Home | History | Annotate | Download | only in source
      1 /*
      2  *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "webrtc/system_wrappers/interface/clock.h"
     12 
     13 #if defined(_WIN32)
     14 // Windows needs to be included before mmsystem.h
     15 #include <Windows.h>
     16 #include <WinSock.h>
     17 #include <MMSystem.h>
     18 #elif ((defined WEBRTC_LINUX) || (defined WEBRTC_MAC))
     19 #include <sys/time.h>
     20 #include <time.h>
     21 #endif
     22 
     23 #include "webrtc/system_wrappers/interface/rw_lock_wrapper.h"
     24 #include "webrtc/system_wrappers/interface/tick_util.h"
     25 
     26 namespace webrtc {
     27 
     28 const double kNtpFracPerMs = 4.294967296E6;
     29 
     30 int64_t Clock::NtpToMs(uint32_t ntp_secs, uint32_t ntp_frac) {
     31   const double ntp_frac_ms = static_cast<double>(ntp_frac) / kNtpFracPerMs;
     32   return 1000 * static_cast<int64_t>(ntp_secs) +
     33       static_cast<int64_t>(ntp_frac_ms + 0.5);
     34 }
     35 
     36 #if defined(_WIN32)
     37 
     38 struct reference_point {
     39   FILETIME      file_time;
     40   LARGE_INTEGER counterMS;
     41 };
     42 
     43 struct WindowsHelpTimer {
     44   volatile LONG _timeInMs;
     45   volatile LONG _numWrapTimeInMs;
     46   reference_point _ref_point;
     47 
     48   volatile LONG _sync_flag;
     49 };
     50 
     51 void Synchronize(WindowsHelpTimer* help_timer) {
     52   const LONG start_value = 0;
     53   const LONG new_value = 1;
     54   const LONG synchronized_value = 2;
     55 
     56   LONG compare_flag = new_value;
     57   while (help_timer->_sync_flag == start_value) {
     58     const LONG new_value = 1;
     59     compare_flag = InterlockedCompareExchange(
     60         &help_timer->_sync_flag, new_value, start_value);
     61   }
     62   if (compare_flag != start_value) {
     63     // This thread was not the one that incremented the sync flag.
     64     // Block until synchronization finishes.
     65     while (compare_flag != synchronized_value) {
     66       ::Sleep(0);
     67     }
     68     return;
     69   }
     70   // Only the synchronizing thread gets here so this part can be
     71   // considered single threaded.
     72 
     73   // set timer accuracy to 1 ms
     74   timeBeginPeriod(1);
     75   FILETIME    ft0 = { 0, 0 },
     76               ft1 = { 0, 0 };
     77   //
     78   // Spin waiting for a change in system time. Get the matching
     79   // performance counter value for that time.
     80   //
     81   ::GetSystemTimeAsFileTime(&ft0);
     82   do {
     83     ::GetSystemTimeAsFileTime(&ft1);
     84 
     85     help_timer->_ref_point.counterMS.QuadPart = ::timeGetTime();
     86     ::Sleep(0);
     87   } while ((ft0.dwHighDateTime == ft1.dwHighDateTime) &&
     88           (ft0.dwLowDateTime == ft1.dwLowDateTime));
     89   help_timer->_ref_point.file_time = ft1;
     90   timeEndPeriod(1);
     91 }
     92 
     93 void get_time(WindowsHelpTimer* help_timer, FILETIME& current_time) {
     94   // we can't use query performance counter due to speed stepping
     95   DWORD t = timeGetTime();
     96   // NOTE: we have a missmatch in sign between _timeInMs(LONG) and
     97   // (DWORD) however we only use it here without +- etc
     98   volatile LONG* timeInMsPtr = &help_timer->_timeInMs;
     99   // Make sure that we only inc wrapper once.
    100   DWORD old = InterlockedExchange(timeInMsPtr, t);
    101   if(old > t) {
    102     // wrap
    103     help_timer->_numWrapTimeInMs++;
    104   }
    105   LARGE_INTEGER elapsedMS;
    106   elapsedMS.HighPart = help_timer->_numWrapTimeInMs;
    107   elapsedMS.LowPart = t;
    108 
    109   elapsedMS.QuadPart = elapsedMS.QuadPart -
    110       help_timer->_ref_point.counterMS.QuadPart;
    111 
    112   // Translate to 100-nanoseconds intervals (FILETIME resolution)
    113   // and add to reference FILETIME to get current FILETIME.
