Home | History | Annotate | Download | only in recovery
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "asn1_decoder.h"
     18 #include "common.h"
     19 #include "ui.h"
     20 #include "verifier.h"
     21 
     22 #include "mincrypt/dsa_sig.h"
     23 #include "mincrypt/p256.h"
     24 #include "mincrypt/p256_ecdsa.h"
     25 #include "mincrypt/rsa.h"
     26 #include "mincrypt/sha.h"
     27 #include "mincrypt/sha256.h"
     28 
     29 #include <string.h>
     30 #include <stdio.h>
     31 #include <errno.h>
     32 
     33 extern RecoveryUI* ui;
     34 
     35 /*
     36  * Simple version of PKCS#7 SignedData extraction. This extracts the
     37  * signature OCTET STRING to be used for signature verification.
     38  *
     39  * For full details, see http://www.ietf.org/rfc/rfc3852.txt
     40  *
     41  * The PKCS#7 structure looks like:
     42  *
     43  *   SEQUENCE (ContentInfo)
     44  *     OID (ContentType)
     45  *     [0] (content)
     46  *       SEQUENCE (SignedData)
     47  *         INTEGER (version CMSVersion)
     48  *         SET (DigestAlgorithmIdentifiers)
     49  *         SEQUENCE (EncapsulatedContentInfo)
     50  *         [0] (CertificateSet OPTIONAL)
     51  *         [1] (RevocationInfoChoices OPTIONAL)
     52  *         SET (SignerInfos)
     53  *           SEQUENCE (SignerInfo)
     54  *             INTEGER (CMSVersion)
     55  *             SEQUENCE (SignerIdentifier)
     56  *             SEQUENCE (DigestAlgorithmIdentifier)
     57  *             SEQUENCE (SignatureAlgorithmIdentifier)
     58  *             OCTET STRING (SignatureValue)
     59  */
     60 static bool read_pkcs7(uint8_t* pkcs7_der, size_t pkcs7_der_len, uint8_t** sig_der,
     61         size_t* sig_der_length) {
     62     asn1_context_t* ctx = asn1_context_new(pkcs7_der, pkcs7_der_len);
     63     if (ctx == NULL) {
     64         return false;
     65     }
     66 
     67     asn1_context_t* pkcs7_seq = asn1_sequence_get(ctx);
     68     if (pkcs7_seq != NULL && asn1_sequence_next(pkcs7_seq)) {
     69         asn1_context_t *signed_data_app = asn1_constructed_get(pkcs7_seq);
     70         if (signed_data_app != NULL) {
     71             asn1_context_t* signed_data_seq = asn1_sequence_get(signed_data_app);
     72             if (signed_data_seq != NULL
     73                     && asn1_sequence_next(signed_data_seq)
     74                     && asn1_sequence_next(signed_data_seq)
     75                     && asn1_sequence_next(signed_data_seq)
     76                     && asn1_constructed_skip_all(signed_data_seq)) {
     77                 asn1_context_t *sig_set = asn1_set_get(signed_data_seq);
     78                 if (sig_set != NULL) {
     79                     asn1_context_t* sig_seq = asn1_sequence_get(sig_set);
     80                     if (sig_seq != NULL
     81                             && asn1_sequence_next(sig_seq)
     82                             && asn1_sequence_next(sig_seq)
     83                             && asn1_sequence_next(sig_seq)
     84                             && asn1_sequence_next(sig_seq)) {
     85                         uint8_t* sig_der_ptr;
     86                         if (asn1_octet_string_get(sig_seq, &sig_der_ptr, sig_der_length)) {
     87                             *sig_der = (uint8_t*) malloc(*sig_der_length);
     88                             if (*sig_der != NULL) {
     89                                 memcpy(*sig_der, sig_der_ptr, *sig_der_length);
     90                             }
     91                         }
     92                         asn1_context_free(sig_seq);
     93                     }
     94                     asn1_context_free(sig_set);
     95                 }
     96                 asn1_context_free(signed_data_seq);
     97             }
     98             asn1_context_free(signed_data_app);
     99         }
    100         asn1_context_free(pkcs7_seq);
    101     }
    102     asn1_context_free(ctx);
    103 
    104     return *sig_der != NULL;
    105 }
    106 
    107 // Look for an RSA signature embedded in the .ZIP file comment given
    108 // the path to the zip.  Verify it matches one of the given public
    109 // keys.
    110 //
    111 // Return VERIFY_SUCCESS, VERIFY_FAILURE (if any error is encountered
    112 // or no key matches the signature).
