Home | History | Annotate | Download | only in bn
      1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.] */
     56 
     57 #include <openssl/bn.h>
     58 
     59 #include <assert.h>
     60 
     61 #include "internal.h"
     62 
     63 
     64 void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) {
     65   BN_ULONG *rr;
     66 
     67   if (na < nb) {
     68     int itmp;
     69     BN_ULONG *ltmp;
     70 
     71     itmp = na;
     72     na = nb;
     73     nb = itmp;
     74     ltmp = a;
     75     a = b;
     76     b = ltmp;
     77   }
     78   rr = &(r[na]);
     79   if (nb <= 0) {
     80     (void)bn_mul_words(r, a, na, 0);
     81     return;
     82   } else {
     83     rr[0] = bn_mul_words(r, a, na, b[0]);
     84   }
     85 
     86   for (;;) {
     87     if (--nb <= 0) {
     88       return;
     89     }
     90     rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
     91     if (--nb <= 0) {
     92       return;
     93     }
     94     rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
     95     if (--nb <= 0) {
     96       return;
     97     }
     98     rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
     99     if (--nb <= 0) {
    100       return;
    101     }
    102     rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
    103     rr += 4;
    104     r += 4;
    105     b += 4;
    106   }
    107 }
    108 
    109 void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) {
    110   bn_mul_words(r, a, n, b[0]);
    111 
    112   for (;;) {
    113     if (--n <= 0) {
    114       return;
    115     }
    116     bn_mul_add_words(&(r[1]), a, n, b[1]);
    117     if (--n <= 0) {
    118       return;
    119     }
    120     bn_mul_add_words(&(r[2]), a, n, b[2]);
    121     if (--n <= 0) {
    122       return;
    123     }
    124     bn_mul_add_words(&(r[3]), a, n, b[3]);
    125     if (--n <= 0) {
    126       return;
    127     }
    128     bn_mul_add_words(&(r[4]), a, n, b[4]);
    129     r += 4;
    130     b += 4;
    131   }
    132 }
    133 
    134 #if !defined(OPENSSL_X86) || defined(OPENSSL_NO_ASM)
    135 /* Here follows specialised variants of bn_add_words() and bn_sub_words(). They
    136  * have the property performing operations on arrays of different sizes. The
    137  * sizes of those arrays is expressed through cl, which is the common length (
    138  * basicall, min(len(a),len(b)) ), and dl, which is the delta between the two
    139  * lengths, calculated as len(a)-len(b). All lengths are the number of
    140  * BN_ULONGs...  For the operations that require a result array as parameter,
    141  * it must have the length cl+abs(dl). These functions should probably end up
    142  * in bn_asm.c as soon as there are assembler counterparts for the systems that
    143  * use assembler files.  */
    144 
    145 static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
    146                                   const BN_ULONG *b, int cl, int dl) {
    147   BN_ULONG c, t;
    148 
    149   assert(cl >= 0);
    150   c = bn_sub_words(r, a, b, cl);
    151 
    152   if (dl == 0)
    153     return c;
    154 
    155   r += cl;
    156   a += cl;
    157   b += cl;
    158 
    159   if (dl < 0) {
    160     for (;;) {
    161       t = b[0];
    162       r[0] = (0 - t - c) & BN_MASK2;
    163       if (t != 0) {
    164         c = 1;
    165       }
    166       if (++dl >= 0) {
    167         break;
    168       }
    169 
    170       t = b[1];
    171       r[1] = (0 - t - c) & BN_MASK2;
    172       if (t != 0) {
    173         c = 1;
    174       }
    175       if (++dl >= 0) {
    176         break;
    177       }
    178 
    179       t = b[2];
    180       r[2] = (0 - t - c) & BN_MASK2;
    181       if (t != 0) {
    182         c = 1;
    183       }
    184       if (++dl >= 0) {
    185         break;
    186       }
    187 
    188       t = b[3];
    189       r[3] = (0 - t - c) & BN_MASK2;
    190       if (t != 0) {
    191         c = 1;
    192       }
    193       if (++dl >= 0) {
    194         break;
    195       }
    196 
    197       b += 4;
    198       r += 4;
    199     }
    200   } else {
    201     int save_dl = dl;
