HomeSort by relevance Sort by last modified time
    Searched full:eigensolver (Results 1 - 25 of 32) sorted by null

1 2

  /external/eigen/doc/examples/
TutorialLinAlgSelfAdjointEigenSolver.cpp 12 SelfAdjointEigenSolver<Matrix2f> eigensolver(A);
13 if (eigensolver.info() != Success) abort();
14 cout << "The eigenvalues of A are:\n" << eigensolver.eigenvalues() << endl;
17 << eigensolver.eigenvectors() << endl;
  /external/eigen/doc/snippets/
EigenSolver_eigenvalues.cpp 2 EigenSolver<MatrixXd> es(ones, false);
EigenSolver_eigenvectors.cpp 2 EigenSolver<MatrixXd> es(ones);
EigenSolver_compute.cpp 0 EigenSolver<MatrixXf> es;
EigenSolver_pseudoEigenvectors.cpp 4 EigenSolver<MatrixXd> es(A);
EigenSolver_EigenSolver_MatrixType.cpp 4 EigenSolver<MatrixXd> es(A);
  /external/eigen/test/
eigensolver_generic.cpp 15 template<typename MatrixType> void eigensolver(const MatrixType& m) function
19 EigenSolver.h
33 EigenSolver<MatrixType> ei0(symmA);
39 EigenSolver<MatrixType> ei1(a);
47 EigenSolver<MatrixType> ei2;
58 EigenSolver<MatrixType> eiNoEivecs(a, false);
70 EigenSolver<MatrixType> eiNaN(a);
77 EigenSolver<MatrixType> eig;
93 CALL_SUBTEST_1( eigensolver(Matrix4f()) );
95 CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) )
    [all...]
eigensolver_complex.cpp 33 template<typename MatrixType> void eigensolver(const MatrixType& m) function
55 // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus
106 CALL_SUBTEST_1( eigensolver(Matrix4cf()) );
108 CALL_SUBTEST_2( eigensolver(MatrixXcd(s,s)) );
109 CALL_SUBTEST_3( eigensolver(Matrix<std::complex<float>, 1, 1>()) );
110 CALL_SUBTEST_4( eigensolver(Matrix3f()) );
eigensolver_selfadjoint.cpp 19 EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
nomalloc.cpp 141 Eigen::EigenSolver<Matrix> eigSolver; eigSolver.compute(A);
  /external/eigen/Eigen/src/Eigenvalues/
EigenSolver.h 21 * \class EigenSolver
48 * EigenSolver(const MatrixType&, bool) constructor which computes the
55 * The documentation for EigenSolver(const MatrixType&, bool) contains an
64 template<typename _MatrixType> class EigenSolver
109 * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
113 EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {}
119 * \sa EigenSolver()
121 EigenSolver(Index size)
146 EigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
163 * EigenSolver(const MatrixType&,bool) or the member functio
    [all...]
MatrixBaseEigenvalues.h 39 return EigenSolver<PlainObject>(m_eval, false).eigenvalues();
49 * This function computes the eigenvalues with the help of the EigenSolver
62 * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(),
GeneralizedEigenSolver.h 113 * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
253 eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
281 // eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
ComplexEigenSolver.h 43 * \sa class EigenSolver, class SelfAdjointEigenSolver
GeneralizedSelfAdjointEigenSolver.h 45 * \sa class SelfAdjointEigenSolver, class EigenSolver, class ComplexEigenSolver
RealSchur.h 36 * A, and thus the real Schur decomposition is used in EigenSolver to compute
52 * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
  /external/eigen/test/eigen2/
eigen2_eigensolver.cpp 20 EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
100 template<typename MatrixType> void eigensolver(const MatrixType& m) function
103 EigenSolver.h
120 EigenSolver<MatrixType> ei0(symmA);
125 EigenSolver<MatrixType> ei1(a);
142 CALL_SUBTEST_6( eigensolver(Matrix4f()) );
143 CALL_SUBTEST_5( eigensolver(MatrixXd(17,17)) );
  /external/eigen/unsupported/test/
matrix_functions.h 23 EigenSolver<MatrixType> es(mat);
24 typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues();
  /external/eigen/Eigen/
Eigenvalues 30 #include "src/Eigenvalues/EigenSolver.h"
  /external/eigen/bench/
benchEigenSolver.cpp 68 EigenSolver<SquareMatrixType> ei(covMat);
  /external/eigen/doc/
TopicLinearAlgebraDecompositions.dox 152 <td>EigenSolver</td>
UsingIntelMKL.dox 116 EigenSolver<MatrixXd> es(m1);
TutorialLinearAlgebra.dox 133 SelfAdjointEigenSolver, it could easily be adapted to general matrices using EigenSolver or ComplexEigenSolver.
  /external/eigen/unsupported/Eigen/src/Polynomials/
PolynomialSolver.h 340 typedef EigenSolver<CompanionMatrixType> EigenSolverType;
  /external/eigen/unsupported/Eigen/src/MatrixFunctions/
MatrixSquareRoot.h 141 // in EigenSolver. If we expose it, we could call it directly from here.
143 EigenSolver<Matrix<Scalar,2,2> > es(block);

Completed in 529 milliseconds

1 2