    113 
    114 int verify_file(unsigned char* addr, size_t length,
    115                 const Certificate* pKeys, unsigned int numKeys) {
    116     ui->SetProgress(0.0);
    117 
    118     // An archive with a whole-file signature will end in six bytes:
    119     //
    120     //   (2-byte signature start) $ff $ff (2-byte comment size)
    121     //
    122     // (As far as the ZIP format is concerned, these are part of the
    123     // archive comment.)  We start by reading this footer, this tells
    124     // us how far back from the end we have to start reading to find
    125     // the whole comment.
    126 
    127 #define FOOTER_SIZE 6
    128 
    129     if (length < FOOTER_SIZE) {
    130         LOGE("not big enough to contain footer\n");
    131         return VERIFY_FAILURE;
    132     }
    133 
    134     unsigned char* footer = addr + length - FOOTER_SIZE;
    135 
    136     if (footer[2] != 0xff || footer[3] != 0xff) {
    137         LOGE("footer is wrong\n");
    138         return VERIFY_FAILURE;
    139     }
    140 
    141     size_t comment_size = footer[4] + (footer[5] << 8);
    142     size_t signature_start = footer[0] + (footer[1] << 8);
    143     LOGI("comment is %zu bytes; signature %zu bytes from end\n",
    144          comment_size, signature_start);
    145 
    146     if (signature_start <= FOOTER_SIZE) {
    147         LOGE("Signature start is in the footer");
    148         return VERIFY_FAILURE;
    149     }
    150 
    151 #define EOCD_HEADER_SIZE 22
    152 
    153     // The end-of-central-directory record is 22 bytes plus any
    154     // comment length.
    155     size_t eocd_size = comment_size + EOCD_HEADER_SIZE;
    156 
    157     if (length < eocd_size) {
    158         LOGE("not big enough to contain EOCD\n");
    159         return VERIFY_FAILURE;
    160     }
    161 
    162     // Determine how much of the file is covered by the signature.
    163     // This is everything except the signature data and length, which
    164     // includes all of the EOCD except for the comment length field (2
    165     // bytes) and the comment data.
    166     size_t signed_len = length - eocd_size + EOCD_HEADER_SIZE - 2;
    167 
    168     unsigned char* eocd = addr + length - eocd_size;
    169 
    170     // If this is really is the EOCD record, it will begin with the
    171     // magic number $50 $4b $05 $06.
    172     if (eocd[0] != 0x50 || eocd[1] != 0x4b ||
    173         eocd[2] != 0x05 || eocd[3] != 0x06) {
    174         LOGE("signature length doesn't match EOCD marker\n");
    175         return VERIFY_FAILURE;
    176     }
    177 
    178     size_t i;
    179     for (i = 4; i < eocd_size-3; ++i) {
    180         if (eocd[i  ] == 0x50 && eocd[i+1] == 0x4b &&
    181             eocd[i+2] == 0x05 && eocd[i+3] == 0x06) {
    182             // if the sequence $50 $4b $05 $06 appears anywhere after
    183             // the real one, minzip will find the later (wrong) one,
    184             // which could be exploitable.  Fail verification if
    185             // this sequence occurs anywhere after the real one.
    186             LOGE("EOCD marker occurs after start of EOCD\n");
    187             return VERIFY_FAILURE;
    188         }
    189     }
    190 
    191 #define BUFFER_SIZE 4096
    192 
    193     bool need_sha1 = false;
    194     bool need_sha256 = false;
    195     for (i = 0; i < numKeys; ++i) {
    196         switch (pKeys[i].hash_len) {
    197             case SHA_DIGEST_SIZE: need_sha1 = true; break;
    198             case SHA256_DIGEST_SIZE: need_sha256 = true; break;
    199         }
    200     }
    201 
    202     SHA_CTX sha1_ctx;
    203     SHA256_CTX sha256_ctx;
    204     SHA_init(&sha1_ctx);
    205     SHA256_init(&sha256_ctx);
    206 
    207     double frac = -1.0;
    208     size_t so_far = 0;
    209     while (so_far < signed_len) {
    210         size_t size = signed_len - so_far;
    211         if (size > BUFFER_SIZE) size = BUFFER_SIZE;
    212 
    213         if (need_sha1) SHA_update(&sha1_ctx, addr + so_far, size);
    214         if (need_sha256) SHA256_update(&sha256_ctx, addr + so_far, size);
    215         so_far += size;
    216 
    217         double f = so_far / (double)signed_len;
    218         if (f > frac + 0.02 || size == so_far) {
    219             ui->SetProgress(f);
    220             frac = f;
    221         }
    222     }
    223 
    224     const uint8_t* sha1 = SHA_final(&sha1_ctx);
    225     const uint8_t* sha256 = SHA256_final(&sha256_ctx);
    226 
    227     uint8_t* sig_der = NULL;
    228     size_t sig_der_length = 0;
    229 
    230     size_t signature_size = signature_start - FOOTER_SIZE;
    231     if (!read_pkcs7(eocd + eocd_size - signature_start, signature_size, &sig_der,
    232             &sig_der_length)) {
    233         LOGE("Could not find signature DER block\n");
    234         return VERIFY_FAILURE;
    235     }
    236 
    237     /*
    238      * Check to make sure at least one of the keys matches the signature. Since
    239      * any key can match, we need to try each before determining a verification
    240      * failure has happened.
