Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef NET_BASE_IO_BUFFER_H_
      6 #define NET_BASE_IO_BUFFER_H_
      7 
      8 #include <string>
      9 
     10 #include "base/memory/ref_counted.h"
     11 #include "base/memory/scoped_ptr.h"
     12 #include "base/pickle.h"
     13 #include "net/base/net_export.h"
     14 
     15 namespace net {
     16 
     17 // IOBuffers are reference counted data buffers used for easier asynchronous
     18 // IO handling.
     19 //
     20 // They are often used as the destination buffers for Read() operations, or as
     21 // the source buffers for Write() operations.
     22 //
     23 // IMPORTANT: Never re-use an IOBuffer after cancelling the IO operation that
     24 //            was using it, since this may lead to memory corruption!
     25 //
     26 // -----------------------
     27 // Ownership of IOBuffers:
     28 // -----------------------
     29 //
     30 // Although IOBuffers are RefCountedThreadSafe, they are not intended to be
     31 // used as a shared buffer, nor should they be used simultaneously across
     32 // threads. The fact that they are reference counted is an implementation
     33 // detail for allowing them to outlive cancellation of asynchronous
     34 // operations.
     35 //
     36 // Instead, think of the underlying |char*| buffer contained by the IOBuffer
     37 // as having exactly one owner at a time.
     38 //
     39 // Whenever you call an asynchronous operation that takes an IOBuffer,
     40 // ownership is implicitly transferred to the called function, until the
     41 // operation has completed (at which point it transfers back to the caller).
     42 //
     43 //     ==> The IOBuffer's data should NOT be manipulated, destroyed, or read
     44 //         until the operation has completed.
     45 //
     46 //     ==> Cancellation does NOT count as completion. If an operation using
     47 //         an IOBuffer is cancelled, the caller should release their
     48 //         reference to this IOBuffer at the time of cancellation since
     49 //         they can no longer use it.
     50 //
     51 // For instance, if you were to call a Read() operation on some class which
     52 // takes an IOBuffer, and then delete that class (which generally will
     53 // trigger cancellation), the IOBuffer which had been passed to Read() should
     54 // never be re-used.
     55 //
     56 // This usage contract is assumed by any API which takes an IOBuffer, even
     57 // though it may not be explicitly mentioned in the function's comments.
     58 //
     59 // -----------------------
     60 // Motivation
     61 // -----------------------
     62 //
     63 // The motivation for transferring ownership during cancellation is
     64 // to make it easier to work with un-cancellable operations.
     65 //
     66 // For instance, let's say under the hood your API called out to the
     67 // operating system's synchronous ReadFile() function on a worker thread.
     68 // When cancelling through our asynchronous interface, we have no way of
     69 // actually aborting the in progress ReadFile(). We must let it keep running,
     70 // and hence the buffer it was reading into must remain alive. Using
     71 // reference counting we can add a reference to the IOBuffer and make sure
     72 // it is not destroyed until after the synchronous operation has completed.
     73 class NET_EXPORT IOBuffer : public base::RefCountedThreadSafe<IOBuffer> {
     74  public:
     75   IOBuffer();
     76   explicit IOBuffer(int buffer_size);
     77 
     78   char* data() { return data_; }
     79 
     80  protected:
     81   friend class base::RefCountedThreadSafe<IOBuffer>;
     82 
     83   // Only allow derived classes to specify data_.
     84   // In all other cases, we own data_, and must delete it at destruction time.
     85   explicit IOBuffer(char* data);
     86 
     87   virtual ~IOBuffer();
     88 
     89   char* data_;
     90 };
     91 
     92 // This version stores the size of the buffer so that the creator of the object
     93 // doesn't have to keep track of that value.
     94 // NOTE: This doesn't mean that we want to stop sending the size as an explicit
     95 // argument to IO functions. Please keep using IOBuffer* for API declarations.
     96 class NET_EXPORT IOBufferWithSize : public IOBuffer {
     97  public:
     98   explicit IOBufferWithSize(int size);
     99 
    100   int size() const { return size_; }
    101 
    102  protected:
    103   // Purpose of this constructor is to give a subclass access to the base class
    104   // constructor IOBuffer(char*) thus allowing subclass to use underlying
    105   // memory it does not own.
    106   IOBufferWithSize(char* data, int size);
    107   virtual ~IOBufferWithSize();
    108 
    109   int size_;
    110 };
    111 
    112 // This is a read only IOBuffer.  The data is stored in a string and
    113 // the IOBuffer interface does not provide a proper way to modify it.