    114   ULARGE_INTEGER filetime_ref_as_ul;
    115 
    116   filetime_ref_as_ul.HighPart =
    117       help_timer->_ref_point.file_time.dwHighDateTime;
    118   filetime_ref_as_ul.LowPart =
    119       help_timer->_ref_point.file_time.dwLowDateTime;
    120   filetime_ref_as_ul.QuadPart +=
    121       (ULONGLONG)((elapsedMS.QuadPart)*1000*10);
    122 
    123   // Copy to result
    124   current_time.dwHighDateTime = filetime_ref_as_ul.HighPart;
    125   current_time.dwLowDateTime = filetime_ref_as_ul.LowPart;
    126 }
    127 #endif
    128 
    129 class RealTimeClock : public Clock {
    130   // Return a timestamp in milliseconds relative to some arbitrary source; the
    131   // source is fixed for this clock.
    132   virtual int64_t TimeInMilliseconds() const OVERRIDE {
    133     return TickTime::MillisecondTimestamp();
    134   }
    135 
    136   // Return a timestamp in microseconds relative to some arbitrary source; the
    137   // source is fixed for this clock.
    138   virtual int64_t TimeInMicroseconds() const OVERRIDE {
    139     return TickTime::MicrosecondTimestamp();
    140   }
    141 
    142   // Retrieve an NTP absolute timestamp in seconds and fractions of a second.
    143   virtual void CurrentNtp(uint32_t& seconds,
    144                           uint32_t& fractions) const OVERRIDE {
    145     timeval tv = CurrentTimeVal();
    146     double microseconds_in_seconds;
    147     Adjust(tv, &seconds, &microseconds_in_seconds);
    148     fractions = static_cast<uint32_t>(
    149         microseconds_in_seconds * kMagicNtpFractionalUnit + 0.5);
    150   }
    151 
    152   // Retrieve an NTP absolute timestamp in milliseconds.
    153   virtual int64_t CurrentNtpInMilliseconds() const OVERRIDE {
    154     timeval tv = CurrentTimeVal();
    155     uint32_t seconds;
    156     double microseconds_in_seconds;
    157     Adjust(tv, &seconds, &microseconds_in_seconds);
    158     return 1000 * static_cast<int64_t>(seconds) +
    159         static_cast<int64_t>(1000.0 * microseconds_in_seconds + 0.5);
    160   }
    161 
    162  protected:
    163   virtual timeval CurrentTimeVal() const = 0;
    164 
    165   static void Adjust(const timeval& tv, uint32_t* adjusted_s,
    166                      double* adjusted_us_in_s) {
    167     *adjusted_s = tv.tv_sec + kNtpJan1970;
    168     *adjusted_us_in_s = tv.tv_usec / 1e6;
    169 
    170     if (*adjusted_us_in_s >= 1) {
    171       *adjusted_us_in_s -= 1;
    172       ++*adjusted_s;
    173     } else if (*adjusted_us_in_s < -1) {
    174       *adjusted_us_in_s += 1;
    175       --*adjusted_s;
    176     }
    177   }
    178 };
    179 
    180 #if defined(_WIN32)
    181 class WindowsRealTimeClock : public RealTimeClock {
    182  public:
    183   WindowsRealTimeClock(WindowsHelpTimer* helpTimer)
    184       : _helpTimer(helpTimer) {}
    185 
    186   virtual ~WindowsRealTimeClock() {}
    187 
    188  protected:
    189   virtual timeval CurrentTimeVal() const OVERRIDE {
    190     const uint64_t FILETIME_1970 = 0x019db1ded53e8000;
    191 
    192     FILETIME StartTime;
    193     uint64_t Time;
    194     struct timeval tv;
    195 
    196     // We can't use query performance counter since they can change depending on
    197     // speed stepping.
    198     get_time(_helpTimer, StartTime);
    199 
    200     Time = (((uint64_t) StartTime.dwHighDateTime) << 32) +
    201            (uint64_t) StartTime.dwLowDateTime;
    202 
    203     // Convert the hecto-nano second time to tv format.
