Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "base/cpu.h"
      6 
      7 #include <stdlib.h>
      8 #include <string.h>
      9 
     10 #include <algorithm>
     11 
     12 #include "base/basictypes.h"
     13 #include "base/strings/string_piece.h"
     14 #include "build/build_config.h"
     15 
     16 #if defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX))
     17 #include "base/files/file_util.h"
     18 #include "base/lazy_instance.h"
     19 #endif
     20 
     21 #if defined(ARCH_CPU_X86_FAMILY)
     22 #if defined(_MSC_VER)
     23 #include <intrin.h>
     24 #include <immintrin.h>  // For _xgetbv()
     25 #endif
     26 #endif
     27 
     28 namespace base {
     29 
     30 CPU::CPU()
     31   : signature_(0),
     32     type_(0),
     33     family_(0),
     34     model_(0),
     35     stepping_(0),
     36     ext_model_(0),
     37     ext_family_(0),
     38     has_mmx_(false),
     39     has_sse_(false),
     40     has_sse2_(false),
     41     has_sse3_(false),
     42     has_ssse3_(false),
     43     has_sse41_(false),
     44     has_sse42_(false),
     45     has_avx_(false),
     46     has_avx_hardware_(false),
     47     has_aesni_(false),
     48     has_non_stop_time_stamp_counter_(false),
     49     has_broken_neon_(false),
     50     cpu_vendor_("unknown") {
     51   Initialize();
     52 }
     53 
     54 namespace {
     55 
     56 #if defined(ARCH_CPU_X86_FAMILY)
     57 #ifndef _MSC_VER
     58 
     59 #if defined(__pic__) && defined(__i386__)
     60 
     61 void __cpuid(int cpu_info[4], int info_type) {
     62   __asm__ volatile (
     63     "mov %%ebx, %%edi\n"
     64     "cpuid\n"
     65     "xchg %%edi, %%ebx\n"
     66     : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
     67     : "a"(info_type)
     68   );
     69 }
     70 
     71 #else
     72 
     73 void __cpuid(int cpu_info[4], int info_type) {
     74   __asm__ volatile (
     75     "cpuid \n\t"
     76     : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
     77     : "a"(info_type)
     78   );
     79 }
     80 
     81 #endif
     82 
     83 // _xgetbv returns the value of an Intel Extended Control Register (XCR).
     84 // Currently only XCR0 is defined by Intel so |xcr| should always be zero.
     85 uint64 _xgetbv(uint32 xcr) {
     86   uint32 eax, edx;
     87 
     88   __asm__ volatile ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (xcr));
     89   return (static_cast<uint64>(edx) << 32) | eax;
     90 }
     91 
     92 #endif  // !_MSC_VER
     93 #endif  // ARCH_CPU_X86_FAMILY
     94 
     95 #if defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX))
     96 class LazyCpuInfoValue {
     97  public:
     98   LazyCpuInfoValue() : has_broken_neon_(false) {
     99     // This function finds the value from /proc/cpuinfo under the key "model
    100     // name" or "Processor". "model name" is used in Linux 3.8 and later (3.7
    101     // and later for arm64) and is shown once per CPU. "Processor" is used in
    102     // earler versions and is shown only once at the top of /proc/cpuinfo
    103     // regardless of the number CPUs.