    241      */
    242     for (i = 0; i < numKeys; ++i) {
    243         const uint8_t* hash;
    244         switch (pKeys[i].hash_len) {
    245             case SHA_DIGEST_SIZE: hash = sha1; break;
    246             case SHA256_DIGEST_SIZE: hash = sha256; break;
    247             default: continue;
    248         }
    249 
    250         // The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that
    251         // the signing tool appends after the signature itself.
    252         if (pKeys[i].key_type == Certificate::RSA) {
    253             if (sig_der_length < RSANUMBYTES) {
    254                 // "signature" block isn't big enough to contain an RSA block.
    255                 LOGI("signature is too short for RSA key %zu\n", i);
    256                 continue;
    257             }
    258 
    259             if (!RSA_verify(pKeys[i].rsa, sig_der, RSANUMBYTES,
    260                             hash, pKeys[i].hash_len)) {
    261                 LOGI("failed to verify against RSA key %zu\n", i);
    262                 continue;
    263             }
    264 
    265             LOGI("whole-file signature verified against RSA key %zu\n", i);
    266             free(sig_der);
    267             return VERIFY_SUCCESS;
    268         } else if (pKeys[i].key_type == Certificate::EC
    269                 && pKeys[i].hash_len == SHA256_DIGEST_SIZE) {
    270             p256_int r, s;
    271             if (!dsa_sig_unpack(sig_der, sig_der_length, &r, &s)) {
    272                 LOGI("Not a DSA signature block for EC key %zu\n", i);
    273                 continue;
    274             }
    275 
    276             p256_int p256_hash;
    277             p256_from_bin(hash, &p256_hash);
    278             if (!p256_ecdsa_verify(&(pKeys[i].ec->x), &(pKeys[i].ec->y),
    279                                    &p256_hash, &r, &s)) {
    280                 LOGI("failed to verify against EC key %zu\n", i);
    281                 continue;
    282             }
    283 
    284             LOGI("whole-file signature verified against EC key %zu\n", i);
    285             free(sig_der);
    286             return VERIFY_SUCCESS;
    287         } else {
    288             LOGI("Unknown key type %d\n", pKeys[i].key_type);
    289         }
    290     }
    291     free(sig_der);
    292     LOGE("failed to verify whole-file signature\n");
    293     return VERIFY_FAILURE;
    294 }
    295 
    296 // Reads a file containing one or more public keys as produced by
    297 // DumpPublicKey:  this is an RSAPublicKey struct as it would appear
    298 // as a C source literal, eg:
    299 //
    300 //  "{64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
    301 //
    302 // For key versions newer than the original 2048-bit e=3 keys
    303 // supported by Android, the string is preceded by a version
    304 // identifier, eg:
    305 //
    306 //  "v2 {64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
    307 //
    308 // (Note that the braces and commas in this example are actual
    309 // characters the parser expects to find in the file; the ellipses
    310 // indicate more numbers omitted from this example.)
    311 //
    312 // The file may contain multiple keys in this format, separated by
    313 // commas.  The last key must not be followed by a comma.
    314 //
    315 // A Certificate is a pair of an RSAPublicKey and a particular hash
    316 // (we support SHA-1 and SHA-256; we store the hash length to signify
    317 // which is being used).  The hash used is implied by the version number.
    318 //
    319 //       1: 2048-bit RSA key with e=3 and SHA-1 hash
    320 //       2: 2048-bit RSA key with e=65537 and SHA-1 hash
    321 //       3: 2048-bit RSA key with e=3 and SHA-256 hash
    322 //       4: 2048-bit RSA key with e=65537 and SHA-256 hash
    323 //       5: 256-bit EC key using the NIST P-256 curve parameters and SHA-256 hash
    324 //
    325 // Returns NULL if the file failed to parse, or if it contain zero keys.
    326 Certificate*
    327 load_keys(const char* filename, int* numKeys) {
    328     Certificate* out = NULL;
    329     *numKeys = 0;
    330 
    331     FILE* f = fopen(filename, "r");
    332     if (f == NULL) {
    333         LOGE("opening %s: %s\n", filename, strerror(errno));
    334         goto exit;
    335     }
    336 
    337     {
    338         int i;
    339         bool done = false;
    340         while (!done) {
    341             ++*numKeys;
    342             out = (Certificate*)realloc(out, *numKeys * sizeof(Certificate));
    343             Certificate* cert = out + (*numKeys - 1);
    344             memset(cert, '\0', sizeof(Certificate));
    345 
    346             char start_char;
    347             if (fscanf(f, " %c", &start_char) != 1) goto exit;
    348             if (start_char == '{') {
    349                 // a version 1 key has no version specifier.
