/external/eigen/doc/examples/ |
TutorialLinAlgSelfAdjointEigenSolver.cpp | 12 SelfAdjointEigenSolver<Matrix2f> eigensolver(A); 13 if (eigensolver.info() != Success) abort(); 14 cout << "The eigenvalues of A are:\n" << eigensolver.eigenvalues() << endl; 17 << eigensolver.eigenvectors() << endl;
|
/external/eigen/doc/snippets/ |
EigenSolver_eigenvalues.cpp | 2 EigenSolver<MatrixXd> es(ones, false);
|
EigenSolver_eigenvectors.cpp | 2 EigenSolver<MatrixXd> es(ones);
|
EigenSolver_compute.cpp | 0 EigenSolver<MatrixXf> es;
|
EigenSolver_pseudoEigenvectors.cpp | 4 EigenSolver<MatrixXd> es(A);
|
EigenSolver_EigenSolver_MatrixType.cpp | 4 EigenSolver<MatrixXd> es(A);
|
/external/eigen/test/ |
eigensolver_generic.cpp | 15 template<typename MatrixType> void eigensolver(const MatrixType& m) function 19 EigenSolver.h 33 EigenSolver<MatrixType> ei0(symmA); 39 EigenSolver<MatrixType> ei1(a); 47 EigenSolver<MatrixType> ei2; 58 EigenSolver<MatrixType> eiNoEivecs(a, false); 70 EigenSolver<MatrixType> eiNaN(a); 77 EigenSolver<MatrixType> eig; 93 CALL_SUBTEST_1( eigensolver(Matrix4f()) ); 95 CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) ) [all...] |
eigensolver_complex.cpp | 33 template<typename MatrixType> void eigensolver(const MatrixType& m) function 55 // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus 106 CALL_SUBTEST_1( eigensolver(Matrix4cf()) ); 108 CALL_SUBTEST_2( eigensolver(MatrixXcd(s,s)) ); 109 CALL_SUBTEST_3( eigensolver(Matrix<std::complex<float>, 1, 1>()) ); 110 CALL_SUBTEST_4( eigensolver(Matrix3f()) );
|
eigensolver_selfadjoint.cpp | 19 EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
|
nomalloc.cpp | 141 Eigen::EigenSolver<Matrix> eigSolver; eigSolver.compute(A);
|
/external/eigen/Eigen/src/Eigenvalues/ |
EigenSolver.h | 21 * \class EigenSolver 48 * EigenSolver(const MatrixType&, bool) constructor which computes the 55 * The documentation for EigenSolver(const MatrixType&, bool) contains an 64 template<typename _MatrixType> class EigenSolver 109 * perform decompositions via EigenSolver::compute(const MatrixType&, bool). 113 EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {} 119 * \sa EigenSolver() 121 EigenSolver(Index size) 146 EigenSolver(const MatrixType& matrix, bool computeEigenvectors = true) 163 * EigenSolver(const MatrixType&,bool) or the member functio [all...] |
MatrixBaseEigenvalues.h | 39 return EigenSolver<PlainObject>(m_eval, false).eigenvalues(); 49 * This function computes the eigenvalues with the help of the EigenSolver 62 * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(),
|
GeneralizedEigenSolver.h | 113 * perform decompositions via EigenSolver::compute(const MatrixType&, bool). 253 eigen_assert(m_isInitialized && "EigenSolver is not initialized."); 281 // eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
|
ComplexEigenSolver.h | 43 * \sa class EigenSolver, class SelfAdjointEigenSolver
|
GeneralizedSelfAdjointEigenSolver.h | 45 * \sa class SelfAdjointEigenSolver, class EigenSolver, class ComplexEigenSolver
|
RealSchur.h | 36 * A, and thus the real Schur decomposition is used in EigenSolver to compute 52 * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
|
/external/eigen/test/eigen2/ |
eigen2_eigensolver.cpp | 20 EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h) 100 template<typename MatrixType> void eigensolver(const MatrixType& m) function 103 EigenSolver.h 120 EigenSolver<MatrixType> ei0(symmA); 125 EigenSolver<MatrixType> ei1(a); 142 CALL_SUBTEST_6( eigensolver(Matrix4f()) ); 143 CALL_SUBTEST_5( eigensolver(MatrixXd(17,17)) );
|
/external/eigen/unsupported/test/ |
matrix_functions.h | 23 EigenSolver<MatrixType> es(mat); 24 typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues();
|
/external/eigen/Eigen/ |
Eigenvalues | 30 #include "src/Eigenvalues/EigenSolver.h"
|
/external/eigen/bench/ |
benchEigenSolver.cpp | 68 EigenSolver<SquareMatrixType> ei(covMat);
|
/external/eigen/doc/ |
TopicLinearAlgebraDecompositions.dox | 152 <td>EigenSolver</td>
|
UsingIntelMKL.dox | 116 EigenSolver<MatrixXd> es(m1);
|
TutorialLinearAlgebra.dox | 133 SelfAdjointEigenSolver, it could easily be adapted to general matrices using EigenSolver or ComplexEigenSolver.
|
/external/eigen/unsupported/Eigen/src/Polynomials/ |
PolynomialSolver.h | 340 typedef EigenSolver<CompanionMatrixType> EigenSolverType;
|
/external/eigen/unsupported/Eigen/src/MatrixFunctions/ |
MatrixSquareRoot.h | 141 // in EigenSolver. If we expose it, we could call it directly from here. 143 EigenSolver<Matrix<Scalar,2,2> > es(block);
|