Home | History | Annotate | Download | only in ssl
      1 /* ====================================================================
      2  * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
      3  *
      4  * Redistribution and use in source and binary forms, with or without
      5  * modification, are permitted provided that the following conditions
      6  * are met:
      7  *
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  *
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in
     13  *    the documentation and/or other materials provided with the
     14  *    distribution.
     15  *
     16  * 3. All advertising materials mentioning features or use of this
     17  *    software must display the following acknowledgment:
     18  *    "This product includes software developed by the OpenSSL Project
     19  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     20  *
     21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     22  *    endorse or promote products derived from this software without
     23  *    prior written permission. For written permission, please contact
     24  *    openssl-core (at) openssl.org.
     25  *
     26  * 5. Products derived from this software may not be called "OpenSSL"
     27  *    nor may "OpenSSL" appear in their names without prior written
     28  *    permission of the OpenSSL Project.
     29  *
     30  * 6. Redistributions of any form whatsoever must retain the following
     31  *    acknowledgment:
     32  *    "This product includes software developed by the OpenSSL Project
     33  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     34  *
     35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     46  * OF THE POSSIBILITY OF SUCH DAMAGE.
     47  * ====================================================================
     48  *
     49  * This product includes cryptographic software written by Eric Young
     50  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     51  * Hudson (tjh (at) cryptsoft.com). */
     52 
     53 #include <assert.h>
     54 
     55 #include <openssl/obj.h>
     56 #include <openssl/sha.h>
     57 
     58 #include "ssl_locl.h"
     59 
     60 
     61 /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
     62  * field. (SHA-384/512 have 128-bit length.) */
     63 #define MAX_HASH_BIT_COUNT_BYTES 16
     64 
     65 /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
     66  * Currently SHA-384/512 has a 128-byte block size and that's the largest
     67  * supported by TLS.) */
     68 #define MAX_HASH_BLOCK_SIZE 128
     69 
     70 /* Some utility functions are needed:
     71  *
     72  * These macros return the given value with the MSB copied to all the other
     73  * bits. They use the fact that arithmetic shift shifts-in the sign bit.
     74  * However, this is not ensured by the C standard so you may need to replace
     75  * them with something else on odd CPUs. */
     76 #define DUPLICATE_MSB_TO_ALL(x) ( (unsigned)( (int)(x) >> (sizeof(int)*8-1) ) )
     77 #define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
     78 
     79 /* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */
     80 static unsigned constant_time_lt(unsigned a, unsigned b)
     81 	{
     82 	a -= b;
     83 	return DUPLICATE_MSB_TO_ALL(a);
     84 	}
     85 
     86 /* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
     87 static unsigned constant_time_ge(unsigned a, unsigned b)
     88 	{
     89 	a -= b;
     90 	return DUPLICATE_MSB_TO_ALL(~a);
     91 	}
     92 
     93 /* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
     94 static unsigned char constant_time_eq_8(unsigned a, unsigned b)
     95 	{
     96 	unsigned c = a ^ b;
     97 	c--;
     98 	return DUPLICATE_MSB_TO_ALL_8(c);
     99 	}
    100 
    101 /* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
    102  * record in |rec| by updating |rec->length| in constant time.
    103  *
    104  * block_size: the block size of the cipher used to encrypt the record.
    105  * returns:
    106  *   0: (in non-constant time) if the record is publicly invalid.
