Home | History | Annotate | Download | only in common
      1 /*
      2 *******************************************************************************
      3 *
      4 *   Copyright (C) 2009-2013, International Business Machines
      5 *   Corporation and others.  All Rights Reserved.
      6 *
      7 *******************************************************************************
      8 *   file name:  normalizer2impl.cpp
      9 *   encoding:   US-ASCII
     10 *   tab size:   8 (not used)
     11 *   indentation:4
     12 *
     13 *   created on: 2009nov22
     14 *   created by: Markus W. Scherer
     15 */
     16 
     17 #include "unicode/utypes.h"
     18 
     19 #if !UCONFIG_NO_NORMALIZATION
     20 
     21 #include "unicode/normalizer2.h"
     22 #include "unicode/udata.h"
     23 #include "unicode/ustring.h"
     24 #include "unicode/utf16.h"
     25 #include "cmemory.h"
     26 #include "mutex.h"
     27 #include "normalizer2impl.h"
     28 #include "putilimp.h"
     29 #include "uassert.h"
     30 #include "uset_imp.h"
     31 #include "utrie2.h"
     32 #include "uvector.h"
     33 
     34 U_NAMESPACE_BEGIN
     35 
     36 // ReorderingBuffer -------------------------------------------------------- ***
     37 
     38 UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) {
     39     int32_t length=str.length();
     40     start=str.getBuffer(destCapacity);
     41     if(start==NULL) {
     42         // getBuffer() already did str.setToBogus()
     43         errorCode=U_MEMORY_ALLOCATION_ERROR;
     44         return FALSE;
     45     }
     46     limit=start+length;
     47     remainingCapacity=str.getCapacity()-length;
     48     reorderStart=start;
     49     if(start==limit) {
     50         lastCC=0;
     51     } else {
     52         setIterator();
     53         lastCC=previousCC();
     54         // Set reorderStart after the last code point with cc<=1 if there is one.
     55         if(lastCC>1) {
     56             while(previousCC()>1) {}
     57         }
     58         reorderStart=codePointLimit;
     59     }
     60     return TRUE;
     61 }
     62 
     63 UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const {
     64     int32_t length=(int32_t)(limit-start);
     65     return
     66         length==(int32_t)(otherLimit-otherStart) &&
     67         0==u_memcmp(start, otherStart, length);
     68 }
     69 
     70 UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) {
     71     if(remainingCapacity<2 && !resize(2, errorCode)) {
     72         return FALSE;
     73     }
     74     if(lastCC<=cc || cc==0) {
     75         limit[0]=U16_LEAD(c);
     76         limit[1]=U16_TRAIL(c);
     77         limit+=2;
     78         lastCC=cc;
     79         if(cc<=1) {
     80             reorderStart=limit;
     81         }
     82     } else {
     83         insert(c, cc);
     84     }
     85     remainingCapacity-=2;
     86     return TRUE;
     87 }
     88 
     89 UBool ReorderingBuffer::append(const UChar *s, int32_t length,
     90                                uint8_t leadCC, uint8_t trailCC,
     91                                UErrorCode &errorCode) {
     92     if(length==0) {
     93         return TRUE;
     94     }
     95     if(remainingCapacity<length && !resize(length, errorCode)) {
     96         return FALSE;
     97     }
     98     remainingCapacity-=length;
     99     if(lastCC<=leadCC || leadCC==0) {
    100         if(trailCC<=1) {
    101             reorderStart=limit+length;
    102         } else if(leadCC<=1) {
    103             reorderStart=limit+1;  // Ok if not a code point boundary.
    104         }
    105         const UChar *sLimit=s+length;
    106         do { *limit++=*s++; } while(s!=sLimit);
    107         lastCC=trailCC;
    108     } else {
    109         int32_t i=0;
    110         UChar32 c;
    111         U16_NEXT(s, i, length, c);
    112         insert(c, leadCC);  // insert first code point
    113         while(i<length) {
    114             U16_NEXT(s, i, length, c);
    115             if(i<length) {
    116                 // s must be in NFD, otherwise we need to use getCC().
