Home | History | Annotate | Download | only in blockfile
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "net/disk_cache/blockfile/sparse_control.h"
      6 
      7 #include "base/bind.h"
      8 #include "base/format_macros.h"
      9 #include "base/logging.h"
     10 #include "base/message_loop/message_loop.h"
     11 #include "base/strings/string_util.h"
     12 #include "base/strings/stringprintf.h"
     13 #include "base/time/time.h"
     14 #include "net/base/io_buffer.h"
     15 #include "net/base/net_errors.h"
     16 #include "net/disk_cache/blockfile/backend_impl.h"
     17 #include "net/disk_cache/blockfile/entry_impl.h"
     18 #include "net/disk_cache/blockfile/file.h"
     19 #include "net/disk_cache/net_log_parameters.h"
     20 
     21 using base::Time;
     22 
     23 namespace {
     24 
     25 // Stream of the sparse data index.
     26 const int kSparseIndex = 2;
     27 
     28 // Stream of the sparse data.
     29 const int kSparseData = 1;
     30 
     31 // We can have up to 64k children.
     32 const int kMaxMapSize = 8 * 1024;
     33 
     34 // The maximum number of bytes that a child can store.
     35 const int kMaxEntrySize = 0x100000;
     36 
     37 // The size of each data block (tracked by the child allocation bitmap).
     38 const int kBlockSize = 1024;
     39 
     40 // Returns the name of a child entry given the base_name and signature of the
     41 // parent and the child_id.
     42 // If the entry is called entry_name, child entries will be named something
     43 // like Range_entry_name:XXX:YYY where XXX is the entry signature and YYY is the
     44 // number of the particular child.
     45 std::string GenerateChildName(const std::string& base_name, int64 signature,
     46                               int64 child_id) {
     47   return base::StringPrintf("Range_%s:%" PRIx64 ":%" PRIx64, base_name.c_str(),
     48                             signature, child_id);
     49 }
     50 
     51 // This class deletes the children of a sparse entry.
     52 class ChildrenDeleter
     53     : public base::RefCounted<ChildrenDeleter>,
     54       public disk_cache::FileIOCallback {
     55  public:
     56   ChildrenDeleter(disk_cache::BackendImpl* backend, const std::string& name)
     57       : backend_(backend->GetWeakPtr()), name_(name), signature_(0) {}
     58 
     59   virtual void OnFileIOComplete(int bytes_copied) OVERRIDE;
     60 
     61   // Two ways of deleting the children: if we have the children map, use Start()
     62   // directly, otherwise pass the data address to ReadData().
     63   void Start(char* buffer, int len);
     64   void ReadData(disk_cache::Addr address, int len);
     65 
     66  private:
     67   friend class base::RefCounted<ChildrenDeleter>;
     68   virtual ~ChildrenDeleter() {}
     69 
     70   void DeleteChildren();
     71 
     72   base::WeakPtr<disk_cache::BackendImpl> backend_;
     73   std::string name_;
     74   disk_cache::Bitmap children_map_;
     75   int64 signature_;
     76   scoped_ptr<char[]> buffer_;
     77   DISALLOW_COPY_AND_ASSIGN(ChildrenDeleter);
     78 };
     79 
     80 // This is the callback of the file operation.
     81 void ChildrenDeleter::OnFileIOComplete(int bytes_copied) {
     82   char* buffer = buffer_.release();
     83   Start(buffer, bytes_copied);
     84 }
     85 
     86 void ChildrenDeleter::Start(char* buffer, int len) {
     87   buffer_.reset(buffer);
     88   if (len < static_cast<int>(sizeof(disk_cache::SparseData)))
     89     return Release();
     90 
     91   // Just copy the information from |buffer|, delete |buffer| and start deleting
     92   // the child entries.
