Home | History | Annotate | Download | only in dtoa
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "config.h"
     29 
     30 #include "bignum.h"
     31 #include "utils.h"
     32 
     33 namespace WTF {
     34 
     35 namespace double_conversion {
     36 
     37     Bignum::Bignum()
     38     : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
     39         for (int i = 0; i < kBigitCapacity; ++i) {
     40             bigits_[i] = 0;
     41         }
     42     }
     43 
     44 
     45     template<typename S>
     46     static int BitSize(S value) {
     47         return 8 * sizeof(value);
     48     }
     49 
     50     // Guaranteed to lie in one Bigit.
     51     void Bignum::AssignUInt16(uint16_t value) {
     52         ASSERT(kBigitSize >= BitSize(value));
     53         Zero();
     54         if (value == 0) return;
     55 
     56         EnsureCapacity(1);
     57         bigits_[0] = value;
     58         used_digits_ = 1;
     59     }
     60 
     61 
     62     void Bignum::AssignUInt64(uint64_t value) {
     63         const int kUInt64Size = 64;
     64 
     65         Zero();
     66         if (value == 0) return;
     67 
     68         int needed_bigits = kUInt64Size / kBigitSize + 1;
     69         EnsureCapacity(needed_bigits);
     70         for (int i = 0; i < needed_bigits; ++i) {
     71             bigits_[i] = (uint32_t)value & kBigitMask;
     72             value = value >> kBigitSize;
     73         }
     74         used_digits_ = needed_bigits;
     75         Clamp();
     76     }
     77 
     78 
     79     void Bignum::AssignBignum(const Bignum& other) {
     80         exponent_ = other.exponent_;
     81         for (int i = 0; i < other.used_digits_; ++i) {
     82             bigits_[i] = other.bigits_[i];
     83         }
     84         // Clear the excess digits (if there were any).
     85         for (int i = other.used_digits_; i < used_digits_; ++i) {
     86             bigits_[i] = 0;
     87         }
     88         used_digits_ = other.used_digits_;
     89     }
     90 
     91 
     92     static uint64_t ReadUInt64(Vector<const char> buffer,
     93                                int from,
     94                                int digits_to_read) {
     95         uint64_t result = 0;
     96         for (int i = from; i < from + digits_to_read; ++i) {
     97             int digit = buffer[i] - '0';
     98             ASSERT(0 <= digit && digit <= 9);
     99             result = result * 10 + digit;
    100         }
    101         return result;
    102     }
    103 
    104 
    105     void Bignum::AssignDecimalString(Vector<const char> value) {
    106         // 2^64 = 18446744073709551616 > 10^19
    107         const int kMaxUint64DecimalDigits = 19;
    108         Zero();
    109         int length = value.length();
    110         int pos = 0;
    111         // Let's just say that each digit needs 4 bits.
    112         while (length >= kMaxUint64DecimalDigits) {
    113             uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
    114             pos += kMaxUint64DecimalDigits;
    115             length -= kMaxUint64DecimalDigits;
    116             MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
    117             AddUInt64(digits);
    118         }
    119         uint64_t digits = ReadUInt64(value, pos, length);
    120         MultiplyByPowerOfTen(length);
    121         AddUInt64(digits);
    122         Clamp();
    123     }
    124 
    125 
    126     static int HexCharValue(char c) {
    127         if ('0' <= c && c <= '9') return c - '0';
    128         if ('a' <= c && c <= 'f') return 10 + c - 'a';
    129         if ('A' <= c && c <= 'F') return 10 + c - 'A';
    130         UNREACHABLE();
    131         return 0;  // To make compiler happy.
    132     }
    133 
    134 
    135     void Bignum::AssignHexString(Vector<const char> value) {
    136         Zero();
    137         int length = value.length();
    138 
    139         int needed_bigits = length * 4 / kBigitSize + 1;
    140         EnsureCapacity(needed_bigits);
    141         int string_index = length - 1;
    142         for (int i = 0; i < needed_bigits - 1; ++i) {
    143             // These bigits are guaranteed to be "full".