    117                 leadCC=Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c));
    118             } else {
    119                 leadCC=trailCC;
    120             }
    121             append(c, leadCC, errorCode);
    122         }
    123     }
    124     return TRUE;
    125 }
    126 
    127 UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) {
    128     int32_t cpLength=U16_LENGTH(c);
    129     if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) {
    130         return FALSE;
    131     }
    132     remainingCapacity-=cpLength;
    133     if(cpLength==1) {
    134         *limit++=(UChar)c;
    135     } else {
    136         limit[0]=U16_LEAD(c);
    137         limit[1]=U16_TRAIL(c);
    138         limit+=2;
    139     }
    140     lastCC=0;
    141     reorderStart=limit;
    142     return TRUE;
    143 }
    144 
    145 UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) {
    146     if(s==sLimit) {
    147         return TRUE;
    148     }
    149     int32_t length=(int32_t)(sLimit-s);
    150     if(remainingCapacity<length && !resize(length, errorCode)) {
    151         return FALSE;
    152     }
    153     u_memcpy(limit, s, length);
    154     limit+=length;
    155     remainingCapacity-=length;
    156     lastCC=0;
    157     reorderStart=limit;
    158     return TRUE;
    159 }
    160 
    161 void ReorderingBuffer::remove() {
    162     reorderStart=limit=start;
    163     remainingCapacity=str.getCapacity();
    164     lastCC=0;
    165 }
    166 
    167 void ReorderingBuffer::removeSuffix(int32_t suffixLength) {
    168     if(suffixLength<(limit-start)) {
    169         limit-=suffixLength;
    170         remainingCapacity+=suffixLength;
    171     } else {
    172         limit=start;
    173         remainingCapacity=str.getCapacity();
    174     }
    175     lastCC=0;
    176     reorderStart=limit;
    177 }
    178 
    179 UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) {
    180     int32_t reorderStartIndex=(int32_t)(reorderStart-start);
    181     int32_t length=(int32_t)(limit-start);
    182     str.releaseBuffer(length);
    183     int32_t newCapacity=length+appendLength;
    184     int32_t doubleCapacity=2*str.getCapacity();
    185     if(newCapacity<doubleCapacity) {
    186         newCapacity=doubleCapacity;
    187     }
    188     if(newCapacity<256) {
    189         newCapacity=256;
    190     }
    191     start=str.getBuffer(newCapacity);
    192     if(start==NULL) {
    193         // getBuffer() already did str.setToBogus()
    194         errorCode=U_MEMORY_ALLOCATION_ERROR;
    195         return FALSE;
    196     }
    197     reorderStart=start+reorderStartIndex;
    198     limit=start+length;
    199     remainingCapacity=str.getCapacity()-length;
    200     return TRUE;
    201 }
    202 
    203 void ReorderingBuffer::skipPrevious() {
    204     codePointLimit=codePointStart;
    205     UChar c=*--codePointStart;
    206     if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) {
    207         --codePointStart;
    208     }
    209 }
    210 
    211 uint8_t ReorderingBuffer::previousCC() {
    212     codePointLimit=codePointStart;
    213     if(reorderStart>=codePointStart) {
    214         return 0;
    215     }
    216     UChar32 c=*--codePointStart;
    217     if(c<Normalizer2Impl::MIN_CCC_LCCC_CP) {
    218         return 0;
    219     }
    220 
    221     UChar c2;
    222     if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) {
    223         --codePointStart;
    224         c=U16_GET_SUPPLEMENTARY(c2, c);
    225     }
    226     return Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c));
    227 }
    228 
    229 // Inserts c somewhere before the last character.
    230 // Requires 0<cc<lastCC which implies reorderStart<limit.
    231 void ReorderingBuffer::insert(UChar32 c, uint8_t cc) {
    232     for(setIterator(), skipPrevious(); previousCC()>cc;) {}
    233     // insert c at codePointLimit, after the character with prevCC<=cc
    234     UChar *q=limit;
    235     UChar *r=limit+=U16_LENGTH(c);
    236     do {
    237         *--r=*--q;
    238     } while(codePointLimit!=q);
    239     writeCodePoint(q, c);
    240     if(cc<=1) {
    241         reorderStart=r;
    242     }
    243 }
    244 
    245 // Normalizer2Impl --------------------------------------------------------- ***
    246 
    247 struct CanonIterData : public UMemory {
    248     CanonIterData(UErrorCode &errorCode);
    249     ~CanonIterData();
    250     void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode);
    251     UTrie2 *trie;
    252     UVector canonStartSets;  // contains UnicodeSet *
    253 };
    254 
    255 Normalizer2Impl::~Normalizer2Impl() {
    256     udata_close(memory);
    257     utrie2_close(normTrie);
    258     delete fCanonIterData;
    259 }
    260 
    261 UBool U_CALLCONV
    262 Normalizer2Impl::isAcceptable(void *context,
    263                               const char * /* type */, const char * /*name*/,
    264                               const UDataInfo *pInfo) {
    265     if(
    266         pInfo->size>=20 &&
    267         pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
    268         pInfo->charsetFamily==U_CHARSET_FAMILY &&
    269         pInfo->dataFormat[0]==0x4e &&    /* dataFormat="Nrm2" */
    270         pInfo->dataFormat[1]==0x72 &&
    271         pInfo->dataFormat[2]==0x6d &&
    272         pInfo->dataFormat[3]==0x32 &&
    273         pInfo->formatVersion[0]==2
    274     ) {
    275         Normalizer2Impl *me=(Normalizer2Impl *)context;
    276         uprv_memcpy(me->dataVersion, pInfo->dataVersion, 4);
    277         return TRUE;
    278     } else {
    279         return FALSE;
    280     }
    281 }
    282 
    283 void
    284 Normalizer2Impl::load(const char *packageName, const char *name, UErrorCode &errorCode) {
    285     if(U_FAILURE(errorCode)) {
    286         return;
    287     }
    288     memory=udata_openChoice(packageName, "nrm", name, isAcceptable, this, &errorCode);
    289     if(U_FAILURE(errorCode)) {
    290         return;
    291     }
    292     const uint8_t *inBytes=(const uint8_t *)udata_getMemory(memory);
    293     const int32_t *inIndexes=(const int32_t *)inBytes;
    294     int32_t indexesLength=inIndexes[IX_NORM_TRIE_OFFSET]/4;
    295     if(indexesLength<=IX_MIN_MAYBE_YES) {
    296         errorCode=U_INVALID_FORMAT_ERROR;  // Not enough indexes.