     93   disk_cache::SparseData* data =
     94       reinterpret_cast<disk_cache::SparseData*>(buffer);
     95   signature_ = data->header.signature;
     96 
     97   int num_bits = (len - sizeof(disk_cache::SparseHeader)) * 8;
     98   children_map_.Resize(num_bits, false);
     99   children_map_.SetMap(data->bitmap, num_bits / 32);
    100   buffer_.reset();
    101 
    102   DeleteChildren();
    103 }
    104 
    105 void ChildrenDeleter::ReadData(disk_cache::Addr address, int len) {
    106   DCHECK(address.is_block_file());
    107   if (!backend_.get())
    108     return Release();
    109 
    110   disk_cache::File* file(backend_->File(address));
    111   if (!file)
    112     return Release();
    113 
    114   size_t file_offset = address.start_block() * address.BlockSize() +
    115                        disk_cache::kBlockHeaderSize;
    116 
    117   buffer_.reset(new char[len]);
    118   bool completed;
    119   if (!file->Read(buffer_.get(), len, file_offset, this, &completed))
    120     return Release();
    121 
    122   if (completed)
    123     OnFileIOComplete(len);
    124 
    125   // And wait until OnFileIOComplete gets called.
    126 }
    127 
    128 void ChildrenDeleter::DeleteChildren() {
    129   int child_id = 0;
    130   if (!children_map_.FindNextSetBit(&child_id) || !backend_.get()) {
    131     // We are done. Just delete this object.
    132     return Release();
    133   }
    134   std::string child_name = GenerateChildName(name_, signature_, child_id);
    135   backend_->SyncDoomEntry(child_name);
    136   children_map_.Set(child_id, false);
    137 
    138   // Post a task to delete the next child.
    139   base::MessageLoop::current()->PostTask(
    140       FROM_HERE, base::Bind(&ChildrenDeleter::DeleteChildren, this));
    141 }
    142 
    143 // Returns the NetLog event type corresponding to a SparseOperation.
    144 net::NetLog::EventType GetSparseEventType(
    145     disk_cache::SparseControl::SparseOperation operation) {
    146   switch (operation) {
    147     case disk_cache::SparseControl::kReadOperation:
    148       return net::NetLog::TYPE_SPARSE_READ;
    149     case disk_cache::SparseControl::kWriteOperation:
    150       return net::NetLog::TYPE_SPARSE_WRITE;
    151     case disk_cache::SparseControl::kGetRangeOperation:
    152       return net::NetLog::TYPE_SPARSE_GET_RANGE;
    153     default:
    154       NOTREACHED();
    155       return net::NetLog::TYPE_CANCELLED;
    156   }
    157 }
    158 
    159 // Logs the end event for |operation| on a child entry.  Range operations log
    160 // no events for each child they search through.
    161 void LogChildOperationEnd(const net::BoundNetLog& net_log,
    162                           disk_cache::SparseControl::SparseOperation operation,
    163                           int result) {
    164   if (net_log.IsLogging()) {
    165     net::NetLog::EventType event_type;
    166     switch (operation) {
    167       case disk_cache::SparseControl::kReadOperation:
    168         event_type = net::NetLog::TYPE_SPARSE_READ_CHILD_DATA;
    169         break;
    170       case disk_cache::SparseControl::kWriteOperation:
    171         event_type = net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA;
    172         break;
    173       case disk_cache::SparseControl::kGetRangeOperation:
    174         return;
    175       default:
    176         NOTREACHED();
    177         return;
    178     }
    179     net_log.EndEventWithNetErrorCode(event_type, result);
    180   }
    181 }
    182 
    183 }  // namespace.
    184 
    185 namespace disk_cache {
    186 
    187 SparseControl::SparseControl(EntryImpl* entry)
    188     : entry_(entry),
    189       child_(NULL),
    190       operation_(kNoOperation),
    191       pending_(false),
    192       finished_(false),
    193       init_(false),
    194       range_found_(false),
    195       abort_(false),
    196       child_map_(child_data_.bitmap, kNumSparseBits, kNumSparseBits / 32),
    197       offset_(0),
    198       buf_len_(0),
    199       child_offset_(0),
    200       child_len_(0),
    201       result_(0) {
    202   memset(&sparse_header_, 0, sizeof(sparse_header_));
    203   memset(&child_data_, 0, sizeof(child_data_));
    204 }
    205 
    206 SparseControl::~SparseControl() {
    207   if (child_)
    208     CloseChild();
    209   if (init_)
    210     WriteSparseData();
    211 }
    212 
    213 int SparseControl::Init() {
    214   DCHECK(!init_);
    215 
    216   // We should not have sparse data for the exposed entry.