    114 class NET_EXPORT StringIOBuffer : public IOBuffer {
    115  public:
    116   explicit StringIOBuffer(const std::string& s);
    117   explicit StringIOBuffer(scoped_ptr<std::string> s);
    118 
    119   int size() const { return static_cast<int>(string_data_.size()); }
    120 
    121  private:
    122   virtual ~StringIOBuffer();
    123 
    124   std::string string_data_;
    125 };
    126 
    127 // This version wraps an existing IOBuffer and provides convenient functions
    128 // to progressively read all the data.
    129 //
    130 // DrainableIOBuffer is useful when you have an IOBuffer that contains data
    131 // to be written progressively, and Write() function takes an IOBuffer rather
    132 // than char*. DrainableIOBuffer can be used as follows:
    133 //
    134 // // payload is the IOBuffer containing the data to be written.
    135 // buf = new DrainableIOBuffer(payload, payload_size);
    136 //
    137 // while (buf->BytesRemaining() > 0) {
    138 //   // Write() takes an IOBuffer. If it takes char*, we could
    139 //   // simply use the regular IOBuffer like payload->data() + offset.
    140 //   int bytes_written = Write(buf, buf->BytesRemaining());
    141 //   buf->DidConsume(bytes_written);
    142 // }
    143 //
    144 class NET_EXPORT DrainableIOBuffer : public IOBuffer {
    145  public:
    146   DrainableIOBuffer(IOBuffer* base, int size);
    147 
    148   // DidConsume() changes the |data_| pointer so that |data_| always points
    149   // to the first unconsumed byte.
    150   void DidConsume(int bytes);
    151 
    152   // Returns the number of unconsumed bytes.
    153   int BytesRemaining() const;
    154 
    155   // Returns the number of consumed bytes.
    156   int BytesConsumed() const;
    157 
    158   // Seeks to an arbitrary point in the buffer. The notion of bytes consumed
    159   // and remaining are updated appropriately.
    160   void SetOffset(int bytes);
    161 
    162   int size() const { return size_; }
    163 
    164  private:
    165   virtual ~DrainableIOBuffer();
    166 
    167   scoped_refptr<IOBuffer> base_;
    168   int size_;
    169   int used_;
    170 };
    171 
    172 // This version provides a resizable buffer and a changeable offset.
    173 //
    174 // GrowableIOBuffer is useful when you read data progressively without
    175 // knowing the total size in advance. GrowableIOBuffer can be used as
    176 // follows:
    177 //
    178 // buf = new GrowableIOBuffer;
    179 // buf->SetCapacity(1024);  // Initial capacity.
    180 //
    181 // while (!some_stream->IsEOF()) {
    182 //   // Double the capacity if the remaining capacity is empty.
    183 //   if (buf->RemainingCapacity() == 0)
    184 //     buf->SetCapacity(buf->capacity() * 2);
    185 //   int bytes_read = some_stream->Read(buf, buf->RemainingCapacity());
    186 //   buf->set_offset(buf->offset() + bytes_read);
    187 // }
    188 //
    189 class NET_EXPORT GrowableIOBuffer : public IOBuffer {
    190  public:
    191   GrowableIOBuffer();
    192 
    193   // realloc memory to the specified capacity.
    194   void SetCapacity(int capacity);
    195   int capacity() { return capacity_; }
    196 
    197   // |offset| moves the |data_| pointer, allowing "seeking" in the data.
    198   void set_offset(int offset);
    199   int offset() { return offset_; }
    200 
    201   int RemainingCapacity();
    202   char* StartOfBuffer();
    203 
    204  private:
    205   virtual ~GrowableIOBuffer();
    206 
    207   scoped_ptr<char, base::FreeDeleter> real_data_;
    208   int capacity_;
    209   int offset_;
    210 };
    211 
    212 // This versions allows a pickle to be used as the storage for a write-style
    213 // operation, avoiding an extra data copy.
    214 class NET_EXPORT PickledIOBuffer : public IOBuffer {
    215  public:
    216   PickledIOBuffer();
    217 
    218   Pickle* pickle() { return &pickle_; }
    219 
    220   // Signals that we are done writing to the pickle and we can use it for a
    221   // write-style IO operation.
    222   void Done();
    223 
    224  private:
    225   virtual ~PickledIOBuffer();
    226 
    227   Pickle pickle_;
    228 };
    229 
    230 // This class allows the creation of a temporary IOBuffer that doesn't really
    231 // own the underlying buffer. Please use this class only as a last resort.
    232 // A good example is the buffer for a synchronous operation, where we can be
    233 // sure that nobody is keeping an extra reference to this object so the lifetime
    234 // of the buffer can be completely managed by its intended owner.
    235 class NET_EXPORT WrappedIOBuffer : public IOBuffer {
    236  public:
    237   explicit WrappedIOBuffer(const char* data);
    238 
    239  protected:
    240   virtual ~WrappedIOBuffer();
    241 };
    242 
    243 }  // namespace net
    244 
    245 #endif  // NET_BASE_IO_BUFFER_H_
    246