    350                 cert->key_type = Certificate::RSA;
    351                 cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
    352                 cert->rsa->exponent = 3;
    353                 cert->hash_len = SHA_DIGEST_SIZE;
    354             } else if (start_char == 'v') {
    355                 int version;
    356                 if (fscanf(f, "%d {", &version) != 1) goto exit;
    357                 switch (version) {
    358                     case 2:
    359                         cert->key_type = Certificate::RSA;
    360                         cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
    361                         cert->rsa->exponent = 65537;
    362                         cert->hash_len = SHA_DIGEST_SIZE;
    363                         break;
    364                     case 3:
    365                         cert->key_type = Certificate::RSA;
    366                         cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
    367                         cert->rsa->exponent = 3;
    368                         cert->hash_len = SHA256_DIGEST_SIZE;
    369                         break;
    370                     case 4:
    371                         cert->key_type = Certificate::RSA;
    372                         cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
    373                         cert->rsa->exponent = 65537;
    374                         cert->hash_len = SHA256_DIGEST_SIZE;
    375                         break;
    376                     case 5:
    377                         cert->key_type = Certificate::EC;
    378                         cert->ec = (ECPublicKey*)calloc(1, sizeof(ECPublicKey));
    379                         cert->hash_len = SHA256_DIGEST_SIZE;
    380                         break;
    381                     default:
    382                         goto exit;
    383                 }
    384             }
    385 
    386             if (cert->key_type == Certificate::RSA) {
    387                 RSAPublicKey* key = cert->rsa;
    388                 if (fscanf(f, " %i , 0x%x , { %u",
    389                            &(key->len), &(key->n0inv), &(key->n[0])) != 3) {
    390                     goto exit;
    391                 }
    392                 if (key->len != RSANUMWORDS) {
    393                     LOGE("key length (%d) does not match expected size\n", key->len);
    394                     goto exit;
    395                 }
    396                 for (i = 1; i < key->len; ++i) {
    397                     if (fscanf(f, " , %u", &(key->n[i])) != 1) goto exit;
    398                 }
    399                 if (fscanf(f, " } , { %u", &(key->rr[0])) != 1) goto exit;
    400                 for (i = 1; i < key->len; ++i) {
    401                     if (fscanf(f, " , %u", &(key->rr[i])) != 1) goto exit;
    402                 }
    403                 fscanf(f, " } } ");
    404 
    405                 LOGI("read key e=%d hash=%d\n", key->exponent, cert->hash_len);
    406             } else if (cert->key_type == Certificate::EC) {
    407                 ECPublicKey* key = cert->ec;
    408                 int key_len;
    409                 unsigned int byte;
    410                 uint8_t x_bytes[P256_NBYTES];
    411                 uint8_t y_bytes[P256_NBYTES];
    412                 if (fscanf(f, " %i , { %u", &key_len, &byte) != 2) goto exit;
    413                 if (key_len != P256_NBYTES) {
    414                     LOGE("Key length (%d) does not match expected size %d\n", key_len, P256_NBYTES);
    415                     goto exit;
    416                 }
    417                 x_bytes[P256_NBYTES - 1] = byte;
    418                 for (i = P256_NBYTES - 2; i >= 0; --i) {
    419                     if (fscanf(f, " , %u", &byte) != 1) goto exit;
    420                     x_bytes[i] = byte;
    421                 }
    422                 if (fscanf(f, " } , { %u", &byte) != 1) goto exit;
    423                 y_bytes[P256_NBYTES - 1] = byte;
    424                 for (i = P256_NBYTES - 2; i >= 0; --i) {
    425                     if (fscanf(f, " , %u", &byte) != 1) goto exit;
    426                     y_bytes[i] = byte;
    427                 }
    428                 fscanf(f, " } } ");
    429                 p256_from_bin(x_bytes, &key->x);
    430                 p256_from_bin(y_bytes, &key->y);
    431             } else {
    432                 LOGE("Unknown key type %d\n", cert->key_type);
    433                 goto exit;
    434             }
    435 
    436             // if the line ends in a comma, this file has more keys.
    437             switch (fgetc(f)) {
    438             case ',':
    439                 // more keys to come.
    440                 break;
    441 
    442             case EOF:
    443                 done = true;
    444                 break;
    445 
    446             default:
    447                 LOGE("unexpected character between keys\n");
    448                 goto exit;
    449             }
    450         }
    451     }
    452 
    453     fclose(f);
    454     return out;
    455 
    456 exit:
    457     if (f) fclose(f);
    458     free(out);
    459     *numKeys = 0;
    460     return NULL;
    461 }
    462