    217   if (entry_->GetDataSize(kSparseData))
    218     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    219 
    220   // Now see if there is something where we store our data.
    221   int rv = net::OK;
    222   int data_len = entry_->GetDataSize(kSparseIndex);
    223   if (!data_len) {
    224     rv = CreateSparseEntry();
    225   } else {
    226     rv = OpenSparseEntry(data_len);
    227   }
    228 
    229   if (rv == net::OK)
    230     init_ = true;
    231   return rv;
    232 }
    233 
    234 bool SparseControl::CouldBeSparse() const {
    235   DCHECK(!init_);
    236 
    237   if (entry_->GetDataSize(kSparseData))
    238     return false;
    239 
    240   // We don't verify the data, just see if it could be there.
    241   return (entry_->GetDataSize(kSparseIndex) != 0);
    242 }
    243 
    244 int SparseControl::StartIO(SparseOperation op, int64 offset, net::IOBuffer* buf,
    245                            int buf_len, const CompletionCallback& callback) {
    246   DCHECK(init_);
    247   // We don't support simultaneous IO for sparse data.
    248   if (operation_ != kNoOperation)
    249     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    250 
    251   if (offset < 0 || buf_len < 0)
    252     return net::ERR_INVALID_ARGUMENT;
    253 
    254   // We only support up to 64 GB.
    255   if (static_cast<uint64>(offset) + static_cast<unsigned int>(buf_len) >=
    256       GG_UINT64_C(0x1000000000)) {
    257     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    258   }
    259 
    260   DCHECK(!user_buf_.get());
    261   DCHECK(user_callback_.is_null());
    262 
    263   if (!buf && (op == kReadOperation || op == kWriteOperation))
    264     return 0;
    265 
    266   // Copy the operation parameters.
    267   operation_ = op;
    268   offset_ = offset;
    269   user_buf_ = buf ? new net::DrainableIOBuffer(buf, buf_len) : NULL;
    270   buf_len_ = buf_len;
    271   user_callback_ = callback;
    272 
    273   result_ = 0;
    274   pending_ = false;
    275   finished_ = false;
    276   abort_ = false;
    277 
    278   if (entry_->net_log().IsLogging()) {
    279     entry_->net_log().BeginEvent(
    280         GetSparseEventType(operation_),
    281         CreateNetLogSparseOperationCallback(offset_, buf_len_));
    282   }
    283   DoChildrenIO();
    284 
    285   if (!pending_) {
    286     // Everything was done synchronously.
    287     operation_ = kNoOperation;
    288     user_buf_ = NULL;
    289     user_callback_.Reset();
    290     return result_;
    291   }
    292 
    293   return net::ERR_IO_PENDING;
    294 }
    295 
    296 int SparseControl::GetAvailableRange(int64 offset, int len, int64* start) {
    297   DCHECK(init_);
    298   // We don't support simultaneous IO for sparse data.
    299   if (operation_ != kNoOperation)
    300     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    301 
    302   DCHECK(start);
    303 
    304   range_found_ = false;
    305   int result = StartIO(
    306       kGetRangeOperation, offset, NULL, len, CompletionCallback());
    307   if (range_found_) {
    308     *start = offset_;
    309     return result;
    310   }
    311 
    312   // This is a failure. We want to return a valid start value in any case.
    313   *start = offset;
    314   return result < 0 ? result : 0;  // Don't mask error codes to the caller.
    315 }
    316 
    317 void SparseControl::CancelIO() {
    318   if (operation_ == kNoOperation)
    319     return;
    320   abort_ = true;
    321 }
    322 
    323 int SparseControl::ReadyToUse(const CompletionCallback& callback) {
    324   if (!abort_)
    325     return net::OK;
    326 
    327   // We'll grab another reference to keep this object alive because we just have
    328   // one extra reference due to the pending IO operation itself, but we'll
    329   // release that one before invoking user_callback_.
    330   entry_->AddRef();  // Balanced in DoAbortCallbacks.