    297         return;
    298     }
    299 
    300     minDecompNoCP=inIndexes[IX_MIN_DECOMP_NO_CP];
    301     minCompNoMaybeCP=inIndexes[IX_MIN_COMP_NO_MAYBE_CP];
    302 
    303     minYesNo=inIndexes[IX_MIN_YES_NO];
    304     minYesNoMappingsOnly=inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY];
    305     minNoNo=inIndexes[IX_MIN_NO_NO];
    306     limitNoNo=inIndexes[IX_LIMIT_NO_NO];
    307     minMaybeYes=inIndexes[IX_MIN_MAYBE_YES];
    308 
    309     int32_t offset=inIndexes[IX_NORM_TRIE_OFFSET];
    310     int32_t nextOffset=inIndexes[IX_EXTRA_DATA_OFFSET];
    311     normTrie=utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
    312                                        inBytes+offset, nextOffset-offset, NULL,
    313                                        &errorCode);
    314     if(U_FAILURE(errorCode)) {
    315         return;
    316     }
    317 
    318     offset=nextOffset;
    319     nextOffset=inIndexes[IX_SMALL_FCD_OFFSET];
    320     maybeYesCompositions=(const uint16_t *)(inBytes+offset);
    321     extraData=maybeYesCompositions+(MIN_NORMAL_MAYBE_YES-minMaybeYes);
    322 
    323     // smallFCD: new in formatVersion 2
    324     offset=nextOffset;
    325     smallFCD=inBytes+offset;
    326 
    327     // Build tccc180[].
    328     // gennorm2 enforces lccc=0 for c<MIN_CCC_LCCC_CP=U+0300.
    329     uint8_t bits=0;
    330     for(UChar c=0; c<0x180; bits>>=1) {
    331         if((c&0xff)==0) {
    332             bits=smallFCD[c>>8];  // one byte per 0x100 code points
    333         }
    334         if(bits&1) {
    335             for(int i=0; i<0x20; ++i, ++c) {
    336                 tccc180[c]=(uint8_t)getFCD16FromNormData(c);
    337             }
    338         } else {
    339             uprv_memset(tccc180+c, 0, 0x20);
    340             c+=0x20;
    341         }
    342     }
    343 }
    344 
    345 uint8_t Normalizer2Impl::getTrailCCFromCompYesAndZeroCC(const UChar *cpStart, const UChar *cpLimit) const {
    346     UChar32 c;
    347     if(cpStart==(cpLimit-1)) {
    348         c=*cpStart;
    349     } else {
    350         c=U16_GET_SUPPLEMENTARY(cpStart[0], cpStart[1]);
    351     }
    352     uint16_t prevNorm16=getNorm16(c);
    353     if(prevNorm16<=minYesNo) {
    354         return 0;  // yesYes and Hangul LV/LVT have ccc=tccc=0
    355     } else {
    356         return (uint8_t)(*getMapping(prevNorm16)>>8);  // tccc from yesNo
    357     }
    358 }
    359 
    360 U_CDECL_BEGIN
    361 
    362 static UBool U_CALLCONV
    363 enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*end*/, uint32_t /*value*/) {
    364     /* add the start code point to the USet */
    365     const USetAdder *sa=(const USetAdder *)context;
    366     sa->add(sa->set, start);
    367     return TRUE;
    368 }
    369 
    370 static uint32_t U_CALLCONV
    371 segmentStarterMapper(const void * /*context*/, uint32_t value) {
    372     return value&CANON_NOT_SEGMENT_STARTER;
    373 }
    374 
    375 U_CDECL_END
    376 
    377 void
    378 Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const {
    379     /* add the start code point of each same-value range of each trie */
    380     utrie2_enum(normTrie, NULL, enumPropertyStartsRange, sa);
    381 
    382     /* add Hangul LV syllables and LV+1 because of skippables */
    383     for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) {
    384         sa->add(sa->set, c);
    385         sa->add(sa->set, c+1);
    386     }
    387     sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */
    388 }
    389 
    390 void
    391 Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const {
    392     /* add the start code point of each same-value range of the canonical iterator data trie */
    393     if(ensureCanonIterData(errorCode)) {
    394         // currently only used for the SEGMENT_STARTER property
    395         utrie2_enum(fCanonIterData->trie, segmentStarterMapper, enumPropertyStartsRange, sa);
    396     }
    397 }
    398 
    399 const UChar *
    400 Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src,
    401                                                 UChar32 minNeedDataCP,
    402                                                 ReorderingBuffer *buffer,
    403                                                 UErrorCode &errorCode) const {
    404     // Make some effort to support NUL-terminated strings reasonably.
    405     // Take the part of the fast quick check loop that does not look up
    406     // data and check the first part of the string.
    407     // After this prefix, determine the string length to simplify the rest
    408     // of the code.
    409     const UChar *prevSrc=src;
    410     UChar c;
    411     while((c=*src++)<minNeedDataCP && c!=0) {}
    412     // Back out the last character for full processing.
    413     // Copy this prefix.