    104     const char kModelNamePrefix[] = "model name\t: ";
    105     const char kProcessorPrefix[] = "Processor\t: ";
    106 
    107     // This function also calculates whether we believe that this CPU has a
    108     // broken NEON unit based on these fields from cpuinfo:
    109     unsigned implementer = 0, architecture = 0, variant = 0, part = 0,
    110              revision = 0;
    111     const struct {
    112       const char key[17];
    113       unsigned *result;
    114     } kUnsignedValues[] = {
    115       {"CPU implementer", &implementer},
    116       {"CPU architecture", &architecture},
    117       {"CPU variant", &variant},
    118       {"CPU part", &part},
    119       {"CPU revision", &revision},
    120     };
    121 
    122     std::string contents;
    123     ReadFileToString(FilePath("/proc/cpuinfo"), &contents);
    124     DCHECK(!contents.empty());
    125     if (contents.empty()) {
    126       return;
    127     }
    128 
    129     std::istringstream iss(contents);
    130     std::string line;
    131     while (std::getline(iss, line)) {
    132       if (brand_.empty() &&
    133           (line.compare(0, strlen(kModelNamePrefix), kModelNamePrefix) == 0 ||
    134            line.compare(0, strlen(kProcessorPrefix), kProcessorPrefix) == 0)) {
    135         brand_.assign(line.substr(strlen(kModelNamePrefix)));
    136       }
    137 
    138       for (size_t i = 0; i < arraysize(kUnsignedValues); i++) {
    139         const char *key = kUnsignedValues[i].key;
    140         const size_t len = strlen(key);
    141 
    142         if (line.compare(0, len, key) == 0 &&
    143             line.size() >= len + 1 &&
    144             (line[len] == '\t' || line[len] == ' ' || line[len] == ':')) {
    145           size_t colon_pos = line.find(':', len);
    146           if (colon_pos == std::string::npos) {
    147             continue;
    148           }
    149 
    150           const StringPiece line_sp(line);
    151           StringPiece value_sp = line_sp.substr(colon_pos + 1);
    152           while (!value_sp.empty() &&
    153                  (value_sp[0] == ' ' || value_sp[0] == '\t')) {
    154             value_sp = value_sp.substr(1);
    155           }
    156 
    157           // The string may have leading "0x" or not, so we use strtoul to
    158           // handle that.
    159           char *endptr;
    160           std::string value(value_sp.as_string());
    161           unsigned long int result = strtoul(value.c_str(), &endptr, 0);
    162           if (*endptr == 0 && result <= UINT_MAX) {
    163             *kUnsignedValues[i].result = result;
    164           }
    165         }
    166       }
    167     }
    168 
    169     has_broken_neon_ =
    170       implementer == 0x51 &&
    171       architecture == 7 &&
    172       variant == 1 &&
    173       part == 0x4d &&
    174       revision == 0;
    175   }
    176 
    177   const std::string& brand() const { return brand_; }
    178   bool has_broken_neon() const { return has_broken_neon_; }
    179 
    180  private:
    181   std::string brand_;
    182   bool has_broken_neon_;
    183   DISALLOW_COPY_AND_ASSIGN(LazyCpuInfoValue);
    184 };
    185 
    186 base::LazyInstance<LazyCpuInfoValue>::Leaky g_lazy_cpuinfo =
    187     LAZY_INSTANCE_INITIALIZER;
    188 
    189 #endif  // defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) ||
    190         // defined(OS_LINUX))
    191 
    192 }  // anonymous namespace
    193 
    194 void CPU::Initialize() {
    195 #if defined(ARCH_CPU_X86_FAMILY)
    196   int cpu_info[4] = {-1};
    197   char cpu_string[48];
    198 
    199   // __cpuid with an InfoType argument of 0 returns the number of
    200   // valid Ids in CPUInfo[0] and the CPU identification string in
    201   // the other three array elements. The CPU identification string is
    202   // not in linear order. The code below arranges the information
    203   // in a human readable form. The human readable order is CPUInfo[1] |
    204   // CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
    205   // before using memcpy to copy these three array elements to cpu_string.
    206   __cpuid(cpu_info, 0);
    207   int num_ids = cpu_info[0];
    208   std::swap(cpu_info[2], cpu_info[3]);
    209   memcpy(cpu_string, &cpu_info[1], 3 * sizeof(cpu_info[1]));
    210   cpu_vendor_.assign(cpu_string, 3 * sizeof(cpu_info[1]));
    211 
    212   // Interpret CPU feature information.