    331   abort_callbacks_.push_back(callback);
    332   return net::ERR_IO_PENDING;
    333 }
    334 
    335 // Static
    336 void SparseControl::DeleteChildren(EntryImpl* entry) {
    337   DCHECK(entry->GetEntryFlags() & PARENT_ENTRY);
    338   int data_len = entry->GetDataSize(kSparseIndex);
    339   if (data_len < static_cast<int>(sizeof(SparseData)) ||
    340       entry->GetDataSize(kSparseData))
    341     return;
    342 
    343   int map_len = data_len - sizeof(SparseHeader);
    344   if (map_len > kMaxMapSize || map_len % 4)
    345     return;
    346 
    347   char* buffer;
    348   Addr address;
    349   entry->GetData(kSparseIndex, &buffer, &address);
    350   if (!buffer && !address.is_initialized())
    351     return;
    352 
    353   entry->net_log().AddEvent(net::NetLog::TYPE_SPARSE_DELETE_CHILDREN);
    354 
    355   DCHECK(entry->backend_.get());
    356   ChildrenDeleter* deleter = new ChildrenDeleter(entry->backend_.get(),
    357                                                  entry->GetKey());
    358   // The object will self destruct when finished.
    359   deleter->AddRef();
    360 
    361   if (buffer) {
    362     base::MessageLoop::current()->PostTask(
    363         FROM_HERE,
    364         base::Bind(&ChildrenDeleter::Start, deleter, buffer, data_len));
    365   } else {
    366     base::MessageLoop::current()->PostTask(
    367         FROM_HERE,
    368         base::Bind(&ChildrenDeleter::ReadData, deleter, address, data_len));
    369   }
    370 }
    371 
    372 // We are going to start using this entry to store sparse data, so we have to
    373 // initialize our control info.
    374 int SparseControl::CreateSparseEntry() {
    375   if (CHILD_ENTRY & entry_->GetEntryFlags())
    376     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    377 
    378   memset(&sparse_header_, 0, sizeof(sparse_header_));
    379   sparse_header_.signature = Time::Now().ToInternalValue();
    380   sparse_header_.magic = kIndexMagic;
    381   sparse_header_.parent_key_len = entry_->GetKey().size();
    382   children_map_.Resize(kNumSparseBits, true);
    383 
    384   // Save the header. The bitmap is saved in the destructor.
    385   scoped_refptr<net::IOBuffer> buf(
    386       new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
    387 
    388   int rv = entry_->WriteData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_),
    389                              CompletionCallback(), false);
    390   if (rv != sizeof(sparse_header_)) {
    391     DLOG(ERROR) << "Unable to save sparse_header_";
    392     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    393   }
    394 
    395   entry_->SetEntryFlags(PARENT_ENTRY);
    396   return net::OK;
    397 }
    398 
    399 // We are opening an entry from disk. Make sure that our control data is there.
    400 int SparseControl::OpenSparseEntry(int data_len) {
    401   if (data_len < static_cast<int>(sizeof(SparseData)))
    402     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    403 
    404   if (entry_->GetDataSize(kSparseData))
    405     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    406 
    407   if (!(PARENT_ENTRY & entry_->GetEntryFlags()))
    408     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    409 
    410   // Dont't go over board with the bitmap. 8 KB gives us offsets up to 64 GB.
    411   int map_len = data_len - sizeof(sparse_header_);
    412   if (map_len > kMaxMapSize || map_len % 4)
    413     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    414 
    415   scoped_refptr<net::IOBuffer> buf(
    416       new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
    417 
    418   // Read header.
    419   int rv = entry_->ReadData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_),
    420                             CompletionCallback());
    421   if (rv != static_cast<int>(sizeof(sparse_header_)))
    422     return net::ERR_CACHE_READ_FAILURE;
    423 
    424   // The real validation should be performed by the caller. This is just to
    425   // double check.
    426   if (sparse_header_.magic != kIndexMagic ||
    427       sparse_header_.parent_key_len !=
    428           static_cast<int>(entry_->GetKey().size()))
    429     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    430 
    431   // Read the actual bitmap.
    432   buf = new net::IOBuffer(map_len);
    433   rv = entry_->ReadData(kSparseIndex, sizeof(sparse_header_), buf.get(),
    434                         map_len, CompletionCallback());
    435   if (rv != map_len)
    436     return net::ERR_CACHE_READ_FAILURE;
    437 
    438   // Grow the bitmap to the current size and copy the bits.
