Home | History | Annotate | Download | only in lib
      1 /* intprops.h -- properties of integer types
      2 
      3    Copyright (C) 2001-2005, 2009-2012 Free Software Foundation, Inc.
      4 
      5    This program is free software: you can redistribute it and/or modify
      6    it under the terms of the GNU General Public License as published by
      7    the Free Software Foundation; either version 3 of the License, or
      8    (at your option) any later version.
      9 
     10    This program is distributed in the hope that it will be useful,
     11    but WITHOUT ANY WARRANTY; without even the implied warranty of
     12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     13    GNU General Public License for more details.
     14 
     15    You should have received a copy of the GNU General Public License
     16    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
     17 
     18 /* Written by Paul Eggert.  */
     19 
     20 #ifndef _GL_INTPROPS_H
     21 #define _GL_INTPROPS_H
     22 
     23 #include <limits.h>
     24 
     25 /* Return an integer value, converted to the same type as the integer
     26    expression E after integer type promotion.  V is the unconverted value.  */
     27 #define _GL_INT_CONVERT(e, v) (0 * (e) + (v))
     28 
     29 /* Act like _GL_INT_CONVERT (E, -V) but work around a bug in IRIX 6.5 cc; see
     30    <http://lists.gnu.org/archive/html/bug-gnulib/2011-05/msg00406.html>.  */
     31 #define _GL_INT_NEGATE_CONVERT(e, v) (0 * (e) - (v))
     32 
     33 /* The extra casts in the following macros work around compiler bugs,
     34    e.g., in Cray C 5.0.3.0.  */
     35 
     36 /* True if the arithmetic type T is an integer type.  bool counts as
     37    an integer.  */
     38 #define TYPE_IS_INTEGER(t) ((t) 1.5 == 1)
     39 
     40 /* True if negative values of the signed integer type T use two's
     41    complement, ones' complement, or signed magnitude representation,
     42    respectively.  Much GNU code assumes two's complement, but some
     43    people like to be portable to all possible C hosts.  */
     44 #define TYPE_TWOS_COMPLEMENT(t) ((t) ~ (t) 0 == (t) -1)
     45 #define TYPE_ONES_COMPLEMENT(t) ((t) ~ (t) 0 == 0)
     46 #define TYPE_SIGNED_MAGNITUDE(t) ((t) ~ (t) 0 < (t) -1)
     47 
     48 /* True if the signed integer expression E uses two's complement.  */
     49 #define _GL_INT_TWOS_COMPLEMENT(e) (~ _GL_INT_CONVERT (e, 0) == -1)
     50 
     51 /* True if the arithmetic type T is signed.  */
     52 #define TYPE_SIGNED(t) (! ((t) 0 < (t) -1))
     53 
     54 /* Return 1 if the integer expression E, after integer promotion, has
     55    a signed type.  */
     56 #define _GL_INT_SIGNED(e) (_GL_INT_NEGATE_CONVERT (e, 1) < 0)
     57 
     58 
     59 /* Minimum and maximum values for integer types and expressions.  These
     60    macros have undefined behavior if T is signed and has padding bits.
     61    If this is a problem for you, please let us know how to fix it for
     62    your host.  */
     63 
     64 /* The maximum and minimum values for the integer type T.  */
     65 #define TYPE_MINIMUM(t)                                                 \
     66   ((t) (! TYPE_SIGNED (t)                                               \
     67         ? (t) 0                                                         \
     68         : TYPE_SIGNED_MAGNITUDE (t)                                     \
     69         ? ~ (t) 0                                                       \
     70         : ~ TYPE_MAXIMUM (t)))
     71 #define TYPE_MAXIMUM(t)                                                 \
     72   ((t) (! TYPE_SIGNED (t)                                               \
     73         ? (t) -1                                                        \
     74         : ((((t) 1 << (sizeof (t) * CHAR_BIT - 2)) - 1) * 2 + 1)))
     75 
     76 /* The maximum and minimum values for the type of the expression E,
     77    after integer promotion.  E should not have side effects.  */
     78 #define _GL_INT_MINIMUM(e)                                              \
     79   (_GL_INT_SIGNED (e)                                                   \
     80    ? - _GL_INT_TWOS_COMPLEMENT (e) - _GL_SIGNED_INT_MAXIMUM (e)         \
     81    : _GL_INT_CONVERT (e, 0))
     82 #define _GL_INT_MAXIMUM(e)                                              \
