 4255 21,20,20,20,20,20,20,20,20,19,19,19,19,19,19,19, 4256 19,18,18,18,18,18,18,18,18,18,18,17,17,17,17,17, 4257 17,17,17,17,17,17,16,16,16,16,16,16,16,16,16,16, 4258 16,16,16,16,15,15,15,15,15,15,15,15,15,15,15,15, 4259 15,15,15,15,14,14,14,14,14,14,14,14,14,14,14,14, 4260 14,14,14,14,14,14,14,13,13,13,13,13,13,13,13,13, 4261 13,13,13,13,13,13,13,13,13,13,13,13,13,13,12,12, 4262 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 4263 12,12,12,12,12,12,12,12,12,12,12,12,11,11,11,11, 4264 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 4265 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 4266 11,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 4267 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 4268 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 4269 10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 4270 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 4271 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 4272 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 4273 9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 4274 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 4275 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 4276 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 4277 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 4278 8,8,8,8,8,8,8,8,8,7,7,7,7,7,7,7, 4279 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 4280 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 4281 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 4282 }; 4283 #endif /* SIMPLIFIED READ/WRITE sRGB support */ 4284 4285 /* SIMPLIFIED READ/WRITE SUPPORT */ 4286 #if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\ 4287 defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) 4288 static int 4289 png_image_free_function(png_voidp argument) 4290 { 4291 png_imagep image = png_voidcast(png_imagep, argument); 4292 png_controlp cp = image->opaque; 4293 png_control c; 4294 4295 /* Double check that we have a png_ptr - it should be impossible to get here 4296 * without one. 4297 */ 4298 if (cp->png_ptr == NULL) 4299 return 0; 4300 4301 /* First free any data held in the control structure. */ 4302 # ifdef PNG_STDIO_SUPPORTED 4303 if (cp->owned_file) 4304 { 4305 FILE *fp = png_voidcast(FILE*, cp->png_ptr->io_ptr); 4306 cp->owned_file = 0; 4307 4308 /* Ignore errors here. */ 4309 if (fp != NULL) 4310 { 4311 cp->png_ptr->io_ptr = NULL; 4312 (void)fclose(fp); 4313 } 4314 } 4315 # endif 4316 4317 /* Copy the control structure so that the original, allocated, version can be 4318 * safely freed. Notice that a png_error here stops the remainder of the 4319 * cleanup, but this is probably fine because that would indicate bad memory 4320 * problems anyway. 4321 */ 4322 c = *cp; 4323 image->opaque = &c; 4324 png_free(c.png_ptr, cp); 4325 4326 /* Then the structures, calling the correct API. */ 4327 if (c.for_write) 4328 { 4329 # ifdef PNG_SIMPLIFIED_WRITE_SUPPORTED 4330 png_destroy_write_struct(&c.png_ptr, &c.info_ptr); 4331 # else 4332 png_error(c.png_ptr, "simplified write not supported"); 4333 # endif 4334 } 4335 else 4336 { 4337 # ifdef PNG_SIMPLIFIED_READ_SUPPORTED 4338 png_destroy_read_struct(&c.png_ptr, &c.info_ptr, NULL); 4339 # else 4340 png_error(c.png_ptr, "simplified read not supported"); 4341 # endif 4342 } 4343 4344 /* Success. */ 4345 return 1; 4346 } 4347 4348 void PNGAPI 4349 png_image_free(png_imagep image) 4350 { 4351 /* Safely call the real function, but only if doing so is safe at this point 4352 * (if not inside an error handling context). Otherwise assume 4353 * png_safe_execute will call this API after the return. 4354 */ 4355 if (image != NULL && image->opaque != NULL && 4356 image->opaque->error_buf == NULL) 4357 { 4358 /* Ignore errors here: */ 4359 (void)png_safe_execute(image, png_image_free_function, image); 4360 image->opaque = NULL; 4361 } 4362 } 4363 4364 int /* PRIVATE */ 4365 png_image_error(png_imagep image, png_const_charp error_message) 4366 { 4367 /* Utility to log an error. */ 4368 png_safecat(image->message, (sizeof image->message), 0, error_message); 4369 image->warning_or_error |= PNG_IMAGE_ERROR; 4370 png_image_free(image); 4371 return 0; 4372 } 4373 4374 #endif /* SIMPLIFIED READ/WRITE */ 4375 #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ 4376