    107  *   1: if the padding was valid
    108  *  -1: otherwise. */
    109 int ssl3_cbc_remove_padding(const SSL* s,
    110 			    SSL3_RECORD *rec,
    111 			    unsigned block_size,
    112 			    unsigned mac_size)
    113 	{
    114 	unsigned padding_length, good;
    115 	const unsigned overhead = 1 /* padding length byte */ + mac_size;
    116 
    117 	/* These lengths are all public so we can test them in non-constant
    118 	 * time. */
    119 	if (overhead > rec->length)
    120 		return 0;
    121 
    122 	padding_length = rec->data[rec->length-1];
    123 	good = constant_time_ge(rec->length, padding_length+overhead);
    124 	/* SSLv3 requires that the padding is minimal. */
    125 	good &= constant_time_ge(block_size, padding_length+1);
    126 	padding_length = good & (padding_length+1);
    127 	rec->length -= padding_length;
    128 	rec->type |= padding_length<<8;	/* kludge: pass padding length */
    129 	return (int)((good & 1) | (~good & -1));
    130 }
    131 
    132 /* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
    133  * record in |rec| in constant time and returns 1 if the padding is valid and
    134  * -1 otherwise. It also removes any explicit IV from the start of the record
    135  * without leaking any timing about whether there was enough space after the
    136  * padding was removed.
    137  *
    138  * block_size: the block size of the cipher used to encrypt the record.
    139  * returns:
    140  *   0: (in non-constant time) if the record is publicly invalid.
    141  *   1: if the padding was valid
    142  *  -1: otherwise. */
    143 int tls1_cbc_remove_padding(const SSL* s,
    144 			    SSL3_RECORD *rec,
    145 			    unsigned block_size,
    146 			    unsigned mac_size)
    147 	{
    148 	unsigned padding_length, good, to_check, i;
    149 	const unsigned overhead = 1 /* padding length byte */ + mac_size;
    150 	/* Check if version requires explicit IV */
    151 	if (SSL_USE_EXPLICIT_IV(s))
    152 		{
    153 		/* These lengths are all public so we can test them in
    154 		 * non-constant time.
    155 		 */
    156 		if (overhead + block_size > rec->length)
    157 			return 0;
    158 		/* We can now safely skip explicit IV */
    159 		rec->data += block_size;
    160 		rec->input += block_size;
    161 		rec->length -= block_size;
    162 		}
    163 	else if (overhead > rec->length)
    164 		return 0;
    165 
    166 	padding_length = rec->data[rec->length-1];
    167 
    168 	good = constant_time_ge(rec->length, overhead+padding_length);
    169 	/* The padding consists of a length byte at the end of the record and
    170 	 * then that many bytes of padding, all with the same value as the
    171 	 * length byte. Thus, with the length byte included, there are i+1
    172 	 * bytes of padding.
    173 	 *
    174 	 * We can't check just |padding_length+1| bytes because that leaks
    175 	 * decrypted information. Therefore we always have to check the maximum
    176 	 * amount of padding possible. (Again, the length of the record is
    177 	 * public information so we can use it.) */
    178 	to_check = 256; /* maximum amount of padding, inc length byte. */
    179 	if (to_check > rec->length)
    180 		to_check = rec->length;
    181 
    182 	for (i = 0; i < to_check; i++)
    183 		{
    184 		unsigned char mask = constant_time_ge(padding_length, i);
    185 		unsigned char b = rec->data[rec->length-1-i];
    186 		/* The final |padding_length+1| bytes should all have the value
    187 		 * |padding_length|. Therefore the XOR should be zero. */
    188 		good &= ~(mask&(padding_length ^ b));
    189 		}
    190 
    191 	/* If any of the final |padding_length+1| bytes had the wrong value,
    192 	 * one or more of the lower eight bits of |good| will be cleared. We
    193 	 * AND the bottom 8 bits together and duplicate the result to all the
    194 	 * bits. */
    195 	good &= good >> 4;
    196 	good &= good >> 2;
    197 	good &= good >> 1;
    198 	good <<= sizeof(good)*8-1;
    199 	good = DUPLICATE_MSB_TO_ALL(good);
    200 
    201 	padding_length = good & (padding_length+1);
    202 	rec->length -= padding_length;
    203 	rec->type |= padding_length<<8;	/* kludge: pass padding length */
    204 
    205 	return (int)((good & 1) | (~good & -1));
    206 	}
    207 
    208 /* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
    209  * constant time (independent of the concrete value of rec->length, which may
    210  * vary within a 256-byte window).