    202     while (c) {
    203       t = a[0];
    204       r[0] = (t - c) & BN_MASK2;
    205       if (t != 0) {
    206         c = 0;
    207       }
    208       if (--dl <= 0) {
    209         break;
    210       }
    211 
    212       t = a[1];
    213       r[1] = (t - c) & BN_MASK2;
    214       if (t != 0) {
    215         c = 0;
    216       }
    217       if (--dl <= 0) {
    218         break;
    219       }
    220 
    221       t = a[2];
    222       r[2] = (t - c) & BN_MASK2;
    223       if (t != 0) {
    224         c = 0;
    225       }
    226       if (--dl <= 0) {
    227         break;
    228       }
    229 
    230       t = a[3];
    231       r[3] = (t - c) & BN_MASK2;
    232       if (t != 0) {
    233         c = 0;
    234       }
    235       if (--dl <= 0) {
    236         break;
    237       }
    238 
    239       save_dl = dl;
    240       a += 4;
    241       r += 4;
    242     }
    243     if (dl > 0) {
    244       if (save_dl > dl) {
    245         switch (save_dl - dl) {
    246           case 1:
    247             r[1] = a[1];
    248             if (--dl <= 0) {
    249               break;
    250             }
    251           case 2:
    252             r[2] = a[2];
    253             if (--dl <= 0) {
    254               break;
    255             }
    256           case 3:
    257             r[3] = a[3];
    258             if (--dl <= 0) {
    259               break;
    260             }
    261         }
    262         a += 4;
    263         r += 4;
    264       }
    265     }
    266 
    267     if (dl > 0) {
    268       for (;;) {
    269         r[0] = a[0];
    270         if (--dl <= 0) {
    271           break;
    272         }
    273         r[1] = a[1];
    274         if (--dl <= 0) {
    275           break;
    276         }
    277         r[2] = a[2];
    278         if (--dl <= 0) {
    279           break;
    280         }
    281         r[3] = a[3];
    282         if (--dl <= 0) {
    283           break;
    284         }
    285 
    286         a += 4;
    287         r += 4;
    288       }
    289     }
    290   }
    291 
    292   return c;
    293 }
    294 #else
    295 /* On other platforms the function is defined in asm. */
    296 BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
    297                            int cl, int dl);
    298 #endif
    299 
    300 /* Karatsuba recursive multiplication algorithm
    301  * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
    302 
    303 /* r is 2*n2 words in size,
    304  * a and b are both n2 words in size.
    305  * n2 must be a power of 2.
    306  * We multiply and return the result.
    307  * t must be 2*n2 words in size
    308  * We calculate
    309  * a[0]*b[0]
    310  * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
    311  * a[1]*b[1]
    312  */
    313 /* dnX may not be positive, but n2/2+dnX has to be */
    314 static void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
    315                              int dna, int dnb, BN_ULONG *t) {
    316   int n = n2 / 2, c1, c2;
    317   int tna = n + dna, tnb = n + dnb;
    318   unsigned int neg, zero;
    319   BN_ULONG ln, lo, *p;
    320 
    321   /* Only call bn_mul_comba 8 if n2 == 8 and the
    322    * two arrays are complete [steve]
    323    */
    324   if (n2 == 8 && dna == 0 && dnb == 0) {
    325     bn_mul_comba8(r, a, b);
    326     return;
    327   }
    328 
    329   /* Else do normal multiply */
    330   if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
    331     bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
    332     if ((dna + dnb) < 0)
    333       memset(&r[2 * n2 + dna + dnb], 0, sizeof(BN_ULONG) * -(dna + dnb));
    334     return;
    335   }
    336 
    337   /* r=(a[0]-a[1])*(b[1]-b[0]) */
    338   c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
    339   c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
    340   zero = neg = 0;
    341   switch (c1 * 3 + c2) {
    342     case -4:
    343       bn_sub_part_words(t, &(a[n]), a, tna, tna - n);       /* - */
    344       bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
    345       break;
    346     case -3:
    347       zero = 1;