    414     if(--src!=prevSrc) {
    415         if(buffer!=NULL) {
    416             buffer->appendZeroCC(prevSrc, src, errorCode);
    417         }
    418     }
    419     return src;
    420 }
    421 
    422 // Dual functionality:
    423 // buffer!=NULL: normalize
    424 // buffer==NULL: isNormalized/spanQuickCheckYes
    425 const UChar *
    426 Normalizer2Impl::decompose(const UChar *src, const UChar *limit,
    427                            ReorderingBuffer *buffer,
    428                            UErrorCode &errorCode) const {
    429     UChar32 minNoCP=minDecompNoCP;
    430     if(limit==NULL) {
    431         src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode);
    432         if(U_FAILURE(errorCode)) {
    433             return src;
    434         }
    435         limit=u_strchr(src, 0);
    436     }
    437 
    438     const UChar *prevSrc;
    439     UChar32 c=0;
    440     uint16_t norm16=0;
    441 
    442     // only for quick check
    443     const UChar *prevBoundary=src;
    444     uint8_t prevCC=0;
    445 
    446     for(;;) {
    447         // count code units below the minimum or with irrelevant data for the quick check
    448         for(prevSrc=src; src!=limit;) {
    449             if( (c=*src)<minNoCP ||
    450                 isMostDecompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c))
    451             ) {
    452                 ++src;
    453             } else if(!U16_IS_SURROGATE(c)) {
    454                 break;
    455             } else {
    456                 UChar c2;
    457                 if(U16_IS_SURROGATE_LEAD(c)) {
    458                     if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
    459                         c=U16_GET_SUPPLEMENTARY(c, c2);
    460                     }
    461                 } else /* trail surrogate */ {
    462                     if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
    463                         --src;
    464                         c=U16_GET_SUPPLEMENTARY(c2, c);
    465                     }
    466                 }
    467                 if(isMostDecompYesAndZeroCC(norm16=getNorm16(c))) {
    468                     src+=U16_LENGTH(c);
    469                 } else {
    470                     break;
    471                 }
    472             }
    473         }
    474         // copy these code units all at once
    475         if(src!=prevSrc) {
    476             if(buffer!=NULL) {
    477                 if(!buffer->appendZeroCC(prevSrc, src, errorCode)) {
    478                     break;
    479                 }
    480             } else {
    481                 prevCC=0;
    482                 prevBoundary=src;
    483             }
    484         }
    485         if(src==limit) {
    486             break;
    487         }
    488 
    489         // Check one above-minimum, relevant code point.
    490         src+=U16_LENGTH(c);
    491         if(buffer!=NULL) {
    492             if(!decompose(c, norm16, *buffer, errorCode)) {
    493                 break;
    494             }
    495         } else {
    496             if(isDecompYes(norm16)) {
    497                 uint8_t cc=getCCFromYesOrMaybe(norm16);
    498                 if(prevCC<=cc || cc==0) {
    499                     prevCC=cc;
    500                     if(cc<=1) {
    501                         prevBoundary=src;
    502                     }
    503                     continue;
    504                 }
    505             }
    506             return prevBoundary;  // "no" or cc out of order
    507         }
    508     }
    509     return src;
    510 }
    511 
    512 // Decompose a short piece of text which is likely to contain characters that
    513 // fail the quick check loop and/or where the quick check loop's overhead
    514 // is unlikely to be amortized.
    515 // Called by the compose() and makeFCD() implementations.
    516 UBool Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit,
    517                                       ReorderingBuffer &buffer,
    518                                       UErrorCode &errorCode) const {
    519     while(src<limit) {
    520         UChar32 c;
    521         uint16_t norm16;
    522         UTRIE2_U16_NEXT16(normTrie, src, limit, c, norm16);
    523         if(!decompose(c, norm16, buffer, errorCode)) {
    524             return FALSE;
    525         }
    526     }
    527     return TRUE;
    528 }
    529 
    530 UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16,
    531                                  ReorderingBuffer &buffer,
    532                                  UErrorCode &errorCode) const {
    533     // Only loops for 1:1 algorithmic mappings.
    534     for(;;) {
    535         // get the decomposition and the lead and trail cc's
    536         if(isDecompYes(norm16)) {
    537             // c does not decompose
    538             return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode);
    539         } else if(isHangul(norm16)) {
    540             // Hangul syllable: decompose algorithmically
    541             UChar jamos[3];
    542             return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode);
    543         } else if(isDecompNoAlgorithmic(norm16)) {
    544             c=mapAlgorithmic(c, norm16);
    545             norm16=getNorm16(c);
    546         } else {
    547             // c decomposes, get everything from the variable-length extra data
    548             const uint16_t *mapping=getMapping(norm16);
    549             uint16_t firstUnit=*mapping;
    550             int32_t length=firstUnit&MAPPING_LENGTH_MASK;
    551             uint8_t leadCC, trailCC;
    552             trailCC=(uint8_t)(firstUnit>>8);
    553             if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
    554                 leadCC=(uint8_t)(*(mapping-1)>>8);
    555             } else {
    556                 leadCC=0;
    557             }
    558             return buffer.append((const UChar *)mapping+1, length, leadCC, trailCC, errorCode);
    559         }
    560     }
    561 }
    562 
    563 const UChar *
    564 Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const {
    565     const UChar *decomp=NULL;
    566     uint16_t norm16;
    567     for(;;) {
    568         if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) {
    569             // c does not decompose
    570             return decomp;
    571         } else if(isHangul(norm16)) {
    572             // Hangul syllable: decompose algorithmically
    573             length=Hangul::decompose(c, buffer);
    574             return buffer;
    575         } else if(isDecompNoAlgorithmic(norm16)) {
    576             c=mapAlgorithmic(c, norm16);
    577             decomp=buffer;
    578             length=0;
    579             U16_APPEND_UNSAFE(buffer, length, c);
    580         } else {
    581             // c decomposes, get everything from the variable-length extra data
    582             const uint16_t *mapping=getMapping(norm16);
    583             length=*mapping&MAPPING_LENGTH_MASK;
    584             return (const UChar *)mapping+1;
    585         }
    586     }
    587 }
    588 
    589 // The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1
    590 // so that a raw mapping fits that consists of one unit ("rm0")
    591 // plus all but the first two code units of the normal mapping.