    144             Chunk current_bigit = 0;
    145             for (int j = 0; j < kBigitSize / 4; j++) {
    146                 current_bigit += HexCharValue(value[string_index--]) << (j * 4);
    147             }
    148             bigits_[i] = current_bigit;
    149         }
    150         used_digits_ = needed_bigits - 1;
    151 
    152         Chunk most_significant_bigit = 0;  // Could be = 0;
    153         for (int j = 0; j <= string_index; ++j) {
    154             most_significant_bigit <<= 4;
    155             most_significant_bigit += HexCharValue(value[j]);
    156         }
    157         if (most_significant_bigit != 0) {
    158             bigits_[used_digits_] = most_significant_bigit;
    159             used_digits_++;
    160         }
    161         Clamp();
    162     }
    163 
    164 
    165     void Bignum::AddUInt64(uint64_t operand) {
    166         if (operand == 0) return;
    167         Bignum other;
    168         other.AssignUInt64(operand);
    169         AddBignum(other);
    170     }
    171 
    172 
    173     void Bignum::AddBignum(const Bignum& other) {
    174         ASSERT(IsClamped());
    175         ASSERT(other.IsClamped());
    176 
    177         // If this has a greater exponent than other append zero-bigits to this.
    178         // After this call exponent_ <= other.exponent_.
    179         Align(other);
    180 
    181         // There are two possibilities:
    182         //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
    183         //     bbbbb 00000000
    184         //   ----------------
    185         //   ccccccccccc 0000
    186         // or
    187         //    aaaaaaaaaa 0000
    188         //  bbbbbbbbb 0000000
    189         //  -----------------
    190         //  cccccccccccc 0000
    191         // In both cases we might need a carry bigit.
    192 
    193         EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
    194         Chunk carry = 0;
    195         int bigit_pos = other.exponent_ - exponent_;
    196         ASSERT(bigit_pos >= 0);
    197         for (int i = 0; i < other.used_digits_; ++i) {
    198             Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
    199             bigits_[bigit_pos] = sum & kBigitMask;
    200             carry = sum >> kBigitSize;
    201             bigit_pos++;
    202         }
    203 
    204         while (carry != 0) {
    205             Chunk sum = bigits_[bigit_pos] + carry;
    206             bigits_[bigit_pos] = sum & kBigitMask;
    207             carry = sum >> kBigitSize;
    208             bigit_pos++;
    209         }
    210         used_digits_ = Max(bigit_pos, used_digits_);
    211         ASSERT(IsClamped());
    212     }
    213 
    214 
    215     void Bignum::SubtractBignum(const Bignum& other) {
    216         ASSERT(IsClamped());
    217         ASSERT(other.IsClamped());
    218         // We require this to be bigger than other.
    219         ASSERT(LessEqual(other, *this));
    220 
    221         Align(other);
    222 
    223         int offset = other.exponent_ - exponent_;
    224         Chunk borrow = 0;
    225         int i;
    226         for (i = 0; i < other.used_digits_; ++i) {
    227             ASSERT((borrow == 0) || (borrow == 1));
    228             Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
    229             bigits_[i + offset] = difference & kBigitMask;
    230             borrow = difference >> (kChunkSize - 1);
    231         }
    232         while (borrow != 0) {
    233             Chunk difference = bigits_[i + offset] - borrow;
    234             bigits_[i + offset] = difference & kBigitMask;
    235             borrow = difference >> (kChunkSize - 1);
    236             ++i;
    237         }
    238         Clamp();
    239     }
    240 
    241 
    242     void Bignum::ShiftLeft(int shift_amount) {
    243         if (used_digits_ == 0) return;
    244         exponent_ += shift_amount / kBigitSize;
    245         int local_shift = shift_amount % kBigitSize;
    246         EnsureCapacity(used_digits_ + 1);
    247         BigitsShiftLeft(local_shift);
    248     }
    249 
    250 
    251     void Bignum::MultiplyByUInt32(uint32_t factor) {
    252         if (factor == 1) return;
    253         if (factor == 0) {
    254             Zero();
    255             return;
    256         }
    257         if (used_digits_ == 0) return;
    258 
    259         // The product of a bigit with the factor is of size kBigitSize + 32.