    348       break;
    349     case -2:
    350       bn_sub_part_words(t, &(a[n]), a, tna, tna - n);       /* - */
    351       bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
    352       neg = 1;
    353       break;
    354     case -1:
    355     case 0:
    356     case 1:
    357       zero = 1;
    358       break;
    359     case 2:
    360       bn_sub_part_words(t, a, &(a[n]), tna, n - tna);       /* + */
    361       bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
    362       neg = 1;
    363       break;
    364     case 3:
    365       zero = 1;
    366       break;
    367     case 4:
    368       bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
    369       bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
    370       break;
    371   }
    372 
    373   if (n == 4 && dna == 0 && dnb == 0) {
    374     /* XXX: bn_mul_comba4 could take extra args to do this well */
    375     if (!zero) {
    376       bn_mul_comba4(&(t[n2]), t, &(t[n]));
    377     } else {
    378       memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG));
    379     }
    380 
    381     bn_mul_comba4(r, a, b);
    382     bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
    383   } else if (n == 8 && dna == 0 && dnb == 0) {
    384     /* XXX: bn_mul_comba8 could take extra args to do this well */
    385     if (!zero) {
    386       bn_mul_comba8(&(t[n2]), t, &(t[n]));
    387     } else {
    388       memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG));
    389     }
    390 
    391     bn_mul_comba8(r, a, b);
    392     bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
    393   } else {
    394     p = &(t[n2 * 2]);
    395     if (!zero) {
    396       bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
    397     } else {
    398       memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
    399     }
    400     bn_mul_recursive(r, a, b, n, 0, 0, p);
    401     bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
    402   }
    403 
    404   /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
    405    * r[10] holds (a[0]*b[0])
    406    * r[32] holds (b[1]*b[1]) */
    407 
    408   c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
    409 
    410   if (neg) {
    411     /* if t[32] is negative */
    412     c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
    413   } else {
    414     /* Might have a carry */
    415     c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
    416   }
    417 
    418   /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
    419    * r[10] holds (a[0]*b[0])
    420    * r[32] holds (b[1]*b[1])
    421    * c1 holds the carry bits */
    422   c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
    423   if (c1) {
    424     p = &(r[n + n2]);
    425     lo = *p;
    426     ln = (lo + c1) & BN_MASK2;
    427     *p = ln;
    428 
    429     /* The overflow will stop before we over write
    430      * words we should not overwrite */
    431     if (ln < (BN_ULONG)c1) {
    432       do {
    433         p++;
    434         lo = *p;
    435         ln = (lo + 1) & BN_MASK2;
    436         *p = ln;
    437       } while (ln == 0);
    438     }
    439   }
    440 }
    441 
    442 /* n+tn is the word length
    443  * t needs to be n*4 is size, as does r */
    444 /* tnX may not be negative but less than n */
    445 static void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
    446                                   int tna, int tnb, BN_ULONG *t) {
    447   int i, j, n2 = n * 2;
    448   int c1, c2, neg;
    449   BN_ULONG ln, lo, *p;
    450 
    451   if (n < 8) {
    452     bn_mul_normal(r, a, n + tna, b, n + tnb);
    453     return;
    454   }
    455 
    456   /* r=(a[0]-a[1])*(b[1]-b[0]) */
    457   c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
    458   c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
    459   neg = 0;
    460   switch (c1 * 3 + c2) {
    461     case -4:
    462       bn_sub_part_words(t, &(a[n]), a, tna, tna - n);       /* - */
    463       bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
    464       break;
    465     case -3:
    466     /* break; */
    467     case -2:
    468       bn_sub_part_words(t, &(a[n]), a, tna, tna - n);       /* - */
    469       bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
    470       neg = 1;
    471       break;
    472     case -1:
    473     case 0:
    474     case 1:
    475     /* break; */
    476     case 2:
    477       bn_sub_part_words(t, a, &(a[n]), tna, n - tna);       /* + */
    478       bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
    479       neg = 1;
    480       break;
    481     case 3:
    482     /* break; */
    483     case 4:
    484       bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
    485       bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
    486       break;
    487   }
    488 
    489   if (n == 8) {
    490     bn_mul_comba8(&(t[n2]), t, &(t[n]));
    491     bn_mul_comba8(r, a, b);
    492     bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
    493     memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
    494   } else {
    495     p = &(t[n2 * 2]);
    496     bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
    497     bn_mul_recursive(r, a, b, n, 0, 0, p);
    498     i = n / 2;
    499     /* If there is only a bottom half to the number,
    500      * just do it */
    501     if (tna > tnb) {
    502       j = tna - i;
    503     } else {
    504       j = tnb - i;
    505     }
    506 
    507     if (j == 0) {
    508       bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p);
    509       memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2));
    510     } else if (j > 0) {
    511       /* eg, n == 16, i == 8 and tn == 11 */
    512       bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p);
    513       memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
    514     } else {
    515       /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
    516       memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2);
    517       if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
    518           tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
    519         bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
    520       } else {
    521         for (;;) {
    522           i /= 2;
    523           /* these simplified conditions work
    524            * exclusively because difference
    525            * between tna and tnb is 1 or 0 */
    526           if (i < tna || i < tnb) {
    527             bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i,
    528                                   tnb - i, p);
    529             break;
    530           } else if (i == tna || i == tnb) {
    531             bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i,
    532                              p);
    533             break;
    534           }
    535         }
    536       }
    537     }
    538   }
    539 
    540   /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
    541    * r[10] holds (a[0]*b[0])
    542    * r[32] holds (b[1]*b[1])
    543    */
    544 
    545   c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
    546 
    547   if (neg) {
    548     /* if t[32] is negative */
    549     c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
    550   } else {
    551     /* Might have a carry */
    552     c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
    553   }
    554 
    555   /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
    556    * r[10] holds (a[0]*b[0])
    557    * r[32] holds (b[1]*b[1])
    558    * c1 holds the carry bits */
    559   c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
    560   if (c1) {
    561     p = &(r[n + n2]);
    562     lo = *p;
    563     ln = (lo + c1) & BN_MASK2;
    564     *p = ln;
    565 
    566     /* The overflow will stop before we over write
    567      * words we should not overwrite */
    568     if (ln < (BN_ULONG)c1) {
    569       do {
    570         p++;
    571         lo = *p;
    572         ln = (lo + 1) & BN_MASK2;
    573         *p = ln;
    574       } while (ln == 0);
    575     }
    576   }
    577 }
    578 
    579 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
    580   int ret = 0;
    581   int top, al, bl;
    582   BIGNUM *rr;
    583   int i;
    584   BIGNUM *t = NULL;