     83   (_GL_INT_SIGNED (e)                                                   \
     84    ? _GL_SIGNED_INT_MAXIMUM (e)                                         \
     85    : _GL_INT_NEGATE_CONVERT (e, 1))
     86 #define _GL_SIGNED_INT_MAXIMUM(e)                                       \
     87   (((_GL_INT_CONVERT (e, 1) << (sizeof ((e) + 0) * CHAR_BIT - 2)) - 1) * 2 + 1)
     88 
     89 
     90 /* Return 1 if the __typeof__ keyword works.  This could be done by
     91    'configure', but for now it's easier to do it by hand.  */
     92 #if 2 <= __GNUC__ || 0x5110 <= __SUNPRO_C
     93 # define _GL_HAVE___TYPEOF__ 1
     94 #else
     95 # define _GL_HAVE___TYPEOF__ 0
     96 #endif
     97 
     98 /* Return 1 if the integer type or expression T might be signed.  Return 0
     99    if it is definitely unsigned.  This macro does not evaluate its argument,
    100    and expands to an integer constant expression.  */
    101 #if _GL_HAVE___TYPEOF__
    102 # define _GL_SIGNED_TYPE_OR_EXPR(t) TYPE_SIGNED (__typeof__ (t))
    103 #else
    104 # define _GL_SIGNED_TYPE_OR_EXPR(t) 1
    105 #endif
    106 
    107 /* Bound on length of the string representing an unsigned integer
    108    value representable in B bits.  log10 (2.0) < 146/485.  The
    109    smallest value of B where this bound is not tight is 2621.  */
    110 #define INT_BITS_STRLEN_BOUND(b) (((b) * 146 + 484) / 485)
    111 
    112 /* Bound on length of the string representing an integer type or expression T.
    113    Subtract 1 for the sign bit if T is signed, and then add 1 more for
    114    a minus sign if needed.
    115 
    116    Because _GL_SIGNED_TYPE_OR_EXPR sometimes returns 0 when its argument is
    117    signed, this macro may overestimate the true bound by one byte when
    118    applied to unsigned types of size 2, 4, 16, ... bytes.  */
    119 #define INT_STRLEN_BOUND(t)                                     \
    120   (INT_BITS_STRLEN_BOUND (sizeof (t) * CHAR_BIT                 \
    121                           - _GL_SIGNED_TYPE_OR_EXPR (t))        \
    122    + _GL_SIGNED_TYPE_OR_EXPR (t))
    123 
    124 /* Bound on buffer size needed to represent an integer type or expression T,
    125    including the terminating null.  */
    126 #define INT_BUFSIZE_BOUND(t) (INT_STRLEN_BOUND (t) + 1)
    127 
    128 
    129 /* Range overflow checks.
    130 
    131    The INT_<op>_RANGE_OVERFLOW macros return 1 if the corresponding C
    132    operators might not yield numerically correct answers due to
    133    arithmetic overflow.  They do not rely on undefined or
    134    implementation-defined behavior.  Their implementations are simple
    135    and straightforward, but they are a bit harder to use than the
    136    INT_<op>_OVERFLOW macros described below.
    137 
    138    Example usage:
    139 
    140      long int i = ...;
    141      long int j = ...;
    142      if (INT_MULTIPLY_RANGE_OVERFLOW (i, j, LONG_MIN, LONG_MAX))
    143        printf ("multiply would overflow");
    144      else
    145        printf ("product is %ld", i * j);
    146 
    147    Restrictions on *_RANGE_OVERFLOW macros:
    148 
    149    These macros do not check for all possible numerical problems or
    150    undefined or unspecified behavior: they do not check for division
    151    by zero, for bad shift counts, or for shifting negative numbers.
    152 
    153    These macros may evaluate their arguments zero or multiple times,
    154    so the arguments should not have side effects.  The arithmetic
    155    arguments (including the MIN and MAX arguments) must be of the same
    156    integer type after the usual arithmetic conversions, and the type
    157    must have minimum value MIN and maximum MAX.  Unsigned types should
    158    use a zero MIN of the proper type.
    159 
    160    These macros are tuned for constant MIN and MAX.  For commutative
    161    operations such as A + B, they are also tuned for constant B.  */
    162 
    163 /* Return 1 if A + B would overflow in [MIN,MAX] arithmetic.
    164    See above for restrictions.  */
    165 #define INT_ADD_RANGE_OVERFLOW(a, b, min, max)          \
    166   ((b) < 0                                              \
    167    ? (a) < (min) - (b)                                  \
    168    : (max) - (b) < (a))
    169 
    170 /* Return 1 if A - B would overflow in [MIN,MAX] arithmetic.