    260         // Assert that this number + 1 (for the carry) fits into double chunk.
    261         ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
    262         DoubleChunk carry = 0;
    263         for (int i = 0; i < used_digits_; ++i) {
    264             DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
    265             bigits_[i] = static_cast<Chunk>(product & kBigitMask);
    266             carry = (product >> kBigitSize);
    267         }
    268         while (carry != 0) {
    269             EnsureCapacity(used_digits_ + 1);
    270             bigits_[used_digits_] = (uint32_t)carry & kBigitMask;
    271             used_digits_++;
    272             carry >>= kBigitSize;
    273         }
    274     }
    275 
    276 
    277     void Bignum::MultiplyByUInt64(uint64_t factor) {
    278         if (factor == 1) return;
    279         if (factor == 0) {
    280             Zero();
    281             return;
    282         }
    283         ASSERT(kBigitSize < 32);
    284         uint64_t carry = 0;
    285         uint64_t low = factor & 0xFFFFFFFF;
    286         uint64_t high = factor >> 32;
    287         for (int i = 0; i < used_digits_; ++i) {
    288             uint64_t product_low = low * bigits_[i];
    289             uint64_t product_high = high * bigits_[i];
    290             uint64_t tmp = (carry & kBigitMask) + product_low;
    291             bigits_[i] = (uint32_t)tmp & kBigitMask;
    292             carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
    293             (product_high << (32 - kBigitSize));
    294         }
    295         while (carry != 0) {
    296             EnsureCapacity(used_digits_ + 1);
    297             bigits_[used_digits_] = (uint32_t)carry & kBigitMask;
    298             used_digits_++;
    299             carry >>= kBigitSize;
    300         }
    301     }
    302 
    303 
    304     void Bignum::MultiplyByPowerOfTen(int exponent) {
    305         const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d);
    306         const uint16_t kFive1 = 5;
    307         const uint16_t kFive2 = kFive1 * 5;
    308         const uint16_t kFive3 = kFive2 * 5;
    309         const uint16_t kFive4 = kFive3 * 5;
    310         const uint16_t kFive5 = kFive4 * 5;
    311         const uint16_t kFive6 = kFive5 * 5;
    312         const uint32_t kFive7 = kFive6 * 5;
    313         const uint32_t kFive8 = kFive7 * 5;
    314         const uint32_t kFive9 = kFive8 * 5;
    315         const uint32_t kFive10 = kFive9 * 5;
    316         const uint32_t kFive11 = kFive10 * 5;
    317         const uint32_t kFive12 = kFive11 * 5;
    318         const uint32_t kFive13 = kFive12 * 5;
    319         const uint32_t kFive1_to_12[] =
    320         { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
    321             kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
    322 
    323         ASSERT(exponent >= 0);
    324         if (exponent == 0) return;
    325         if (used_digits_ == 0) return;
    326 
    327         // We shift by exponent at the end just before returning.
    328         int remaining_exponent = exponent;
    329         while (remaining_exponent >= 27) {
    330             MultiplyByUInt64(kFive27);
    331             remaining_exponent -= 27;
    332         }
    333         while (remaining_exponent >= 13) {
    334             MultiplyByUInt32(kFive13);
    335             remaining_exponent -= 13;
    336         }
    337         if (remaining_exponent > 0) {
    338             MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
    339         }
    340         ShiftLeft(exponent);
    341     }
    342 
    343 
    344     void Bignum::Square() {
    345         ASSERT(IsClamped());
    346         int product_length = 2 * used_digits_;
    347         EnsureCapacity(product_length);
    348 
    349         // Comba multiplication: compute each column separately.
