Home | History | Annotate | Download | only in memory
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // PLEASE READ: Do you really need a singleton?
      6 //
      7 // Singletons make it hard to determine the lifetime of an object, which can
      8 // lead to buggy code and spurious crashes.
      9 //
     10 // Instead of adding another singleton into the mix, try to identify either:
     11 //   a) An existing singleton that can manage your object's lifetime
     12 //   b) Locations where you can deterministically create the object and pass
     13 //      into other objects
     14 //
     15 // If you absolutely need a singleton, please keep them as trivial as possible
     16 // and ideally a leaf dependency. Singletons get problematic when they attempt
     17 // to do too much in their destructor or have circular dependencies.
     18 
     19 #ifndef BASE_MEMORY_SINGLETON_H_
     20 #define BASE_MEMORY_SINGLETON_H_
     21 
     22 #include "base/at_exit.h"
     23 #include "base/atomicops.h"
     24 #include "base/base_export.h"
     25 #include "base/memory/aligned_memory.h"
     26 #include "base/third_party/dynamic_annotations/dynamic_annotations.h"
     27 #include "base/threading/thread_restrictions.h"
     28 
     29 namespace base {
     30 namespace internal {
     31 
     32 // Our AtomicWord doubles as a spinlock, where a value of
     33 // kBeingCreatedMarker means the spinlock is being held for creation.
     34 static const subtle::AtomicWord kBeingCreatedMarker = 1;
     35 
     36 // We pull out some of the functionality into a non-templated function, so that
     37 // we can implement the more complicated pieces out of line in the .cc file.
     38 BASE_EXPORT subtle::AtomicWord WaitForInstance(subtle::AtomicWord* instance);
     39 
     40 }  // namespace internal
     41 }  // namespace base
     42 
     43 // TODO(joth): Move more of this file into namespace base
     44 
     45 // Default traits for Singleton<Type>. Calls operator new and operator delete on
     46 // the object. Registers automatic deletion at process exit.
     47 // Overload if you need arguments or another memory allocation function.
     48 template<typename Type>
     49 struct DefaultSingletonTraits {
     50   // Allocates the object.
     51   static Type* New() {
     52     // The parenthesis is very important here; it forces POD type
     53     // initialization.
     54     return new Type();
     55   }
     56 
     57   // Destroys the object.
     58   static void Delete(Type* x) {
     59     delete x;
     60   }
     61 
     62   // Set to true to automatically register deletion of the object on process
     63   // exit. See below for the required call that makes this happen.
     64   static const bool kRegisterAtExit = true;
     65 
     66 #ifndef NDEBUG
     67   // Set to false to disallow access on a non-joinable thread.  This is
     68   // different from kRegisterAtExit because StaticMemorySingletonTraits allows
     69   // access on non-joinable threads, and gracefully handles this.
     70   static const bool kAllowedToAccessOnNonjoinableThread = false;
     71 #endif
     72 };
     73 
     74 
     75 // Alternate traits for use with the Singleton<Type>.  Identical to
     76 // DefaultSingletonTraits except that the Singleton will not be cleaned up
     77 // at exit.
     78 template<typename Type>
     79 struct LeakySingletonTraits : public DefaultSingletonTraits<Type> {
     80   static const bool kRegisterAtExit = false;
     81 #ifndef NDEBUG
     82   static const bool kAllowedToAccessOnNonjoinableThread = true;
     83 #endif
     84 };
     85 
     86 
     87 // Alternate traits for use with the Singleton<Type>.  Allocates memory
     88 // for the singleton instance from a static buffer.  The singleton will
     89 // be cleaned up at exit, but can't be revived after destruction unless
     90 // the Resurrect() method is called.
     91 //
     92 // This is useful for a certain category of things, notably logging and
     93 // tracing, where the singleton instance is of a type carefully constructed to
     94 // be safe to access post-destruction.
     95 // In logging and tracing you'll typically get stray calls at odd times, like
     96 // during static destruction, thread teardown and the like, and there's a
     97 // termination race on the heap-based singleton - e.g. if one thread calls
     98 // get(), but then another thread initiates AtExit processing, the first thread
     99 // may call into an object residing in unallocated memory. If the instance is
    100 // allocated from the data segment, then this is survivable.