    211  *
    212  * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
    213  * this function.
    214  *
    215  * On entry:
    216  *   rec->orig_len >= md_size
    217  *   md_size <= EVP_MAX_MD_SIZE
    218  *
    219  * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
    220  * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
    221  * a single or pair of cache-lines, then the variable memory accesses don't
    222  * actually affect the timing. CPUs with smaller cache-lines [if any] are
    223  * not multi-core and are not considered vulnerable to cache-timing attacks.
    224  */
    225 #define CBC_MAC_ROTATE_IN_PLACE
    226 
    227 void ssl3_cbc_copy_mac(unsigned char* out,
    228 		       const SSL3_RECORD *rec,
    229 		       unsigned md_size,unsigned orig_len)
    230 	{
    231 #if defined(CBC_MAC_ROTATE_IN_PLACE)
    232 	unsigned char rotated_mac_buf[64+EVP_MAX_MD_SIZE];
    233 	unsigned char *rotated_mac;
    234 #else
    235 	unsigned char rotated_mac[EVP_MAX_MD_SIZE];
    236 #endif
    237 
    238 	/* mac_end is the index of |rec->data| just after the end of the MAC. */
    239 	unsigned mac_end = rec->length;
    240 	unsigned mac_start = mac_end - md_size;
    241 	/* scan_start contains the number of bytes that we can ignore because
    242 	 * the MAC's position can only vary by 255 bytes. */
    243 	unsigned scan_start = 0;
    244 	unsigned i, j;
    245 	unsigned div_spoiler;
    246 	unsigned rotate_offset;
    247 
    248 	assert(orig_len >= md_size);
    249 	assert(md_size <= EVP_MAX_MD_SIZE);
    250 
    251 #if defined(CBC_MAC_ROTATE_IN_PLACE)
    252 	rotated_mac = rotated_mac_buf + ((0-(size_t)rotated_mac_buf)&63);
    253 #endif
    254 
    255 	/* This information is public so it's safe to branch based on it. */
    256 	if (orig_len > md_size + 255 + 1)
    257 		scan_start = orig_len - (md_size + 255 + 1);
    258 	/* div_spoiler contains a multiple of md_size that is used to cause the
    259 	 * modulo operation to be constant time. Without this, the time varies
    260 	 * based on the amount of padding when running on Intel chips at least.
    261 	 *
    262 	 * The aim of right-shifting md_size is so that the compiler doesn't
    263 	 * figure out that it can remove div_spoiler as that would require it
    264 	 * to prove that md_size is always even, which I hope is beyond it. */
    265 	div_spoiler = md_size >> 1;
    266 	div_spoiler <<= (sizeof(div_spoiler)-1)*8;
    267 	rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
    268 
    269 	memset(rotated_mac, 0, md_size);
    270 	for (i = scan_start, j = 0; i < orig_len; i++)
    271 		{
    272 		unsigned char mac_started = constant_time_ge(i, mac_start);
    273 		unsigned char mac_ended = constant_time_ge(i, mac_end);
    274 		unsigned char b = rec->data[i];
    275 		rotated_mac[j++] |= b & mac_started & ~mac_ended;
    276 		j &= constant_time_lt(j,md_size);
    277 		}
    278 
    279 	/* Now rotate the MAC */
    280 #if defined(CBC_MAC_ROTATE_IN_PLACE)
    281 	j = 0;
    282 	for (i = 0; i < md_size; i++)
    283 		{
    284 		/* in case cache-line is 32 bytes, touch second line */
    285 		((volatile unsigned char *)rotated_mac)[rotate_offset^32];
    286 		out[j++] = rotated_mac[rotate_offset++];