    204     Time -= FILETIME_1970;
    205 
    206     tv.tv_sec = (uint32_t)(Time / (uint64_t)10000000);
    207     tv.tv_usec = (uint32_t)((Time % (uint64_t)10000000) / 10);
    208     return tv;
    209   }
    210 
    211   WindowsHelpTimer* _helpTimer;
    212 };
    213 
    214 #elif ((defined WEBRTC_LINUX) || (defined WEBRTC_MAC))
    215 class UnixRealTimeClock : public RealTimeClock {
    216  public:
    217   UnixRealTimeClock() {}
    218 
    219   virtual ~UnixRealTimeClock() {}
    220 
    221  protected:
    222   virtual timeval CurrentTimeVal() const OVERRIDE {
    223     struct timeval tv;
    224     struct timezone tz;
    225     tz.tz_minuteswest = 0;
    226     tz.tz_dsttime = 0;
    227     gettimeofday(&tv, &tz);
    228     return tv;
    229   }
    230 };
    231 #endif
    232 
    233 
    234 #if defined(_WIN32)
    235 // Keeps the global state for the Windows implementation of RtpRtcpClock.
    236 // Note that this is a POD. Only PODs are allowed to have static storage
    237 // duration according to the Google Style guide.
    238 //
    239 // Note that on Windows, GetSystemTimeAsFileTime has poorer (up to 15 ms)
    240 // resolution than the media timers, hence the WindowsHelpTimer context
    241 // object and Synchronize API to sync the two.
    242 //
    243 // We only sync up once, which means that on Windows, our realtime clock
    244 // wont respond to system time/date changes without a program restart.
    245 // TODO(henrike): We should probably call sync more often to catch
    246 // drift and time changes for parity with other platforms.
    247 
    248 static WindowsHelpTimer *SyncGlobalHelpTimer() {
    249   static WindowsHelpTimer global_help_timer = {0, 0, {{ 0, 0}, 0}, 0};
    250   Synchronize(&global_help_timer);
    251   return &global_help_timer;
    252 }
    253 #endif
    254 
    255 Clock* Clock::GetRealTimeClock() {
    256 #if defined(_WIN32)
    257   static WindowsRealTimeClock clock(SyncGlobalHelpTimer());
    258   return &clock;
    259 #elif defined(WEBRTC_LINUX) || defined(WEBRTC_MAC)
    260   static UnixRealTimeClock clock;
    261   return &clock;
    262 #else
    263   return NULL;
    264 #endif
    265 }
    266 
    267 SimulatedClock::SimulatedClock(int64_t initial_time_us)
    268     : time_us_(initial_time_us), lock_(RWLockWrapper::CreateRWLock()) {
    269 }
    270 
    271 SimulatedClock::~SimulatedClock() {
    272 }
    273 
    274 int64_t SimulatedClock::TimeInMilliseconds() const {
    275   ReadLockScoped synchronize(*lock_);
    276   return (time_us_ + 500) / 1000;
    277 }
    278 
    279 int64_t SimulatedClock::TimeInMicroseconds() const {
    280   ReadLockScoped synchronize(*lock_);
    281   return time_us_;
    282 }
    283 
    284 void SimulatedClock::CurrentNtp(uint32_t& seconds, uint32_t& fractions) const {
    285   int64_t now_ms = TimeInMilliseconds();
    286   seconds = (now_ms / 1000) + kNtpJan1970;
    287   fractions =
    288       static_cast<uint32_t>((now_ms % 1000) * kMagicNtpFractionalUnit / 1000);
    289 }
    290 
    291 int64_t SimulatedClock::CurrentNtpInMilliseconds() const {
    292   return TimeInMilliseconds() + 1000 * static_cast<int64_t>(kNtpJan1970);
    293 }
    294 
    295 void SimulatedClock::AdvanceTimeMilliseconds(int64_t milliseconds) {
    296   AdvanceTimeMicroseconds(1000 * milliseconds);
    297 }
    298 
    299 void SimulatedClock::AdvanceTimeMicroseconds(int64_t microseconds) {
    300   WriteLockScoped synchronize(*lock_);
    301   time_us_ += microseconds;
    302 }
    303 
    304 };  // namespace webrtc
    305