    592 // The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK.
    593 const UChar *
    594 Normalizer2Impl::getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const {
    595     // We do not loop in this method because an algorithmic mapping itself
    596     // becomes a final result rather than having to be decomposed recursively.
    597     uint16_t norm16;
    598     if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) {
    599         // c does not decompose
    600         return NULL;
    601     } else if(isHangul(norm16)) {
    602         // Hangul syllable: decompose algorithmically
    603         Hangul::getRawDecomposition(c, buffer);
    604         length=2;
    605         return buffer;
    606     } else if(isDecompNoAlgorithmic(norm16)) {
    607         c=mapAlgorithmic(c, norm16);
    608         length=0;
    609         U16_APPEND_UNSAFE(buffer, length, c);
    610         return buffer;
    611     } else {
    612         // c decomposes, get everything from the variable-length extra data
    613         const uint16_t *mapping=getMapping(norm16);
    614         uint16_t firstUnit=*mapping;
    615         int32_t mLength=firstUnit&MAPPING_LENGTH_MASK;  // length of normal mapping
    616         if(firstUnit&MAPPING_HAS_RAW_MAPPING) {
    617             // Read the raw mapping from before the firstUnit and before the optional ccc/lccc word.
    618             // Bit 7=MAPPING_HAS_CCC_LCCC_WORD
    619             const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1;
    620             uint16_t rm0=*rawMapping;
    621             if(rm0<=MAPPING_LENGTH_MASK) {
    622                 length=rm0;
    623                 return (const UChar *)rawMapping-rm0;
    624             } else {
    625                 // Copy the normal mapping and replace its first two code units with rm0.
    626                 buffer[0]=(UChar)rm0;
    627                 u_memcpy(buffer+1, (const UChar *)mapping+1+2, mLength-2);
    628                 length=mLength-1;
    629                 return buffer;
    630             }
    631         } else {
    632             length=mLength;
    633             return (const UChar *)mapping+1;
    634         }
    635     }
    636 }
    637 
    638 void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit,
    639                                          UBool doDecompose,
    640                                          UnicodeString &safeMiddle,
    641                                          ReorderingBuffer &buffer,
    642                                          UErrorCode &errorCode) const {
    643     buffer.copyReorderableSuffixTo(safeMiddle);
    644     if(doDecompose) {
    645         decompose(src, limit, &buffer, errorCode);
    646         return;
    647     }
    648     // Just merge the strings at the boundary.
    649     ForwardUTrie2StringIterator iter(normTrie, src, limit);
    650     uint8_t firstCC, prevCC, cc;
    651     firstCC=prevCC=cc=getCC(iter.next16());
    652     while(cc!=0) {
    653         prevCC=cc;
    654         cc=getCC(iter.next16());
    655     };
    656     if(limit==NULL) {  // appendZeroCC() needs limit!=NULL
    657         limit=u_strchr(iter.codePointStart, 0);
    658     }
    659 
    660     if (buffer.append(src, (int32_t)(iter.codePointStart-src), firstCC, prevCC, errorCode)) {
    661         buffer.appendZeroCC(iter.codePointStart, limit, errorCode);
    662     }
    663 }
    664 
    665 // Note: hasDecompBoundary() could be implemented as aliases to
    666 // hasFCDBoundaryBefore() and hasFCDBoundaryAfter()
    667 // at the cost of building the FCD trie for a decomposition normalizer.
    668 UBool Normalizer2Impl::hasDecompBoundary(UChar32 c, UBool before) const {
    669     for(;;) {
    670         if(c<minDecompNoCP) {
    671             return TRUE;
    672         }
    673         uint16_t norm16=getNorm16(c);
    674         if(isHangul(norm16) || isDecompYesAndZeroCC(norm16)) {
    675             return TRUE;
    676         } else if(norm16>MIN_NORMAL_MAYBE_YES) {
    677             return FALSE;  // ccc!=0
    678         } else if(isDecompNoAlgorithmic(norm16)) {
    679             c=mapAlgorithmic(c, norm16);
    680         } else {
    681             // c decomposes, get everything from the variable-length extra data
    682             const uint16_t *mapping=getMapping(norm16);
    683             uint16_t firstUnit=*mapping;
    684             if((firstUnit&MAPPING_LENGTH_MASK)==0) {
    685                 return FALSE;
    686             }
    687             if(!before) {
    688                 // decomp after-boundary: same as hasFCDBoundaryAfter(),
    689                 // fcd16<=1 || trailCC==0
    690                 if(firstUnit>0x1ff) {
    691                     return FALSE;  // trailCC>1
    692                 }
    693                 if(firstUnit<=0xff) {
    694                     return TRUE;  // trailCC==0
    695                 }
    696                 // if(trailCC==1) test leadCC==0, same as checking for before-boundary
    697             }
    698             // TRUE if leadCC==0 (hasFCDBoundaryBefore())
    699             return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
    700         }
    701     }
    702 }
    703 
    704 /*
    705  * Finds the recomposition result for
    706  * a forward-combining "lead" character,
    707  * specified with a pointer to its compositions list,
    708  * and a backward-combining "trail" character.
    709  *
    710  * If the lead and trail characters combine, then this function returns
    711  * the following "compositeAndFwd" value:
    712  * Bits 21..1  composite character
    713  * Bit      0  set if the composite is a forward-combining starter
    714  * otherwise it returns -1.