    350         // Example: r = a2a1a0 * b2b1b0.
    351         //    r =  1    * a0b0 +
    352         //        10    * (a1b0 + a0b1) +
    353         //        100   * (a2b0 + a1b1 + a0b2) +
    354         //        1000  * (a2b1 + a1b2) +
    355         //        10000 * a2b2
    356         //
    357         // In the worst case we have to accumulate nb-digits products of digit*digit.
    358         //
    359         // Assert that the additional number of bits in a DoubleChunk are enough to
    360         // sum up used_digits of Bigit*Bigit.
    361         if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
    362             UNIMPLEMENTED();
    363         }
    364         DoubleChunk accumulator = 0;
    365         // First shift the digits so we don't overwrite them.
    366         int copy_offset = used_digits_;
    367         for (int i = 0; i < used_digits_; ++i) {
    368             bigits_[copy_offset + i] = bigits_[i];
    369         }
    370         // We have two loops to avoid some 'if's in the loop.
    371         for (int i = 0; i < used_digits_; ++i) {
    372             // Process temporary digit i with power i.
    373             // The sum of the two indices must be equal to i.
    374             int bigit_index1 = i;
    375             int bigit_index2 = 0;
    376             // Sum all of the sub-products.
    377             while (bigit_index1 >= 0) {
    378                 Chunk chunk1 = bigits_[copy_offset + bigit_index1];
    379                 Chunk chunk2 = bigits_[copy_offset + bigit_index2];
    380                 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
    381                 bigit_index1--;
    382                 bigit_index2++;
    383             }
    384             bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
    385             accumulator >>= kBigitSize;
    386         }
    387         for (int i = used_digits_; i < product_length; ++i) {
    388             int bigit_index1 = used_digits_ - 1;
    389             int bigit_index2 = i - bigit_index1;
    390             // Invariant: sum of both indices is again equal to i.
    391             // Inner loop runs 0 times on last iteration, emptying accumulator.
    392             while (bigit_index2 < used_digits_) {
    393                 Chunk chunk1 = bigits_[copy_offset + bigit_index1];
    394                 Chunk chunk2 = bigits_[copy_offset + bigit_index2];
    395                 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
    396                 bigit_index1--;
    397                 bigit_index2++;
    398             }
    399             // The overwritten bigits_[i] will never be read in further loop iterations,
    400             // because bigit_index1 and bigit_index2 are always greater
    401             // than i - used_digits_.
    402             bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
    403             accumulator >>= kBigitSize;
    404         }
    405         // Since the result was guaranteed to lie inside the number the
    406         // accumulator must be 0 now.
    407         ASSERT(accumulator == 0);
    408 
    409         // Don't forget to update the used_digits and the exponent.
    410         used_digits_ = product_length;
    411         exponent_ *= 2;
    412         Clamp();
    413     }
    414 
    415 
    416     void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
    417         ASSERT(base != 0);
    418         ASSERT(power_exponent >= 0);
    419         if (power_exponent == 0) {
    420             AssignUInt16(1);
    421             return;
    422         }
    423         Zero();
    424         int shifts = 0;
    425         // We expect base to be in range 2-32, and most often to be 10.
    426         // It does not make much sense to implement different algorithms for counting
    427         // the bits.
    428         while ((base & 1) == 0) {
    429             base >>= 1;
    430             shifts++;
    431         }
    432         int bit_size = 0;
    433         int tmp_base = base;
    434         while (tmp_base != 0) {
    435             tmp_base >>= 1;
    436             bit_size++;
    437         }
    438         int final_size = bit_size * power_exponent;
    439         // 1 extra bigit for the shifting, and one for rounded final_size.