    213   if (num_ids > 0) {
    214     __cpuid(cpu_info, 1);
    215     signature_ = cpu_info[0];
    216     stepping_ = cpu_info[0] & 0xf;
    217     model_ = ((cpu_info[0] >> 4) & 0xf) + ((cpu_info[0] >> 12) & 0xf0);
    218     family_ = (cpu_info[0] >> 8) & 0xf;
    219     type_ = (cpu_info[0] >> 12) & 0x3;
    220     ext_model_ = (cpu_info[0] >> 16) & 0xf;
    221     ext_family_ = (cpu_info[0] >> 20) & 0xff;
    222     has_mmx_ =   (cpu_info[3] & 0x00800000) != 0;
    223     has_sse_ =   (cpu_info[3] & 0x02000000) != 0;
    224     has_sse2_ =  (cpu_info[3] & 0x04000000) != 0;
    225     has_sse3_ =  (cpu_info[2] & 0x00000001) != 0;
    226     has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
    227     has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
    228     has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
    229     has_avx_hardware_ =
    230                  (cpu_info[2] & 0x10000000) != 0;
    231     // AVX instructions will generate an illegal instruction exception unless
    232     //   a) they are supported by the CPU,
    233     //   b) XSAVE is supported by the CPU and
    234     //   c) XSAVE is enabled by the kernel.
    235     // See http://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled
    236     //
    237     // In addition, we have observed some crashes with the xgetbv instruction
    238     // even after following Intel's example code. (See crbug.com/375968.)
    239     // Because of that, we also test the XSAVE bit because its description in
    240     // the CPUID documentation suggests that it signals xgetbv support.
    241     has_avx_ =
    242         has_avx_hardware_ &&
    243         (cpu_info[2] & 0x04000000) != 0 /* XSAVE */ &&
    244         (cpu_info[2] & 0x08000000) != 0 /* OSXSAVE */ &&
    245         (_xgetbv(0) & 6) == 6 /* XSAVE enabled by kernel */;
    246     has_aesni_ = (cpu_info[2] & 0x02000000) != 0;
    247   }
    248 
    249   // Get the brand string of the cpu.
    250   __cpuid(cpu_info, 0x80000000);
    251   const int parameter_end = 0x80000004;
    252   int max_parameter = cpu_info[0];
    253 
    254   if (cpu_info[0] >= parameter_end) {
    255     char* cpu_string_ptr = cpu_string;
    256 
    257     for (int parameter = 0x80000002; parameter <= parameter_end &&
    258          cpu_string_ptr < &cpu_string[sizeof(cpu_string)]; parameter++) {
    259       __cpuid(cpu_info, parameter);
    260       memcpy(cpu_string_ptr, cpu_info, sizeof(cpu_info));
    261       cpu_string_ptr += sizeof(cpu_info);
    262     }
    263     cpu_brand_.assign(cpu_string, cpu_string_ptr - cpu_string);
    264   }
    265 
    266   const int parameter_containing_non_stop_time_stamp_counter = 0x80000007;
    267   if (max_parameter >= parameter_containing_non_stop_time_stamp_counter) {
    268     __cpuid(cpu_info, parameter_containing_non_stop_time_stamp_counter);
    269     has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
    270   }
    271 #elif defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX))
    272   cpu_brand_.assign(g_lazy_cpuinfo.Get().brand());
    273   has_broken_neon_ = g_lazy_cpuinfo.Get().has_broken_neon();
    274 #endif
    275 }
    276 
    277 CPU::IntelMicroArchitecture CPU::GetIntelMicroArchitecture() const {
    278   if (has_avx()) return AVX;
    279   if (has_sse42()) return SSE42;
    280   if (has_sse41()) return SSE41;
    281   if (has_ssse3()) return SSSE3;
    282   if (has_sse3()) return SSE3;
    283   if (has_sse2()) return SSE2;
    284   if (has_sse()) return SSE;
    285   return PENTIUM;
    286 }
    287 
    288 }  // namespace base
    289