    101 //
    102 // The destructor is to deallocate system resources, in this case to unregister
    103 // a callback the system will invoke when logging levels change. Note that
    104 // this is also used in e.g. Chrome Frame, where you have to allow for the
    105 // possibility of loading briefly into someone else's process space, and
    106 // so leaking is not an option, as that would sabotage the state of your host
    107 // process once you've unloaded.
    108 template <typename Type>
    109 struct StaticMemorySingletonTraits {
    110   // WARNING: User has to deal with get() in the singleton class
    111   // this is traits for returning NULL.
    112   static Type* New() {
    113     // Only constructs once and returns pointer; otherwise returns NULL.
    114     if (base::subtle::NoBarrier_AtomicExchange(&dead_, 1))
    115       return NULL;
    116 
    117     return new(buffer_.void_data()) Type();
    118   }
    119 
    120   static void Delete(Type* p) {
    121     if (p != NULL)
    122       p->Type::~Type();
    123   }
    124 
    125   static const bool kRegisterAtExit = true;
    126   static const bool kAllowedToAccessOnNonjoinableThread = true;
    127 
    128   // Exposed for unittesting.
    129   static void Resurrect() {
    130     base::subtle::NoBarrier_Store(&dead_, 0);
    131   }
    132 
    133  private:
    134   static base::AlignedMemory<sizeof(Type), ALIGNOF(Type)> buffer_;
    135   // Signal the object was already deleted, so it is not revived.
    136   static base::subtle::Atomic32 dead_;
    137 };
    138 
    139 template <typename Type> base::AlignedMemory<sizeof(Type), ALIGNOF(Type)>
    140     StaticMemorySingletonTraits<Type>::buffer_;
    141 template <typename Type> base::subtle::Atomic32
    142     StaticMemorySingletonTraits<Type>::dead_ = 0;
    143 
    144 // The Singleton<Type, Traits, DifferentiatingType> class manages a single
    145 // instance of Type which will be created on first use and will be destroyed at
    146 // normal process exit). The Trait::Delete function will not be called on
    147 // abnormal process exit.
    148 //
    149 // DifferentiatingType is used as a key to differentiate two different
    150 // singletons having the same memory allocation functions but serving a
    151 // different purpose. This is mainly used for Locks serving different purposes.
    152 //
    153 // Example usage:
    154 //
    155 // In your header:
    156 //   template <typename T> struct DefaultSingletonTraits;
    157 //   class FooClass {
    158 //    public:
    159 //     static FooClass* GetInstance();  <-- See comment below on this.
    160 //     void Bar() { ... }
    161 //    private:
    162 //     FooClass() { ... }
    163 //     friend struct DefaultSingletonTraits<FooClass>;
    164 //
    165 //     DISALLOW_COPY_AND_ASSIGN(FooClass);
    166 //   };
    167 //
    168 // In your source file:
    169 //  #include "base/memory/singleton.h"
    170 //  FooClass* FooClass::GetInstance() {
    171 //    return Singleton<FooClass>::get();
    172 //  }
    173 //
    174 // And to call methods on FooClass:
    175 //   FooClass::GetInstance()->Bar();
    176 //
    177 // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance
    178 // and it is important that FooClass::GetInstance() is not inlined in the
    179 // header. This makes sure that when source files from multiple targets include
    180 // this header they don't end up with different copies of the inlined code
    181 // creating multiple copies of the singleton.
    182 //
    183 // Singleton<> has no non-static members and doesn't need to actually be
    184 // instantiated.
    185 //
    186 // This class is itself thread-safe. The underlying Type must of course be
    187 // thread-safe if you want to use it concurrently. Two parameters may be tuned
    188 // depending on the user's requirements.
    189 //
    190 // Glossary:
    191 //   RAE = kRegisterAtExit
    192 //
    193 // On every platform, if Traits::RAE is true, the singleton will be destroyed at
    194 // process exit. More precisely it uses base::AtExitManager which requires an
    195 // object of this type to be instantiated. AtExitManager mimics the semantics
    196 // of atexit() such as LIFO order but under Windows is safer to call. For more
    197 // information see at_exit.h.