    287 		rotate_offset &= constant_time_lt(rotate_offset,md_size);
    288 		}
    289 #else
    290 	memset(out, 0, md_size);
    291 	rotate_offset = md_size - rotate_offset;
    292 	rotate_offset &= constant_time_lt(rotate_offset,md_size);
    293 	for (i = 0; i < md_size; i++)
    294 		{
    295 		for (j = 0; j < md_size; j++)
    296 			out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
    297 		rotate_offset++;
    298 		rotate_offset &= constant_time_lt(rotate_offset,md_size);
    299 		}
    300 #endif
    301 	}
    302 
    303 /* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
    304  * little-endian order. The value of p is advanced by four. */
    305 #define u32toLE(n, p) \
    306 	(*((p)++)=(unsigned char)(n), \
    307 	 *((p)++)=(unsigned char)(n>>8), \
    308 	 *((p)++)=(unsigned char)(n>>16), \
    309 	 *((p)++)=(unsigned char)(n>>24))
    310 
    311 /* These functions serialize the state of a hash and thus perform the standard
    312  * "final" operation without adding the padding and length that such a function
    313  * typically does. */
    314 static void tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
    315 	{
    316 	SHA_CTX *sha1 = ctx;
    317 	l2n(sha1->h0, md_out);
    318 	l2n(sha1->h1, md_out);
    319 	l2n(sha1->h2, md_out);
    320 	l2n(sha1->h3, md_out);
    321 	l2n(sha1->h4, md_out);
    322 	}
    323 #define LARGEST_DIGEST_CTX SHA_CTX
    324 
    325 static void tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
    326 	{
    327 	SHA256_CTX *sha256 = ctx;
    328 	unsigned i;
    329 
    330 	for (i = 0; i < 8; i++)
    331 		{
    332 		l2n(sha256->h[i], md_out);
    333 		}
    334 	}
    335 #undef  LARGEST_DIGEST_CTX
    336 #define LARGEST_DIGEST_CTX SHA256_CTX
    337 
    338 static void tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
    339 	{
    340 	SHA512_CTX *sha512 = ctx;
    341 	unsigned i;
    342 
    343 	for (i = 0; i < 8; i++)
    344 		{
    345 		l2n8(sha512->h[i], md_out);
    346 		}
    347 	}
    348 #undef  LARGEST_DIGEST_CTX
    349 #define LARGEST_DIGEST_CTX SHA512_CTX
    350 
    351 /* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
    352  * which ssl3_cbc_digest_record supports. */
    353 char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
    354 	{
    355 	switch (EVP_MD_CTX_type(ctx))
    356 		{
    357 		case NID_sha1:
    358 		case NID_sha256:
    359 		case NID_sha384:
    360 			return 1;
    361 		default:
    362 			return 0;
    363 		}
    364 	}
    365 
    366 /* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
    367  * record.
    368  *
    369  *   ctx: the EVP_MD_CTX from which we take the hash function.
    370  *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
    371  *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
    372  *   md_out_size: if non-NULL, the number of output bytes is written here.
    373  *   header: the 13-byte, TLS record header.
    374  *   data: the record data itself, less any preceeding explicit IV.
    375  *   data_plus_mac_size: the secret, reported length of the data and MAC
    376  *     once the padding has been removed.
    377  *   data_plus_mac_plus_padding_size: the public length of the whole
    378  *     record, including padding.