    715  *
    716  * The compositions list has (trail, compositeAndFwd) pair entries,
    717  * encoded as either pairs or triples of 16-bit units.
    718  * The last entry has the high bit of its first unit set.
    719  *
    720  * The list is sorted by ascending trail characters (there are no duplicates).
    721  * A linear search is used.
    722  *
    723  * See normalizer2impl.h for a more detailed description
    724  * of the compositions list format.
    725  */
    726 int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) {
    727     uint16_t key1, firstUnit;
    728     if(trail<COMP_1_TRAIL_LIMIT) {
    729         // trail character is 0..33FF
    730         // result entry may have 2 or 3 units
    731         key1=(uint16_t)(trail<<1);
    732         while(key1>(firstUnit=*list)) {
    733             list+=2+(firstUnit&COMP_1_TRIPLE);
    734         }
    735         if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
    736             if(firstUnit&COMP_1_TRIPLE) {
    737                 return ((int32_t)list[1]<<16)|list[2];
    738             } else {
    739                 return list[1];
    740             }
    741         }
    742     } else {
    743         // trail character is 3400..10FFFF
    744         // result entry has 3 units
    745         key1=(uint16_t)(COMP_1_TRAIL_LIMIT+
    746                         (((trail>>COMP_1_TRAIL_SHIFT))&
    747                           ~COMP_1_TRIPLE));
    748         uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT);
    749         uint16_t secondUnit;
    750         for(;;) {
    751             if(key1>(firstUnit=*list)) {
    752                 list+=2+(firstUnit&COMP_1_TRIPLE);
    753             } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
    754                 if(key2>(secondUnit=list[1])) {
    755                     if(firstUnit&COMP_1_LAST_TUPLE) {
    756                         break;
    757                     } else {
    758                         list+=3;
    759                     }
    760                 } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) {
    761                     return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2];
    762                 } else {
    763                     break;
    764                 }
    765             } else {
    766                 break;
    767             }
    768         }
    769     }
    770     return -1;
    771 }
    772 
    773 /**
    774   * @param list some character's compositions list
    775   * @param set recursively receives the composites from these compositions
    776   */
    777 void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const {
    778     uint16_t firstUnit;
    779     int32_t compositeAndFwd;
    780     do {
    781         firstUnit=*list;
    782         if((firstUnit&COMP_1_TRIPLE)==0) {
    783             compositeAndFwd=list[1];
    784             list+=2;
    785         } else {
    786             compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2];
    787             list+=3;
    788         }
    789         UChar32 composite=compositeAndFwd>>1;
    790         if((compositeAndFwd&1)!=0) {
    791             addComposites(getCompositionsListForComposite(getNorm16(composite)), set);
    792         }
    793         set.add(composite);
    794     } while((firstUnit&COMP_1_LAST_TUPLE)==0);
    795 }
    796 
    797 /*
    798  * Recomposes the buffer text starting at recomposeStartIndex
    799  * (which is in NFD - decomposed and canonically ordered),
    800  * and truncates the buffer contents.
    801  *
    802  * Note that recomposition never lengthens the text:
    803  * Any character consists of either one or two code units;
    804  * a composition may contain at most one more code unit than the original starter,
    805  * while the combining mark that is removed has at least one code unit.
    806  */
    807 void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex,
    808                                 UBool onlyContiguous) const {
    809     UChar *p=buffer.getStart()+recomposeStartIndex;
    810     UChar *limit=buffer.getLimit();
    811     if(p==limit) {
    812         return;
    813     }
    814 
    815     UChar *starter, *pRemove, *q, *r;
    816     const uint16_t *compositionsList;
    817     UChar32 c, compositeAndFwd;
    818     uint16_t norm16;
    819     uint8_t cc, prevCC;
    820     UBool starterIsSupplementary;
    821 
    822     // Some of the following variables are not used until we have a forward-combining starter
    823     // and are only initialized now to avoid compiler warnings.
    824     compositionsList=NULL;  // used as indicator for whether we have a forward-combining starter
    825     starter=NULL;
    826     starterIsSupplementary=FALSE;
    827     prevCC=0;
    828 
    829     for(;;) {
    830         UTRIE2_U16_NEXT16(normTrie, p, limit, c, norm16);
    831         cc=getCCFromYesOrMaybe(norm16);
    832         if( // this character combines backward and
    833             isMaybe(norm16) &&
    834             // we have seen a starter that combines forward and
    835             compositionsList!=NULL &&
    836             // the backward-combining character is not blocked
    837             (prevCC<cc || prevCC==0)
    838         ) {
    839             if(isJamoVT(norm16)) {
    840                 // c is a Jamo V/T, see if we can compose it with the previous character.
    841                 if(c<Hangul::JAMO_T_BASE) {
    842                     // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
    843                     UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE);
    844                     if(prev<Hangul::JAMO_L_COUNT) {
    845                         pRemove=p-1;
    846                         UChar syllable=(UChar)
    847                             (Hangul::HANGUL_BASE+
    848                              (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))*
    849                              Hangul::JAMO_T_COUNT);
    850                         UChar t;
    851                         if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) {
    852                             ++p;
    853                             syllable+=t;  // The next character was a Jamo T.
    854                         }
    855                         *starter=syllable;
    856                         // remove the Jamo V/T
    857                         q=pRemove;
    858                         r=p;
    859                         while(r<limit) {
    860                             *q++=*r++;
    861                         }
    862                         limit=q;
    863                         p=pRemove;
    864                     }
    865                 }
    866                 /*
    867                  * No "else" for Jamo T:
    868                  * Since the input is in NFD, there are no Hangul LV syllables that
    869                  * a Jamo T could combine with.