    439   children_map_.Resize(map_len * 8, false);
    440   children_map_.SetMap(reinterpret_cast<uint32*>(buf->data()), map_len);
    441   return net::OK;
    442 }
    443 
    444 bool SparseControl::OpenChild() {
    445   DCHECK_GE(result_, 0);
    446 
    447   std::string key = GenerateChildKey();
    448   if (child_) {
    449     // Keep using the same child or open another one?.
    450     if (key == child_->GetKey())
    451       return true;
    452     CloseChild();
    453   }
    454 
    455   // See if we are tracking this child.
    456   if (!ChildPresent())
    457     return ContinueWithoutChild(key);
    458 
    459   if (!entry_->backend_.get())
    460     return false;
    461 
    462   child_ = entry_->backend_->OpenEntryImpl(key);
    463   if (!child_)
    464     return ContinueWithoutChild(key);
    465 
    466   EntryImpl* child = static_cast<EntryImpl*>(child_);
    467   if (!(CHILD_ENTRY & child->GetEntryFlags()) ||
    468       child->GetDataSize(kSparseIndex) <
    469           static_cast<int>(sizeof(child_data_)))
    470     return KillChildAndContinue(key, false);
    471 
    472   scoped_refptr<net::WrappedIOBuffer> buf(
    473       new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
    474 
    475   // Read signature.
    476   int rv = child_->ReadData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
    477                             CompletionCallback());
    478   if (rv != sizeof(child_data_))
    479     return KillChildAndContinue(key, true);  // This is a fatal failure.
    480 
    481   if (child_data_.header.signature != sparse_header_.signature ||
    482       child_data_.header.magic != kIndexMagic)
    483     return KillChildAndContinue(key, false);
    484 
    485   if (child_data_.header.last_block_len < 0 ||
    486       child_data_.header.last_block_len > kBlockSize) {
    487     // Make sure these values are always within range.
    488     child_data_.header.last_block_len = 0;
    489     child_data_.header.last_block = -1;
    490   }
    491 
    492   return true;
    493 }
    494 
    495 void SparseControl::CloseChild() {
    496   scoped_refptr<net::WrappedIOBuffer> buf(
    497       new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
    498 
    499   // Save the allocation bitmap before closing the child entry.
    500   int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
    501                              CompletionCallback(), false);
    502   if (rv != sizeof(child_data_))
    503     DLOG(ERROR) << "Failed to save child data";
    504   child_->Release();
    505   child_ = NULL;
    506 }
    507 
    508 std::string SparseControl::GenerateChildKey() {
    509   return GenerateChildName(entry_->GetKey(), sparse_header_.signature,
    510                            offset_ >> 20);
    511 }
    512 
    513 // We are deleting the child because something went wrong.
    514 bool SparseControl::KillChildAndContinue(const std::string& key, bool fatal) {
    515   SetChildBit(false);
    516   child_->DoomImpl();
    517   child_->Release();
    518   child_ = NULL;
    519   if (fatal) {
    520     result_ = net::ERR_CACHE_READ_FAILURE;
    521     return false;
    522   }
    523   return ContinueWithoutChild(key);
    524 }
    525 
    526 // We were not able to open this child; see what we can do.
    527 bool SparseControl::ContinueWithoutChild(const std::string& key) {
    528   if (kReadOperation == operation_)
    529     return false;
    530   if (kGetRangeOperation == operation_)
    531     return true;
    532 
    533   if (!entry_->backend_.get())
    534     return false;
    535 
    536   child_ = entry_->backend_->CreateEntryImpl(key);
    537   if (!child_) {
    538     child_ = NULL;
    539     result_ = net::ERR_CACHE_READ_FAILURE;
    540     return false;
    541   }
    542   // Write signature.
    543   InitChildData();
    544   return true;
    545 }
    546 
    547 bool SparseControl::ChildPresent() {
    548   int child_bit = static_cast<int>(offset_ >> 20);
    549   if (children_map_.Size() <= child_bit)
    550     return false;
    551 
    552   return children_map_.Get(child_bit);
    553 }
    554 
    555 void SparseControl::SetChildBit(bool value) {
    556   int child_bit = static_cast<int>(offset_ >> 20);
    557 
    558   // We may have to increase the bitmap of child entries.