    585   int j = 0, k;
    586 
    587   al = a->top;
    588   bl = b->top;
    589 
    590   if ((al == 0) || (bl == 0)) {
    591     BN_zero(r);
    592     return 1;
    593   }
    594   top = al + bl;
    595 
    596   BN_CTX_start(ctx);
    597   if ((r == a) || (r == b)) {
    598     if ((rr = BN_CTX_get(ctx)) == NULL) {
    599       goto err;
    600     }
    601   } else {
    602     rr = r;
    603   }
    604   rr->neg = a->neg ^ b->neg;
    605 
    606   i = al - bl;
    607   if (i == 0) {
    608     if (al == 8) {
    609       if (bn_wexpand(rr, 16) == NULL) {
    610         goto err;
    611       }
    612       rr->top = 16;
    613       bn_mul_comba8(rr->d, a->d, b->d);
    614       goto end;
    615     }
    616   }
    617 
    618   if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
    619     if (i >= -1 && i <= 1) {
    620       /* Find out the power of two lower or equal
    621          to the longest of the two numbers */
    622       if (i >= 0) {
    623         j = BN_num_bits_word((BN_ULONG)al);
    624       }
    625       if (i == -1) {
    626         j = BN_num_bits_word((BN_ULONG)bl);
    627       }
    628       j = 1 << (j - 1);
    629       assert(j <= al || j <= bl);
    630       k = j + j;
    631       t = BN_CTX_get(ctx);
    632       if (t == NULL) {
    633         goto err;
    634       }
    635       if (al > j || bl > j) {
    636         if (bn_wexpand(t, k * 4) == NULL) {
    637           goto err;
    638         }
    639         if (bn_wexpand(rr, k * 4) == NULL) {
    640           goto err;
    641         }
    642         bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
    643       } else {
    644         /* al <= j || bl <= j */
    645         if (bn_wexpand(t, k * 2) == NULL) {
    646           goto err;
    647         }
    648         if (bn_wexpand(rr, k * 2) == NULL) {
    649           goto err;
    650         }
    651         bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
    652       }
    653       rr->top = top;
    654       goto end;
    655     }
    656   }
    657 
    658   if (bn_wexpand(rr, top) == NULL) {
    659     goto err;
    660   }
    661   rr->top = top;
    662   bn_mul_normal(rr->d, a->d, al, b->d, bl);
    663 
    664 end:
    665   bn_correct_top(rr);
    666   if (r != rr) {
    667     BN_copy(r, rr);
    668   }
    669   ret = 1;
    670 
    671 err:
    672   BN_CTX_end(ctx);
    673   return ret;
    674 }
    675 
    676 /* tmp must have 2*n words */
    677 static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp) {
    678   int i, j, max;
    679   const BN_ULONG *ap;
    680   BN_ULONG *rp;
    681 
    682   max = n * 2;
    683   ap = a;
    684   rp = r;
    685   rp[0] = rp[max - 1] = 0;
    686   rp++;
    687   j = n;
    688 
    689   if (--j > 0) {
    690     ap++;
    691     rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
    692     rp += 2;
    693   }
    694 
    695   for (i = n - 2; i > 0; i--) {
    696     j--;
    697     ap++;
    698     rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]);
    699     rp += 2;
    700   }
    701 
    702   bn_add_words(r, r, r, max);
    703 
    704   /* There will not be a carry */
    705 
    706   bn_sqr_words(tmp, a, n);
    707 
    708   bn_add_words(r, r, tmp, max);
    709 }
    710 
    711 /* r is 2*n words in size,
    712  * a and b are both n words in size.    (There's not actually a 'b' here ...)
    713  * n must be a power of 2.
    714  * We multiply and return the result.
    715  * t must be 2*n words in size
    716  * We calculate
    717  * a[0]*b[0]
    718  * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
    719  * a[1]*b[1]
    720  */
    721 static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t) {
    722   int n = n2 / 2;
    723   int zero, c1;
    724   BN_ULONG ln, lo, *p;
    725 
    726   if (n2 == 4) {
    727     bn_sqr_comba4(r, a);
    728     return;
    729   } else if (n2 == 8) {
    730     bn_sqr_comba8(r, a);
    731     return;
    732   }
    733   if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
    734     bn_sqr_normal(r, a, n2, t);
    735     return;
    736   }
    737   /* r=(a[0]-a[1])*(a[1]-a[0]) */