    171    See above for restrictions.  */
    172 #define INT_SUBTRACT_RANGE_OVERFLOW(a, b, min, max)     \
    173   ((b) < 0                                              \
    174    ? (max) + (b) < (a)                                  \
    175    : (a) < (min) + (b))
    176 
    177 /* Return 1 if - A would overflow in [MIN,MAX] arithmetic.
    178    See above for restrictions.  */
    179 #define INT_NEGATE_RANGE_OVERFLOW(a, min, max)          \
    180   ((min) < 0                                            \
    181    ? (a) < - (max)                                      \
    182    : 0 < (a))
    183 
    184 /* Return 1 if A * B would overflow in [MIN,MAX] arithmetic.
    185    See above for restrictions.  Avoid && and || as they tickle
    186    bugs in Sun C 5.11 2010/08/13 and other compilers; see
    187    <http://lists.gnu.org/archive/html/bug-gnulib/2011-05/msg00401.html>.  */
    188 #define INT_MULTIPLY_RANGE_OVERFLOW(a, b, min, max)     \
    189   ((b) < 0                                              \
    190    ? ((a) < 0                                           \
    191       ? (a) < (max) / (b)                               \
    192       : (b) == -1                                       \
    193       ? 0                                               \
    194       : (min) / (b) < (a))                              \
    195    : (b) == 0                                           \
    196    ? 0                                                  \
    197    : ((a) < 0                                           \
    198       ? (a) < (min) / (b)                               \
    199       : (max) / (b) < (a)))
    200 
    201 /* Return 1 if A / B would overflow in [MIN,MAX] arithmetic.
    202    See above for restrictions.  Do not check for division by zero.  */
    203 #define INT_DIVIDE_RANGE_OVERFLOW(a, b, min, max)       \
    204   ((min) < 0 && (b) == -1 && (a) < - (max))
    205 
    206 /* Return 1 if A % B would overflow in [MIN,MAX] arithmetic.
    207    See above for restrictions.  Do not check for division by zero.
    208    Mathematically, % should never overflow, but on x86-like hosts
    209    INT_MIN % -1 traps, and the C standard permits this, so treat this
    210    as an overflow too.  */
    211 #define INT_REMAINDER_RANGE_OVERFLOW(a, b, min, max)    \
    212   INT_DIVIDE_RANGE_OVERFLOW (a, b, min, max)
    213 
    214 /* Return 1 if A << B would overflow in [MIN,MAX] arithmetic.
    215    See above for restrictions.  Here, MIN and MAX are for A only, and B need
    216    not be of the same type as the other arguments.  The C standard says that
    217    behavior is undefined for shifts unless 0 <= B < wordwidth, and that when
    218    A is negative then A << B has undefined behavior and A >> B has
    219    implementation-defined behavior, but do not check these other
    220    restrictions.  */
    221 #define INT_LEFT_SHIFT_RANGE_OVERFLOW(a, b, min, max)   \
    222   ((a) < 0                                              \
    223    ? (a) < (min) >> (b)                                 \
    224    : (max) >> (b) < (a))
    225 
    226 
    227 /* The _GL*_OVERFLOW macros have the same restrictions as the
    228    *_RANGE_OVERFLOW macros, except that they do not assume that operands
    229    (e.g., A and B) have the same type as MIN and MAX.  Instead, they assume
    230    that the result (e.g., A + B) has that type.  */
    231 #define _GL_ADD_OVERFLOW(a, b, min, max)                                \
    232   ((min) < 0 ? INT_ADD_RANGE_OVERFLOW (a, b, min, max)                  \
    233    : (a) < 0 ? (b) <= (a) + (b)                                         \
    234    : (b) < 0 ? (a) <= (a) + (b)                                         \
    235    : (a) + (b) < (b))
    236 #define _GL_SUBTRACT_OVERFLOW(a, b, min, max)                           \
    237   ((min) < 0 ? INT_SUBTRACT_RANGE_OVERFLOW (a, b, min, max)             \
    238    : (a) < 0 ? 1                                                        \
    239    : (b) < 0 ? (a) - (b) <= (a)                                         \
    240    : (a) < (b))
    241 #define _GL_MULTIPLY_OVERFLOW(a, b, min, max)                           \