    559   if (children_map_.Size() <= child_bit)
    560     children_map_.Resize(Bitmap::RequiredArraySize(child_bit + 1) * 32, true);
    561 
    562   children_map_.Set(child_bit, value);
    563 }
    564 
    565 void SparseControl::WriteSparseData() {
    566   scoped_refptr<net::IOBuffer> buf(new net::WrappedIOBuffer(
    567       reinterpret_cast<const char*>(children_map_.GetMap())));
    568 
    569   int len = children_map_.ArraySize() * 4;
    570   int rv = entry_->WriteData(kSparseIndex, sizeof(sparse_header_), buf.get(),
    571                              len, CompletionCallback(), false);
    572   if (rv != len) {
    573     DLOG(ERROR) << "Unable to save sparse map";
    574   }
    575 }
    576 
    577 bool SparseControl::VerifyRange() {
    578   DCHECK_GE(result_, 0);
    579 
    580   child_offset_ = static_cast<int>(offset_) & (kMaxEntrySize - 1);
    581   child_len_ = std::min(buf_len_, kMaxEntrySize - child_offset_);
    582 
    583   // We can write to (or get info from) anywhere in this child.
    584   if (operation_ != kReadOperation)
    585     return true;
    586 
    587   // Check that there are no holes in this range.
    588   int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
    589   int start = child_offset_ >> 10;
    590   if (child_map_.FindNextBit(&start, last_bit, false)) {
    591     // Something is not here.
    592     DCHECK_GE(child_data_.header.last_block_len, 0);
    593     DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize);
    594     int partial_block_len = PartialBlockLength(start);
    595     if (start == child_offset_ >> 10) {
    596       // It looks like we don't have anything.
    597       if (partial_block_len <= (child_offset_ & (kBlockSize - 1)))
    598         return false;
    599     }
    600 
    601     // We have the first part.
    602     child_len_ = (start << 10) - child_offset_;
    603     if (partial_block_len) {
    604       // We may have a few extra bytes.
    605       child_len_ = std::min(child_len_ + partial_block_len, buf_len_);
    606     }
    607     // There is no need to read more after this one.
    608     buf_len_ = child_len_;
    609   }
    610   return true;
    611 }
    612 
    613 void SparseControl::UpdateRange(int result) {
    614   if (result <= 0 || operation_ != kWriteOperation)
    615     return;
    616 
    617   DCHECK_GE(child_data_.header.last_block_len, 0);
    618   DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize);
    619 
    620   // Write the bitmap.
    621   int first_bit = child_offset_ >> 10;
    622   int block_offset = child_offset_ & (kBlockSize - 1);
    623   if (block_offset && (child_data_.header.last_block != first_bit ||
    624                        child_data_.header.last_block_len < block_offset)) {
    625     // The first block is not completely filled; ignore it.
    626     first_bit++;
    627   }
    628 
    629   int last_bit = (child_offset_ + result) >> 10;
    630   block_offset = (child_offset_ + result) & (kBlockSize - 1);
    631 
    632   // This condition will hit with the following criteria:
    633   // 1. The first byte doesn't follow the last write.
    634   // 2. The first byte is in the middle of a block.
    635   // 3. The first byte and the last byte are in the same block.
    636   if (first_bit > last_bit)
    637     return;
    638 
    639   if (block_offset && !child_map_.Get(last_bit)) {
    640     // The last block is not completely filled; save it for later.
    641     child_data_.header.last_block = last_bit;
    642     child_data_.header.last_block_len = block_offset;
    643   } else {
    644     child_data_.header.last_block = -1;
    645   }
    646 
    647   child_map_.SetRange(first_bit, last_bit, true);
    648 }
    649 
    650 int SparseControl::PartialBlockLength(int block_index) const {
    651   if (block_index == child_data_.header.last_block)
    652     return child_data_.header.last_block_len;
    653 
    654   // This may be the last stored index.
    655   int entry_len = child_->GetDataSize(kSparseData);
    656   if (block_index == entry_len >> 10)
    657     return entry_len & (kBlockSize - 1);
    658 
    659   // This is really empty.