    738   c1 = bn_cmp_words(a, &(a[n]), n);
    739   zero = 0;
    740   if (c1 > 0) {
    741     bn_sub_words(t, a, &(a[n]), n);
    742   } else if (c1 < 0) {
    743     bn_sub_words(t, &(a[n]), a, n);
    744   } else {
    745     zero = 1;
    746   }
    747 
    748   /* The result will always be negative unless it is zero */
    749   p = &(t[n2 * 2]);
    750 
    751   if (!zero) {
    752     bn_sqr_recursive(&(t[n2]), t, n, p);
    753   } else {
    754     memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
    755   }
    756   bn_sqr_recursive(r, a, n, p);
    757   bn_sqr_recursive(&(r[n2]), &(a[n]), n, p);
    758 
    759   /* t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero
    760    * r[10] holds (a[0]*b[0])
    761    * r[32] holds (b[1]*b[1]) */
    762 
    763   c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
    764 
    765   /* t[32] is negative */
    766   c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
    767 
    768   /* t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1])
    769    * r[10] holds (a[0]*a[0])
    770    * r[32] holds (a[1]*a[1])
    771    * c1 holds the carry bits */
    772   c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
    773   if (c1) {
    774     p = &(r[n + n2]);
    775     lo = *p;
    776     ln = (lo + c1) & BN_MASK2;
    777     *p = ln;
    778 
    779     /* The overflow will stop before we over write
    780      * words we should not overwrite */
    781     if (ln < (BN_ULONG)c1) {
    782       do {
    783         p++;
    784         lo = *p;
    785         ln = (lo + 1) & BN_MASK2;
    786         *p = ln;
    787       } while (ln == 0);
    788     }
    789   }
    790 }
    791 
    792 int BN_mul_word(BIGNUM *bn, BN_ULONG w) {
    793   BN_ULONG ll;
    794 
    795   w &= BN_MASK2;
    796   if (!bn->top) {
    797     return 1;
    798   }
    799 
    800   if (w == 0) {
    801     BN_zero(bn);
    802     return 1;
    803   }
    804 
    805   ll = bn_mul_words(bn->d, bn->d, bn->top, w);
    806   if (ll) {
    807     if (bn_wexpand(bn, bn->top + 1) == NULL) {
    808       return 0;
    809     }
    810     bn->d[bn->top++] = ll;
    811   }
    812 
    813   return 1;
    814 }
    815 
    816 int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
    817   int max, al;
    818   int ret = 0;
    819   BIGNUM *tmp, *rr;
    820 
    821   al = a->top;
    822   if (al <= 0) {
    823     r->top = 0;
    824     r->neg = 0;
    825     return 1;
    826   }
    827 
    828   BN_CTX_start(ctx);
    829   rr = (a != r) ? r : BN_CTX_get(ctx);
    830   tmp = BN_CTX_get(ctx);
    831   if (!rr || !tmp) {
    832     goto err;
    833   }
    834 
    835   max = 2 * al; /* Non-zero (from above) */
    836   if (bn_wexpand(rr, max) == NULL) {
    837     goto err;
    838   }
    839 
    840   if (al == 4) {
    841     bn_sqr_comba4(rr->d, a->d);
    842   } else if (al == 8) {
    843     bn_sqr_comba8(rr->d, a->d);
    844   } else {
    845     if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
    846       BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
    847       bn_sqr_normal(rr->d, a->d, al, t);
    848     } else {
    849       int j, k;
    850 
    851       j = BN_num_bits_word((BN_ULONG)al);
    852       j = 1 << (j - 1);
    853       k = j + j;
    854       if (al == j) {
    855         if (bn_wexpand(tmp, k * 2) == NULL) {
    856           goto err;
    857         }
    858         bn_sqr_recursive(rr->d, a->d, al, tmp->d);
    859       } else {
    860         if (bn_wexpand(tmp, max) == NULL) {
    861           goto err;
    862         }
    863         bn_sqr_normal(rr->d, a->d, al, tmp->d);
    864       }
    865     }
    866   }
    867 
    868   rr->neg = 0;
    869   /* If the most-significant half of the top word of 'a' is zero, then
    870    * the square of 'a' will max-1 words. */
    871   if (a->d[al - 1] == (a->d[al - 1] & BN_MASK2l)) {
    872     rr->top = max - 1;
    873   } else {
    874     rr->top = max;
    875   }
    876 
    877   if (rr != r) {
    878     BN_copy(r, rr);
    879   }
    880   ret = 1;
    881 
    882 err:
    883   BN_CTX_end(ctx);
    884   return ret;
    885 }
    886