    242   (((min) == 0 && (((a) < 0 && 0 < (b)) || ((b) < 0 && 0 < (a))))       \
    243    || INT_MULTIPLY_RANGE_OVERFLOW (a, b, min, max))
    244 #define _GL_DIVIDE_OVERFLOW(a, b, min, max)                             \
    245   ((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max)  \
    246    : (a) < 0 ? (b) <= (a) + (b) - 1                                     \
    247    : (b) < 0 && (a) + (b) <= (a))
    248 #define _GL_REMAINDER_OVERFLOW(a, b, min, max)                          \
    249   ((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max)  \
    250    : (a) < 0 ? (a) % (b) != ((max) - (b) + 1) % (b)                     \
    251    : (b) < 0 && ! _GL_UNSIGNED_NEG_MULTIPLE (a, b, max))
    252 
    253 /* Return a nonzero value if A is a mathematical multiple of B, where
    254    A is unsigned, B is negative, and MAX is the maximum value of A's
    255    type.  A's type must be the same as (A % B)'s type.  Normally (A %
    256    -B == 0) suffices, but things get tricky if -B would overflow.  */
    257 #define _GL_UNSIGNED_NEG_MULTIPLE(a, b, max)                            \
    258   (((b) < -_GL_SIGNED_INT_MAXIMUM (b)                                   \
    259     ? (_GL_SIGNED_INT_MAXIMUM (b) == (max)                              \
    260        ? (a)                                                            \
    261        : (a) % (_GL_INT_CONVERT (a, _GL_SIGNED_INT_MAXIMUM (b)) + 1))   \
    262     : (a) % - (b))                                                      \
    263    == 0)
    264 
    265 
    266 /* Integer overflow checks.
    267 
    268    The INT_<op>_OVERFLOW macros return 1 if the corresponding C operators
    269    might not yield numerically correct answers due to arithmetic overflow.
    270    They work correctly on all known practical hosts, and do not rely
    271    on undefined behavior due to signed arithmetic overflow.
    272 
    273    Example usage:
    274 
    275      long int i = ...;
    276      long int j = ...;
    277      if (INT_MULTIPLY_OVERFLOW (i, j))
    278        printf ("multiply would overflow");
    279      else
    280        printf ("product is %ld", i * j);
    281 
    282    These macros do not check for all possible numerical problems or
    283    undefined or unspecified behavior: they do not check for division
    284    by zero, for bad shift counts, or for shifting negative numbers.
    285 
    286    These macros may evaluate their arguments zero or multiple times, so the
    287    arguments should not have side effects.
    288 
    289    These macros are tuned for their last argument being a constant.
    290 
    291    Return 1 if the integer expressions A * B, A - B, -A, A * B, A / B,
    292    A % B, and A << B would overflow, respectively.  */
    293 
    294 #define INT_ADD_OVERFLOW(a, b) \
    295   _GL_BINARY_OP_OVERFLOW (a, b, _GL_ADD_OVERFLOW)
    296 #define INT_SUBTRACT_OVERFLOW(a, b) \
    297   _GL_BINARY_OP_OVERFLOW (a, b, _GL_SUBTRACT_OVERFLOW)
    298 #define INT_NEGATE_OVERFLOW(a) \
    299   INT_NEGATE_RANGE_OVERFLOW (a, _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a))
    300 #define INT_MULTIPLY_OVERFLOW(a, b) \
    301   _GL_BINARY_OP_OVERFLOW (a, b, _GL_MULTIPLY_OVERFLOW)
    302 #define INT_DIVIDE_OVERFLOW(a, b) \
    303   _GL_BINARY_OP_OVERFLOW (a, b, _GL_DIVIDE_OVERFLOW)
    304 #define INT_REMAINDER_OVERFLOW(a, b) \
    305   _GL_BINARY_OP_OVERFLOW (a, b, _GL_REMAINDER_OVERFLOW)
    306 #define INT_LEFT_SHIFT_OVERFLOW(a, b) \
    307   INT_LEFT_SHIFT_RANGE_OVERFLOW (a, b, \
    308                                  _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a))
    309 
    310 /* Return 1 if the expression A <op> B would overflow,
    311    where OP_RESULT_OVERFLOW (A, B, MIN, MAX) does the actual test,
    312    assuming MIN and MAX are the minimum and maximum for the result type.
    313    Arguments should be free of side effects.  */
    314 #define _GL_BINARY_OP_OVERFLOW(a, b, op_result_overflow)        \
    315   op_result_overflow (a, b,                                     \
    316                       _GL_INT_MINIMUM (0 * (b) + (a)),          \
    317                       _GL_INT_MAXIMUM (0 * (b) + (a)))
    318 
    319 #endif /* _GL_INTPROPS_H */
    320