    440         EnsureCapacity(final_size / kBigitSize + 2);
    441 
    442         // Left to Right exponentiation.
    443         int mask = 1;
    444         while (power_exponent >= mask) mask <<= 1;
    445 
    446         // The mask is now pointing to the bit above the most significant 1-bit of
    447         // power_exponent.
    448         // Get rid of first 1-bit;
    449         mask >>= 2;
    450         uint64_t this_value = base;
    451 
    452         bool delayed_multipliciation = false;
    453         const uint64_t max_32bits = 0xFFFFFFFF;
    454         while (mask != 0 && this_value <= max_32bits) {
    455             this_value = this_value * this_value;
    456             // Verify that there is enough space in this_value to perform the
    457             // multiplication.  The first bit_size bits must be 0.
    458             if ((power_exponent & mask) != 0) {
    459                 uint64_t base_bits_mask =
    460                 ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
    461                 bool high_bits_zero = (this_value & base_bits_mask) == 0;
    462                 if (high_bits_zero) {
    463                     this_value *= base;
    464                 } else {
    465                     delayed_multipliciation = true;
    466                 }
    467             }
    468             mask >>= 1;
    469         }
    470         AssignUInt64(this_value);
    471         if (delayed_multipliciation) {
    472             MultiplyByUInt32(base);
    473         }
    474 
    475         // Now do the same thing as a bignum.
    476         while (mask != 0) {
    477             Square();
    478             if ((power_exponent & mask) != 0) {
    479                 MultiplyByUInt32(base);
    480             }
    481             mask >>= 1;
    482         }
    483 
    484         // And finally add the saved shifts.
    485         ShiftLeft(shifts * power_exponent);
    486     }
    487 
    488 
    489     // Precondition: this/other < 16bit.
    490     uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
    491         ASSERT(IsClamped());
    492         ASSERT(other.IsClamped());
    493         ASSERT(other.used_digits_ > 0);
    494 
    495         // Easy case: if we have less digits than the divisor than the result is 0.
    496         // Note: this handles the case where this == 0, too.
    497         if (BigitLength() < other.BigitLength()) {
    498             return 0;
    499         }
    500 
    501         Align(other);
    502 
    503         uint16_t result = 0;
    504 
    505         // Start by removing multiples of 'other' until both numbers have the same
    506         // number of digits.
    507         while (BigitLength() > other.BigitLength()) {
    508             // This naive approach is extremely inefficient if the this divided other
    509             // might be big. This function is implemented for doubleToString where
    510             // the result should be small (less than 10).
    511             ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
    512             // Remove the multiples of the first digit.
    513             // Example this = 23 and other equals 9. -> Remove 2 multiples.
    514             result += bigits_[used_digits_ - 1];
    515             SubtractTimes(other, bigits_[used_digits_ - 1]);
    516         }
    517 
    518         ASSERT(BigitLength() == other.BigitLength());
    519 
    520         // Both bignums are at the same length now.
    521         // Since other has more than 0 digits we know that the access to
    522         // bigits_[used_digits_ - 1] is safe.
    523         Chunk this_bigit = bigits_[used_digits_ - 1];
    524         Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
    525 
    526         if (other.used_digits_ == 1) {
    527             // Shortcut for easy (and common) case.
    528             int quotient = this_bigit / other_bigit;
    529             bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
    530             result += quotient;
    531             Clamp();
    532             return result;
    533         }
    534 
    535         int division_estimate = this_bigit / (other_bigit + 1);
    536         result += division_estimate;
    537         SubtractTimes(other, division_estimate);
    538 
    539         if (other_bigit * (division_estimate + 1) > this_bigit) {
    540             // No need to even try to subtract. Even if other's remaining digits were 0
    541             // another subtraction would be too much.