    379  *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
    380  *
    381  * On entry: by virtue of having been through one of the remove_padding
    382  * functions, above, we know that data_plus_mac_size is large enough to contain
    383  * a padding byte and MAC. (If the padding was invalid, it might contain the
    384  * padding too. ) */
    385 void ssl3_cbc_digest_record(
    386 	const EVP_MD_CTX *ctx,
    387 	unsigned char* md_out,
    388 	size_t* md_out_size,
    389 	const unsigned char header[13],
    390 	const unsigned char *data,
    391 	size_t data_plus_mac_size,
    392 	size_t data_plus_mac_plus_padding_size,
    393 	const unsigned char *mac_secret,
    394 	unsigned mac_secret_length,
    395 	char is_sslv3)
    396 	{
    397 	union {	double align;
    398 		unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; } md_state;
    399 	void (*md_final_raw)(void *ctx, unsigned char *md_out);
    400 	void (*md_transform)(void *ctx, const unsigned char *block);
    401 	unsigned md_size, md_block_size = 64;
    402 	unsigned sslv3_pad_length = 40, header_length, variance_blocks,
    403 		 len, max_mac_bytes, num_blocks,
    404 		 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
    405 	unsigned int bits;	/* at most 18 bits */
    406 	unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
    407 	/* hmac_pad is the masked HMAC key. */
    408 	unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
    409 	unsigned char first_block[MAX_HASH_BLOCK_SIZE];
    410 	unsigned char mac_out[EVP_MAX_MD_SIZE];
    411 	unsigned i, j, md_out_size_u;
    412 	EVP_MD_CTX md_ctx;
    413 	/* mdLengthSize is the number of bytes in the length field that terminates
    414 	* the hash. */
    415 	unsigned md_length_size = 8;
    416 
    417 	/* This is a, hopefully redundant, check that allows us to forget about
    418 	 * many possible overflows later in this function. */
    419 	assert(data_plus_mac_plus_padding_size < 1024*1024);
    420 
    421 	switch (EVP_MD_CTX_type(ctx))
    422 		{
    423 		case NID_sha1:
    424 			SHA1_Init((SHA_CTX*)md_state.c);
    425 			md_final_raw = tls1_sha1_final_raw;
    426 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
    427 			md_size = 20;
    428 			break;
    429 		case NID_sha256:
    430 			SHA256_Init((SHA256_CTX*)md_state.c);
    431 			md_final_raw = tls1_sha256_final_raw;
    432 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
    433 			md_size = 32;
    434 			break;
    435 		case NID_sha384:
    436 			SHA384_Init((SHA512_CTX*)md_state.c);
    437 			md_final_raw = tls1_sha512_final_raw;
    438 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
    439 			md_size = 384/8;
    440 			md_block_size = 128;
    441 			md_length_size = 16;
    442 			break;
    443 		default:
    444 			/* ssl3_cbc_record_digest_supported should have been
    445 			 * called first to check that the hash function is
    446 			 * supported. */
    447 			assert(0);
    448 			if (md_out_size)
    449 				*md_out_size = -1;
    450 			return;
    451 		}
    452 
    453 	assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
    454 	assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
    455 	assert(md_size <= EVP_MAX_MD_SIZE);
    456 
    457 	header_length = 13;
    458 	if (is_sslv3)
    459 		{
    460 		header_length =
    461 			mac_secret_length +
    462 			sslv3_pad_length +
    463 			8 /* sequence number */ +
    464 			1 /* record type */ +
    465 			2 /* record length */;
    466 		}
    467 
    468 	/* variance_blocks is the number of blocks of the hash that we have to
    469 	 * calculate in constant time because they could be altered by the
    470 	 * padding value.
    471 	 *
    472 	 * In SSLv3, the padding must be minimal so the end of the plaintext
    473 	 * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that
    474 	 * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash
    475 	 * termination (0x80 + 64-bit length) don't fit in the final block, we
    476 	 * say that the final two blocks can vary based on the padding.
    477 	 *
    478 	 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
    479 	 * required to be minimal. Therefore we say that the final six blocks
    480 	 * can vary based on the padding.
