Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2010 Jitse Niesen <jitse (at) maths.leeds.ac.uk>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #include "main.h"
     12 #include <limits>
     13 #include <Eigen/Eigenvalues>
     14 
     15 template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
     16 {
     17   typedef typename MatrixType::Index Index;
     18   /* this test covers the following files:
     19      EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
     20   */
     21   Index rows = m.rows();
     22   Index cols = m.cols();
     23 
     24   typedef typename MatrixType::Scalar Scalar;
     25   typedef typename NumTraits<Scalar>::Real RealScalar;
     26 
     27   RealScalar largerEps = 10*test_precision<RealScalar>();
     28 
     29   MatrixType a = MatrixType::Random(rows,cols);
     30   MatrixType a1 = MatrixType::Random(rows,cols);
     31   MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;
     32   symmA.template triangularView<StrictlyUpper>().setZero();
     33 
     34   MatrixType b = MatrixType::Random(rows,cols);
     35   MatrixType b1 = MatrixType::Random(rows,cols);
     36   MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
     37   symmB.template triangularView<StrictlyUpper>().setZero();
     38 
     39   SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
     40   SelfAdjointEigenSolver<MatrixType> eiDirect;
     41   eiDirect.computeDirect(symmA);
     42   // generalized eigen pb
     43   GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB);
     44 
     45   VERIFY_IS_EQUAL(eiSymm.info(), Success);
     46   VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox(
     47           eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
     48   VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());
     49 
     50   VERIFY_IS_EQUAL(eiDirect.info(), Success);
     51   VERIFY((symmA.template selfadjointView<Lower>() * eiDirect.eigenvectors()).isApprox(
     52           eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps));
     53   VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues());
     54 
     55   SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false);
     56   VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success);
     57   VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());
     58 
     59   // generalized eigen problem Ax = lBx
     60   eiSymmGen.compute(symmA, symmB,Ax_lBx);
     61   VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
     62   VERIFY((symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
     63           symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
     64 
     65   // generalized eigen problem BAx = lx
     66   eiSymmGen.compute(symmA, symmB,BAx_lx);
     67   VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
     68   VERIFY((symmB.template selfadjointView<Lower>() * (symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
     69          (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
     70 
     71   // generalized eigen problem ABx = lx
     72   eiSymmGen.compute(symmA, symmB,ABx_lx);
     73   VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
     74   VERIFY((symmA.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
     75          (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
     76 
     77 
     78   MatrixType sqrtSymmA = eiSymm.operatorSqrt();
     79   VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA);
     80   VERIFY_IS_APPROX(sqrtSymmA, symmA.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt());
     81 
     82   MatrixType id = MatrixType::Identity(rows, cols);
     83   VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));
     84 
     85   SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized;
     86   VERIFY_RAISES_ASSERT(eiSymmUninitialized.info());
     87   VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues());
     88   VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
     89   VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
     90   VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
     91 
     92   eiSymmUninitialized.compute(symmA, false);
     93   VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
     94   VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
     95   VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
     96 
     97   // test Tridiagonalization's methods
     98   Tridiagonalization<MatrixType> tridiag(symmA);
     99   // FIXME tridiag.matrixQ().adjoint() does not work
    100   VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());
    101 
    102   if (rows > 1)
    103   {
    104     // Test matrix with NaN
    105     symmA(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
    106     SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmA);
    107     VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence);
    108   }
    109 }
    110 
    111 void test_eigensolver_selfadjoint()
    112 {
    113   int s = 0;
    114   for(int i = 0; i < g_repeat; i++) {
    115     // very important to test 3x3 and 2x2 matrices since we provide special paths for them
    116     CALL_SUBTEST_1( selfadjointeigensolver(Matrix2d()) );
    117     CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) );
    118     CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) );
    119     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
    120     CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(s,s)) );
    121     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
    122     CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(s,s)) );
    123     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
    124     CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(s,s)) );
    125 
    126     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
    127     CALL_SUBTEST_9( selfadjointeigensolver(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(s,s)) );
    128 
    129     // some trivial but implementation-wise tricky cases
    130     CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(1,1)) );
    131     CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(2,2)) );
    132     CALL_SUBTEST_6( selfadjointeigensolver(Matrix<double,1,1>()) );
    133     CALL_SUBTEST_7( selfadjointeigensolver(Matrix<double,2,2>()) );
    134   }
    135 
    136   // Test problem size constructors
    137   s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
    138   CALL_SUBTEST_8(SelfAdjointEigenSolver<MatrixXf> tmp1(s));
    139   CALL_SUBTEST_8(Tridiagonalization<MatrixXf> tmp2(s));
    140 
    141   TEST_SET_BUT_UNUSED_VARIABLE(s)
    142 }
    143 
    144