    542             return result;
    543         }
    544 
    545         while (LessEqual(other, *this)) {
    546             SubtractBignum(other);
    547             result++;
    548         }
    549         return result;
    550     }
    551 
    552 
    553     template<typename S>
    554     static int SizeInHexChars(S number) {
    555         ASSERT(number > 0);
    556         int result = 0;
    557         while (number != 0) {
    558             number >>= 4;
    559             result++;
    560         }
    561         return result;
    562     }
    563 
    564 
    565     static char HexCharOfValue(int value) {
    566         ASSERT(0 <= value && value <= 16);
    567         if (value < 10) return value + '0';
    568         return value - 10 + 'A';
    569     }
    570 
    571 
    572     bool Bignum::ToHexString(char* buffer, int buffer_size) const {
    573         ASSERT(IsClamped());
    574         // Each bigit must be printable as separate hex-character.
    575         ASSERT(kBigitSize % 4 == 0);
    576         const int kHexCharsPerBigit = kBigitSize / 4;
    577 
    578         if (used_digits_ == 0) {
    579             if (buffer_size < 2) return false;
    580             buffer[0] = '0';
    581             buffer[1] = '\0';
    582             return true;
    583         }
    584         // We add 1 for the terminating '\0' character.
    585         int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
    586         SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
    587         if (needed_chars > buffer_size) return false;
    588         int string_index = needed_chars - 1;
    589         buffer[string_index--] = '\0';
    590         for (int i = 0; i < exponent_; ++i) {
    591             for (int j = 0; j < kHexCharsPerBigit; ++j) {
    592                 buffer[string_index--] = '0';
    593             }
    594         }
    595         for (int i = 0; i < used_digits_ - 1; ++i) {
    596             Chunk current_bigit = bigits_[i];
    597             for (int j = 0; j < kHexCharsPerBigit; ++j) {
    598                 buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
    599                 current_bigit >>= 4;
    600             }
    601         }
    602         // And finally the last bigit.
    603         Chunk most_significant_bigit = bigits_[used_digits_ - 1];
    604         while (most_significant_bigit != 0) {
    605             buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
    606             most_significant_bigit >>= 4;
    607         }
    608         return true;
    609     }
    610 
    611 
    612     Bignum::Chunk Bignum::BigitAt(int index) const {
    613         if (index >= BigitLength()) return 0;
    614         if (index < exponent_) return 0;
    615         return bigits_[index - exponent_];
    616     }
    617 
    618 
    619     int Bignum::Compare(const Bignum& a, const Bignum& b) {
    620         ASSERT(a.IsClamped());
    621         ASSERT(b.IsClamped());
    622         int bigit_length_a = a.BigitLength();
    623         int bigit_length_b = b.BigitLength();
    624         if (bigit_length_a < bigit_length_b) return -1;
    625         if (bigit_length_a > bigit_length_b) return +1;
    626         for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
    627             Chunk bigit_a = a.BigitAt(i);
    628             Chunk bigit_b = b.BigitAt(i);
    629             if (bigit_a < bigit_b) return -1;
    630             if (bigit_a > bigit_b) return +1;
    631             // Otherwise they are equal up to this digit. Try the next digit.
    632         }
    633         return 0;
    634     }
    635 
    636 
    637     int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
    638         ASSERT(a.IsClamped());
    639         ASSERT(b.IsClamped());
    640         ASSERT(c.IsClamped());
    641         if (a.BigitLength() < b.BigitLength()) {
    642             return PlusCompare(b, a, c);
    643         }
    644         if (a.BigitLength() + 1 < c.BigitLength()) return -1;
    645         if (a.BigitLength() > c.BigitLength()) return +1;
    646         // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
    647         // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
    648         // of 'a'.
    649         if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
    650             return -1;
    651         }
    652 
    653         Chunk borrow = 0;
    654         // Starting at min_exponent all digits are == 0. So no need to compare them.