    198 //
    199 // If Traits::RAE is false, the singleton will not be freed at process exit,
    200 // thus the singleton will be leaked if it is ever accessed. Traits::RAE
    201 // shouldn't be false unless absolutely necessary. Remember that the heap where
    202 // the object is allocated may be destroyed by the CRT anyway.
    203 //
    204 // Caveats:
    205 // (a) Every call to get(), operator->() and operator*() incurs some overhead
    206 //     (16ns on my P4/2.8GHz) to check whether the object has already been
    207 //     initialized.  You may wish to cache the result of get(); it will not
    208 //     change.
    209 //
    210 // (b) Your factory function must never throw an exception. This class is not
    211 //     exception-safe.
    212 //
    213 template <typename Type,
    214           typename Traits = DefaultSingletonTraits<Type>,
    215           typename DifferentiatingType = Type>
    216 class Singleton {
    217  private:
    218   // Classes using the Singleton<T> pattern should declare a GetInstance()
    219   // method and call Singleton::get() from within that.
    220   friend Type* Type::GetInstance();
    221 
    222   // Allow TraceLog tests to test tracing after OnExit.
    223   friend class DeleteTraceLogForTesting;
    224 
    225   // This class is safe to be constructed and copy-constructed since it has no
    226   // member.
    227 
    228   // Return a pointer to the one true instance of the class.
    229   static Type* get() {
    230 #ifndef NDEBUG
    231     // Avoid making TLS lookup on release builds.
    232     if (!Traits::kAllowedToAccessOnNonjoinableThread)
    233       base::ThreadRestrictions::AssertSingletonAllowed();
    234 #endif
    235 
    236     // The load has acquire memory ordering as the thread which reads the
    237     // instance_ pointer must acquire visibility over the singleton data.
    238     base::subtle::AtomicWord value = base::subtle::Acquire_Load(&instance_);
    239     if (value != 0 && value != base::internal::kBeingCreatedMarker) {
    240       // See the corresponding HAPPENS_BEFORE below.
    241       ANNOTATE_HAPPENS_AFTER(&instance_);
    242       return reinterpret_cast<Type*>(value);
    243     }
    244 
    245     // Object isn't created yet, maybe we will get to create it, let's try...
    246     if (base::subtle::Acquire_CompareAndSwap(
    247           &instance_, 0, base::internal::kBeingCreatedMarker) == 0) {
    248       // instance_ was NULL and is now kBeingCreatedMarker.  Only one thread
    249       // will ever get here.  Threads might be spinning on us, and they will
    250       // stop right after we do this store.
    251       Type* newval = Traits::New();
    252 
    253       // This annotation helps race detectors recognize correct lock-less
    254       // synchronization between different threads calling get().
    255       // See the corresponding HAPPENS_AFTER below and above.
    256       ANNOTATE_HAPPENS_BEFORE(&instance_);
    257       // Releases the visibility over instance_ to the readers.
    258       base::subtle::Release_Store(
    259           &instance_, reinterpret_cast<base::subtle::AtomicWord>(newval));
    260 
    261       if (newval != NULL && Traits::kRegisterAtExit)
    262         base::AtExitManager::RegisterCallback(OnExit, NULL);
    263 
    264       return newval;
    265     }
    266 
    267     // We hit a race. Wait for the other thread to complete it.
    268     value = base::internal::WaitForInstance(&instance_);
    269 
    270     // See the corresponding HAPPENS_BEFORE above.
    271     ANNOTATE_HAPPENS_AFTER(&instance_);
    272     return reinterpret_cast<Type*>(value);
    273   }
    274 
    275   // Adapter function for use with AtExit().  This should be called single
    276   // threaded, so don't use atomic operations.
    277   // Calling OnExit while singleton is in use by other threads is a mistake.
    278   static void OnExit(void* /*unused*/) {
    279     // AtExit should only ever be register after the singleton instance was
    280     // created.  We should only ever get here with a valid instance_ pointer.
    281     Traits::Delete(
    282         reinterpret_cast<Type*>(base::subtle::NoBarrier_Load(&instance_)));
    283     instance_ = 0;
    284   }
    285   static base::subtle::AtomicWord instance_;
    286 };
    287 
    288 template <typename Type, typename Traits, typename DifferentiatingType>
    289 base::subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>::
    290     instance_ = 0;
    291 
    292 #endif  // BASE_MEMORY_SINGLETON_H_
    293