    481 	 *
    482 	 * Later in the function, if the message is short and there obviously
    483 	 * cannot be this many blocks then variance_blocks can be reduced. */
    484 	variance_blocks = is_sslv3 ? 2 : 6;
    485 	/* From now on we're dealing with the MAC, which conceptually has 13
    486 	 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
    487 	 * (SSLv3) */
    488 	len = data_plus_mac_plus_padding_size + header_length;
    489 	/* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
    490 	* |header|, assuming that there's no padding. */
    491 	max_mac_bytes = len - md_size - 1;
    492 	/* num_blocks is the maximum number of hash blocks. */
    493 	num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
    494 	/* In order to calculate the MAC in constant time we have to handle
    495 	 * the final blocks specially because the padding value could cause the
    496 	 * end to appear somewhere in the final |variance_blocks| blocks and we
    497 	 * can't leak where. However, |num_starting_blocks| worth of data can
    498 	 * be hashed right away because no padding value can affect whether
    499 	 * they are plaintext. */
    500 	num_starting_blocks = 0;
    501 	/* k is the starting byte offset into the conceptual header||data where
    502 	 * we start processing. */
    503 	k = 0;
    504 	/* mac_end_offset is the index just past the end of the data to be
    505 	 * MACed. */
    506 	mac_end_offset = data_plus_mac_size + header_length - md_size;
    507 	/* c is the index of the 0x80 byte in the final hash block that
    508 	 * contains application data. */
    509 	c = mac_end_offset % md_block_size;
    510 	/* index_a is the hash block number that contains the 0x80 terminating
    511 	 * value. */
    512 	index_a = mac_end_offset / md_block_size;
    513 	/* index_b is the hash block number that contains the 64-bit hash
    514 	 * length, in bits. */
    515 	index_b = (mac_end_offset + md_length_size) / md_block_size;
    516 	/* bits is the hash-length in bits. It includes the additional hash
    517 	 * block for the masked HMAC key, or whole of |header| in the case of
    518 	 * SSLv3. */
    519 
    520 	/* For SSLv3, if we're going to have any starting blocks then we need
    521 	 * at least two because the header is larger than a single block. */
    522 	if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0))
    523 		{
    524 		num_starting_blocks = num_blocks - variance_blocks;
    525 		k = md_block_size*num_starting_blocks;
    526 		}
    527 
    528 	bits = 8*mac_end_offset;
    529 	if (!is_sslv3)
    530 		{
    531 		/* Compute the initial HMAC block. For SSLv3, the padding and
    532 		 * secret bytes are included in |header| because they take more
    533 		 * than a single block. */
    534 		bits += 8*md_block_size;
    535 		memset(hmac_pad, 0, md_block_size);
    536 		assert(mac_secret_length <= sizeof(hmac_pad));
    537 		memcpy(hmac_pad, mac_secret, mac_secret_length);
    538 		for (i = 0; i < md_block_size; i++)
    539 			hmac_pad[i] ^= 0x36;
    540 
    541 		md_transform(md_state.c, hmac_pad);
    542 		}
    543 
    544 	memset(length_bytes,0,md_length_size-4);
    545 	length_bytes[md_length_size-4] = (unsigned char)(bits>>24);
    546 	length_bytes[md_length_size-3] = (unsigned char)(bits>>16);
    547 	length_bytes[md_length_size-2] = (unsigned char)(bits>>8);
    548 	length_bytes[md_length_size-1] = (unsigned char)bits;
    549 
    550 	if (k > 0)
    551 		{
    552 		if (is_sslv3)
    553 			{
    554 			/* The SSLv3 header is larger than a single block.