    660   return 0;
    661 }
    662 
    663 void SparseControl::InitChildData() {
    664   // We know the real type of child_.
    665   EntryImpl* child = static_cast<EntryImpl*>(child_);
    666   child->SetEntryFlags(CHILD_ENTRY);
    667 
    668   memset(&child_data_, 0, sizeof(child_data_));
    669   child_data_.header = sparse_header_;
    670 
    671   scoped_refptr<net::WrappedIOBuffer> buf(
    672       new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
    673 
    674   int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
    675                              CompletionCallback(), false);
    676   if (rv != sizeof(child_data_))
    677     DLOG(ERROR) << "Failed to save child data";
    678   SetChildBit(true);
    679 }
    680 
    681 void SparseControl::DoChildrenIO() {
    682   while (DoChildIO()) continue;
    683 
    684   // Range operations are finished synchronously, often without setting
    685   // |finished_| to true.
    686   if (kGetRangeOperation == operation_ &&
    687       entry_->net_log().IsLogging()) {
    688     entry_->net_log().EndEvent(
    689         net::NetLog::TYPE_SPARSE_GET_RANGE,
    690         CreateNetLogGetAvailableRangeResultCallback(offset_, result_));
    691   }
    692   if (finished_) {
    693     if (kGetRangeOperation != operation_ &&
    694         entry_->net_log().IsLogging()) {
    695       entry_->net_log().EndEvent(GetSparseEventType(operation_));
    696     }
    697     if (pending_)
    698       DoUserCallback();  // Don't touch this object after this point.
    699   }
    700 }
    701 
    702 bool SparseControl::DoChildIO() {
    703   finished_ = true;
    704   if (!buf_len_ || result_ < 0)
    705     return false;
    706 
    707   if (!OpenChild())
    708     return false;
    709 
    710   if (!VerifyRange())
    711     return false;
    712 
    713   // We have more work to do. Let's not trigger a callback to the caller.
    714   finished_ = false;
    715   CompletionCallback callback;
    716   if (!user_callback_.is_null()) {
    717     callback =
    718         base::Bind(&SparseControl::OnChildIOCompleted, base::Unretained(this));
    719   }
    720 
    721   int rv = 0;
    722   switch (operation_) {
    723     case kReadOperation:
    724       if (entry_->net_log().IsLogging()) {
    725         entry_->net_log().BeginEvent(
    726             net::NetLog::TYPE_SPARSE_READ_CHILD_DATA,
    727             CreateNetLogSparseReadWriteCallback(child_->net_log().source(),
    728                                                 child_len_));
    729       }
    730       rv = child_->ReadDataImpl(kSparseData, child_offset_, user_buf_.get(),
    731                                 child_len_, callback);
    732       break;
    733     case kWriteOperation:
    734       if (entry_->net_log().IsLogging()) {
    735         entry_->net_log().BeginEvent(
    736             net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA,
    737             CreateNetLogSparseReadWriteCallback(child_->net_log().source(),
    738                                                 child_len_));
    739       }
    740       rv = child_->WriteDataImpl(kSparseData, child_offset_, user_buf_.get(),
    741                                  child_len_, callback, false);
    742       break;
    743     case kGetRangeOperation:
    744       rv = DoGetAvailableRange();
    745       break;
    746     default:
    747       NOTREACHED();
    748   }
    749 
    750   if (rv == net::ERR_IO_PENDING) {
    751     if (!pending_) {
    752       pending_ = true;
    753       // The child will protect himself against closing the entry while IO is in
    754       // progress. However, this entry can still be closed, and that would not
    755       // be a good thing for us, so we increase the refcount until we're
    756       // finished doing sparse stuff.
    757       entry_->AddRef();  // Balanced in DoUserCallback.
    758     }
    759     return false;
    760   }
    761   if (!rv)
    762     return false;
    763 
    764   DoChildIOCompleted(rv);
    765   return true;
    766 }
    767 
    768 int SparseControl::DoGetAvailableRange() {
    769   if (!child_)
    770     return child_len_;  // Move on to the next child.
    771 
    772   // Check that there are no holes in this range.