    870                  * All Jamo Ts are combined above when handling Jamo Vs.
    871                  */
    872                 if(p==limit) {
    873                     break;
    874                 }
    875                 compositionsList=NULL;
    876                 continue;
    877             } else if((compositeAndFwd=combine(compositionsList, c))>=0) {
    878                 // The starter and the combining mark (c) do combine.
    879                 UChar32 composite=compositeAndFwd>>1;
    880 
    881                 // Replace the starter with the composite, remove the combining mark.
    882                 pRemove=p-U16_LENGTH(c);  // pRemove & p: start & limit of the combining mark
    883                 if(starterIsSupplementary) {
    884                     if(U_IS_SUPPLEMENTARY(composite)) {
    885                         // both are supplementary
    886                         starter[0]=U16_LEAD(composite);
    887                         starter[1]=U16_TRAIL(composite);
    888                     } else {
    889                         *starter=(UChar)composite;
    890                         // The composite is shorter than the starter,
    891                         // move the intermediate characters forward one.
    892                         starterIsSupplementary=FALSE;
    893                         q=starter+1;
    894                         r=q+1;
    895                         while(r<pRemove) {
    896                             *q++=*r++;
    897                         }
    898                         --pRemove;
    899                     }
    900                 } else if(U_IS_SUPPLEMENTARY(composite)) {
    901                     // The composite is longer than the starter,
    902                     // move the intermediate characters back one.
    903                     starterIsSupplementary=TRUE;
    904                     ++starter;  // temporarily increment for the loop boundary
    905                     q=pRemove;
    906                     r=++pRemove;
    907                     while(starter<q) {
    908                         *--r=*--q;
    909                     }
    910                     *starter=U16_TRAIL(composite);
    911                     *--starter=U16_LEAD(composite);  // undo the temporary increment
    912                 } else {
    913                     // both are on the BMP
    914                     *starter=(UChar)composite;
    915                 }
    916 
    917                 /* remove the combining mark by moving the following text over it */
    918                 if(pRemove<p) {
    919                     q=pRemove;
    920                     r=p;
    921                     while(r<limit) {
    922                         *q++=*r++;
    923                     }
    924                     limit=q;
    925                     p=pRemove;
    926                 }
    927                 // Keep prevCC because we removed the combining mark.
    928 
    929                 if(p==limit) {
    930                     break;
    931                 }
    932                 // Is the composite a starter that combines forward?
    933                 if(compositeAndFwd&1) {
    934                     compositionsList=
    935                         getCompositionsListForComposite(getNorm16(composite));
    936                 } else {
    937                     compositionsList=NULL;
    938                 }
    939 
    940                 // We combined; continue with looking for compositions.
    941                 continue;
    942             }
    943         }
    944 
    945         // no combination this time
    946         prevCC=cc;
    947         if(p==limit) {
    948             break;
    949         }
    950 
    951         // If c did not combine, then check if it is a starter.
    952         if(cc==0) {
    953             // Found a new starter.
    954             if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL) {
    955                 // It may combine with something, prepare for it.
    956                 if(U_IS_BMP(c)) {
    957                     starterIsSupplementary=FALSE;
    958                     starter=p-1;
    959                 } else {
    960                     starterIsSupplementary=TRUE;
    961                     starter=p-2;
    962                 }
    963             }
    964         } else if(onlyContiguous) {
    965             // FCC: no discontiguous compositions; any intervening character blocks.
    966             compositionsList=NULL;
    967         }
    968     }
    969     buffer.setReorderingLimit(limit);
    970 }
    971 
    972 UChar32
    973 Normalizer2Impl::composePair(UChar32 a, UChar32 b) const {
    974     uint16_t norm16=getNorm16(a);  // maps an out-of-range 'a' to inert norm16=0
    975     const uint16_t *list;
    976     if(isInert(norm16)) {
    977         return U_SENTINEL;
    978     } else if(norm16<minYesNoMappingsOnly) {
    979         if(isJamoL(norm16)) {
    980             b-=Hangul::JAMO_V_BASE;
    981             if(0<=b && b<Hangul::JAMO_V_COUNT) {
    982                 return
    983                     (Hangul::HANGUL_BASE+
    984                      ((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)*
    985                      Hangul::JAMO_T_COUNT);
    986             } else {
    987                 return U_SENTINEL;
    988             }
    989         } else if(isHangul(norm16)) {
    990             b-=Hangul::JAMO_T_BASE;
    991             if(Hangul::isHangulWithoutJamoT(a) && 0<b && b<Hangul::JAMO_T_COUNT) {  // not b==0!
    992                 return a+b;
    993             } else {
    994                 return U_SENTINEL;
    995             }
    996         } else {
    997             // 'a' has a compositions list in extraData
    998             list=extraData+norm16;
    999             if(norm16>minYesNo) {  // composite 'a' has both mapping & compositions list
   1000                 list+=  // mapping pointer
   1001                     1+  // +1 to skip the first unit with the mapping lenth
   1002                     (*list&MAPPING_LENGTH_MASK);  // + mapping length
   1003             }
   1004         }
   1005     } else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) {
   1006         return U_SENTINEL;
   1007     } else {
   1008         list=maybeYesCompositions+norm16-minMaybeYes;
   1009     }
   1010     if(b<0 || 0x10ffff<b) {  // combine(list, b) requires a valid code point b
   1011         return U_SENTINEL;
   1012     }
   1013 #if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC
   1014     return combine(list, b)>>1;
   1015 #else
   1016     int32_t compositeAndFwd=combine(list, b);
   1017     return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL;
   1018 #endif
   1019 }
   1020 
   1021 // Very similar to composeQuickCheck(): Make the same changes in both places if relevant.