    555 			 * overhang is the number of bytes beyond a single
    556 			 * block that the header consumes: 7 bytes (SHA1). */
    557 			unsigned overhang = header_length-md_block_size;
    558 			md_transform(md_state.c, header);
    559 			memcpy(first_block, header + md_block_size, overhang);
    560 			memcpy(first_block + overhang, data, md_block_size-overhang);
    561 			md_transform(md_state.c, first_block);
    562 			for (i = 1; i < k/md_block_size - 1; i++)
    563 				md_transform(md_state.c, data + md_block_size*i - overhang);
    564 			}
    565 		else
    566 			{
    567 			/* k is a multiple of md_block_size. */
    568 			memcpy(first_block, header, 13);
    569 			memcpy(first_block+13, data, md_block_size-13);
    570 			md_transform(md_state.c, first_block);
    571 			for (i = 1; i < k/md_block_size; i++)
    572 				md_transform(md_state.c, data + md_block_size*i - 13);
    573 			}
    574 		}
    575 
    576 	memset(mac_out, 0, sizeof(mac_out));
    577 
    578 	/* We now process the final hash blocks. For each block, we construct
    579 	 * it in constant time. If the |i==index_a| then we'll include the 0x80
    580 	 * bytes and zero pad etc. For each block we selectively copy it, in
    581 	 * constant time, to |mac_out|. */
    582 	for (i = num_starting_blocks; i <= num_starting_blocks+variance_blocks; i++)
    583 		{
    584 		unsigned char block[MAX_HASH_BLOCK_SIZE];
    585 		unsigned char is_block_a = constant_time_eq_8(i, index_a);
    586 		unsigned char is_block_b = constant_time_eq_8(i, index_b);
    587 		for (j = 0; j < md_block_size; j++)
    588 			{
    589 			unsigned char b = 0, is_past_c, is_past_cp1;
    590 			if (k < header_length)
    591 				b = header[k];
    592 			else if (k < data_plus_mac_plus_padding_size + header_length)
    593 				b = data[k-header_length];
    594 			k++;
    595 
    596 			is_past_c = is_block_a & constant_time_ge(j, c);
    597 			is_past_cp1 = is_block_a & constant_time_ge(j, c+1);
    598 			/* If this is the block containing the end of the
    599 			 * application data, and we are at the offset for the
    600 			 * 0x80 value, then overwrite b with 0x80. */
    601 			b = (b&~is_past_c) | (0x80&is_past_c);
    602 			/* If this the the block containing the end of the
    603 			 * application data and we're past the 0x80 value then
    604 			 * just write zero. */
    605 			b = b&~is_past_cp1;
    606 			/* If this is index_b (the final block), but not
    607 			 * index_a (the end of the data), then the 64-bit
    608 			 * length didn't fit into index_a and we're having to
    609 			 * add an extra block of zeros. */
    610 			b &= ~is_block_b | is_block_a;
    611 
    612 			/* The final bytes of one of the blocks contains the
    613 			 * length. */
    614 			if (j >= md_block_size - md_length_size)
    615 				{
    616 				/* If this is index_b, write a length byte. */
    617 				b = (b&~is_block_b) | (is_block_b&length_bytes[j-(md_block_size-md_length_size)]);
    618 				}
    619 			block[j] = b;
    620 			}
    621 
    622 		md_transform(md_state.c, block);
    623 		md_final_raw(md_state.c, block);
    624 		/* If this is index_b, copy the hash value to |mac_out|. */
    625 		for (j = 0; j < md_size; j++)
    626 			mac_out[j] |= block[j]&is_block_b;
    627 		}
    628 
    629 	EVP_MD_CTX_init(&md_ctx);
    630 	EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */);
    631 	if (is_sslv3)
    632 		{
    633 		/* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
    634 		memset(hmac_pad, 0x5c, sslv3_pad_length);
    635 
    636 		EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
    637 		EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
    638 		EVP_DigestUpdate(&md_ctx, mac_out, md_size);
    639 		}
    640 	else
    641 		{
    642 		/* Complete the HMAC in the standard manner. */
    643 		for (i = 0; i < md_block_size; i++)
    644 			hmac_pad[i] ^= 0x6a;
    645 
    646 		EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
    647 		EVP_DigestUpdate(&md_ctx, mac_out, md_size);
    648 		}
    649 	EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
    650 	if (md_out_size)
    651 		*md_out_size = md_out_size_u;
    652 	EVP_MD_CTX_cleanup(&md_ctx);
    653 	}
    654