    655         int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
    656         for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
    657             Chunk chunk_a = a.BigitAt(i);
    658             Chunk chunk_b = b.BigitAt(i);
    659             Chunk chunk_c = c.BigitAt(i);
    660             Chunk sum = chunk_a + chunk_b;
    661             if (sum > chunk_c + borrow) {
    662                 return +1;
    663             } else {
    664                 borrow = chunk_c + borrow - sum;
    665                 if (borrow > 1) return -1;
    666                 borrow <<= kBigitSize;
    667             }
    668         }
    669         if (borrow == 0) return 0;
    670         return -1;
    671     }
    672 
    673 
    674     void Bignum::Clamp() {
    675         while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
    676             used_digits_--;
    677         }
    678         if (used_digits_ == 0) {
    679             // Zero.
    680             exponent_ = 0;
    681         }
    682     }
    683 
    684 
    685     bool Bignum::IsClamped() const {
    686         return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
    687     }
    688 
    689 
    690     void Bignum::Zero() {
    691         for (int i = 0; i < used_digits_; ++i) {
    692             bigits_[i] = 0;
    693         }
    694         used_digits_ = 0;
    695         exponent_ = 0;
    696     }
    697 
    698 
    699     void Bignum::Align(const Bignum& other) {
    700         if (exponent_ > other.exponent_) {
    701             // If "X" represents a "hidden" digit (by the exponent) then we are in the
    702             // following case (a == this, b == other):
    703             // a:  aaaaaaXXXX   or a:   aaaaaXXX
    704             // b:     bbbbbbX      b: bbbbbbbbXX
    705             // We replace some of the hidden digits (X) of a with 0 digits.
    706             // a:  aaaaaa000X   or a:   aaaaa0XX
    707             int zero_digits = exponent_ - other.exponent_;
    708             EnsureCapacity(used_digits_ + zero_digits);
    709             for (int i = used_digits_ - 1; i >= 0; --i) {
    710                 bigits_[i + zero_digits] = bigits_[i];
    711             }
    712             for (int i = 0; i < zero_digits; ++i) {
    713                 bigits_[i] = 0;
    714             }
    715             used_digits_ += zero_digits;
    716             exponent_ -= zero_digits;
    717             ASSERT(used_digits_ >= 0);
    718             ASSERT(exponent_ >= 0);
    719         }
    720     }
    721 
    722 
    723     void Bignum::BigitsShiftLeft(int shift_amount) {
    724         ASSERT(shift_amount < kBigitSize);
    725         ASSERT(shift_amount >= 0);
    726         Chunk carry = 0;
    727         for (int i = 0; i < used_digits_; ++i) {
    728             Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
    729             bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
    730             carry = new_carry;
    731         }
    732         if (carry != 0) {
    733             bigits_[used_digits_] = carry;
    734             used_digits_++;
    735         }
    736     }
    737 
    738 
    739     void Bignum::SubtractTimes(const Bignum& other, int factor) {
    740         ASSERT(exponent_ <= other.exponent_);
    741         if (factor < 3) {
    742             for (int i = 0; i < factor; ++i) {
    743                 SubtractBignum(other);
    744             }
    745             return;
    746         }
    747         Chunk borrow = 0;
    748         int exponent_diff = other.exponent_ - exponent_;
    749         for (int i = 0; i < other.used_digits_; ++i) {
    750             DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
    751             DoubleChunk remove = borrow + product;
    752             Chunk difference = bigits_[i + exponent_diff] - ((uint32_t)remove & kBigitMask);
    753             bigits_[i + exponent_diff] = difference & kBigitMask;
    754             borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
    755                                         (remove >> kBigitSize));
    756         }
    757         for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
    758             if (borrow == 0) return;
    759             Chunk difference = bigits_[i] - borrow;
    760             bigits_[i] = difference & kBigitMask;
    761             borrow = difference >> (kChunkSize - 1);
    762             ++i;
    763         }
    764         Clamp();
    765     }
    766 
    767 
    768 }  // namespace double_conversion
    769 
    770 } // namespace WTF
    771