    773   int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
    774   int start = child_offset_ >> 10;
    775   int partial_start_bytes = PartialBlockLength(start);
    776   int found = start;
    777   int bits_found = child_map_.FindBits(&found, last_bit, true);
    778 
    779   // We don't care if there is a partial block in the middle of the range.
    780   int block_offset = child_offset_ & (kBlockSize - 1);
    781   if (!bits_found && partial_start_bytes <= block_offset)
    782     return child_len_;
    783 
    784   // We are done. Just break the loop and reset result_ to our real result.
    785   range_found_ = true;
    786 
    787   // found now points to the first 1. Lets see if we have zeros before it.
    788   int empty_start = std::max((found << 10) - child_offset_, 0);
    789 
    790   int bytes_found = bits_found << 10;
    791   bytes_found += PartialBlockLength(found + bits_found);
    792 
    793   if (start == found)
    794     bytes_found -= block_offset;
    795 
    796   // If the user is searching past the end of this child, bits_found is the
    797   // right result; otherwise, we have some empty space at the start of this
    798   // query that we have to subtract from the range that we searched.
    799   result_ = std::min(bytes_found, child_len_ - empty_start);
    800 
    801   if (!bits_found) {
    802     result_ = std::min(partial_start_bytes - block_offset, child_len_);
    803     empty_start = 0;
    804   }
    805 
    806   // Only update offset_ when this query found zeros at the start.
    807   if (empty_start)
    808     offset_ += empty_start;
    809 
    810   // This will actually break the loop.
    811   buf_len_ = 0;
    812   return 0;
    813 }
    814 
    815 void SparseControl::DoChildIOCompleted(int result) {
    816   LogChildOperationEnd(entry_->net_log(), operation_, result);
    817   if (result < 0) {
    818     // We fail the whole operation if we encounter an error.
    819     result_ = result;
    820     return;
    821   }
    822 
    823   UpdateRange(result);
    824 
    825   result_ += result;
    826   offset_ += result;
    827   buf_len_ -= result;
    828 
    829   // We'll be reusing the user provided buffer for the next chunk.
    830   if (buf_len_ && user_buf_.get())
    831     user_buf_->DidConsume(result);
    832 }
    833 
    834 void SparseControl::OnChildIOCompleted(int result) {
    835   DCHECK_NE(net::ERR_IO_PENDING, result);
    836   DoChildIOCompleted(result);
    837 
    838   if (abort_) {
    839     // We'll return the current result of the operation, which may be less than
    840     // the bytes to read or write, but the user cancelled the operation.
    841     abort_ = false;
    842     if (entry_->net_log().IsLogging()) {
    843       entry_->net_log().AddEvent(net::NetLog::TYPE_CANCELLED);
    844       entry_->net_log().EndEvent(GetSparseEventType(operation_));
    845     }
    846     // We have an indirect reference to this object for every callback so if
    847     // there is only one callback, we may delete this object before reaching
    848     // DoAbortCallbacks.
    849     bool has_abort_callbacks = !abort_callbacks_.empty();
    850     DoUserCallback();
    851     if (has_abort_callbacks)
    852       DoAbortCallbacks();
    853     return;
    854   }
    855 
    856   // We are running a callback from the message loop. It's time to restart what
    857   // we were doing before.
    858   DoChildrenIO();
    859 }
    860 
    861 void SparseControl::DoUserCallback() {
    862   DCHECK(!user_callback_.is_null());
    863   CompletionCallback cb = user_callback_;
    864   user_callback_.Reset();
    865   user_buf_ = NULL;
    866   pending_ = false;
    867   operation_ = kNoOperation;
    868   int rv = result_;
    869   entry_->Release();  // Don't touch object after this line.
    870   cb.Run(rv);
    871 }
    872 
    873 void SparseControl::DoAbortCallbacks() {
    874   for (size_t i = 0; i < abort_callbacks_.size(); i++) {
    875     // Releasing all references to entry_ may result in the destruction of this
    876     // object so we should not be touching it after the last Release().
    877     CompletionCallback cb = abort_callbacks_[i];
    878     if (i == abort_callbacks_.size() - 1)
    879       abort_callbacks_.clear();
    880 
    881     entry_->Release();  // Don't touch object after this line.
    882     cb.Run(net::OK);
    883   }
    884 }
    885 
    886 }  // namespace disk_cache
    887