   1022 // doCompose: normalize
   1023 // !doCompose: isNormalized (buffer must be empty and initialized)
   1024 UBool
   1025 Normalizer2Impl::compose(const UChar *src, const UChar *limit,
   1026                          UBool onlyContiguous,
   1027                          UBool doCompose,
   1028                          ReorderingBuffer &buffer,
   1029                          UErrorCode &errorCode) const {
   1030     /*
   1031      * prevBoundary points to the last character before the current one
   1032      * that has a composition boundary before it with ccc==0 and quick check "yes".
   1033      * Keeping track of prevBoundary saves us looking for a composition boundary
   1034      * when we find a "no" or "maybe".
   1035      *
   1036      * When we back out from prevSrc back to prevBoundary,
   1037      * then we also remove those same characters (which had been simply copied
   1038      * or canonically-order-inserted) from the ReorderingBuffer.
   1039      * Therefore, at all times, the [prevBoundary..prevSrc[ source units
   1040      * must correspond 1:1 to destination units at the end of the destination buffer.
   1041      */
   1042     const UChar *prevBoundary=src;
   1043     UChar32 minNoMaybeCP=minCompNoMaybeCP;
   1044     if(limit==NULL) {
   1045         src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP,
   1046                                            doCompose ? &buffer : NULL,
   1047                                            errorCode);
   1048         if(U_FAILURE(errorCode)) {
   1049             return FALSE;
   1050         }
   1051         if(prevBoundary<src) {
   1052             // Set prevBoundary to the last character in the prefix.
   1053             prevBoundary=src-1;
   1054         }
   1055         limit=u_strchr(src, 0);
   1056     }
   1057 
   1058     const UChar *prevSrc;
   1059     UChar32 c=0;
   1060     uint16_t norm16=0;
   1061 
   1062     // only for isNormalized
   1063     uint8_t prevCC=0;
   1064 
   1065     for(;;) {
   1066         // count code units below the minimum or with irrelevant data for the quick check
   1067         for(prevSrc=src; src!=limit;) {
   1068             if( (c=*src)<minNoMaybeCP ||
   1069                 isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c))
   1070             ) {
   1071                 ++src;
   1072             } else if(!U16_IS_SURROGATE(c)) {
   1073                 break;
   1074             } else {
   1075                 UChar c2;
   1076                 if(U16_IS_SURROGATE_LEAD(c)) {
   1077                     if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
   1078                         c=U16_GET_SUPPLEMENTARY(c, c2);
   1079                     }
   1080                 } else /* trail surrogate */ {
   1081                     if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
   1082                         --src;
   1083                         c=U16_GET_SUPPLEMENTARY(c2, c);
   1084                     }
   1085                 }
   1086                 if(isCompYesAndZeroCC(norm16=getNorm16(c))) {
   1087                     src+=U16_LENGTH(c);
   1088                 } else {
   1089                     break;
   1090                 }
   1091             }
   1092         }
   1093         // copy these code units all at once
   1094         if(src!=prevSrc) {
   1095             if(doCompose) {
   1096                 if(!buffer.appendZeroCC(prevSrc, src, errorCode)) {
   1097                     break;
   1098                 }
   1099             } else {
   1100                 prevCC=0;
   1101             }
   1102             if(src==limit) {
   1103                 break;
   1104             }
   1105             // Set prevBoundary to the last character in the quick check loop.
   1106             prevBoundary=src-1;
   1107             if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary &&
   1108                 U16_IS_LEAD(*(prevBoundary-1))
   1109             ) {
   1110                 --prevBoundary;
   1111             }
   1112             // The start of the current character (c).
   1113             prevSrc=src;
   1114         } else if(src==limit) {
   1115             break;
   1116         }
   1117 
   1118         src+=U16_LENGTH(c);
   1119         /*
   1120          * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
   1121          * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward)
   1122          * or has ccc!=0.
   1123          * Check for Jamo V/T, then for regular characters.
   1124          * c is not a Hangul syllable or Jamo L because those have "yes" properties.
   1125          */
   1126         if(isJamoVT(norm16) && prevBoundary!=prevSrc) {
   1127             UChar prev=*(prevSrc-1);
   1128             UBool needToDecompose=FALSE;
   1129             if(c<Hangul::JAMO_T_BASE) {
   1130                 // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
   1131                 prev=(UChar)(prev-Hangul::JAMO_L_BASE);
   1132                 if(prev<Hangul::JAMO_L_COUNT) {
   1133                     if(!doCompose) {
   1134                         return FALSE;
   1135                     }
   1136                     UChar syllable=(UChar)
   1137                         (Hangul::HANGUL_BASE+
   1138                          (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))*
   1139                          Hangul::JAMO_T_COUNT);
   1140                     UChar t;
   1141                     if(src!=limit && (t=(UChar)(*src-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) {
   1142                         ++src;
   1143                         syllable+=t;  // The next character was a Jamo T.
   1144                         prevBoundary=src;
   1145                         buffer.setLastChar(syllable);
   1146                         continue;
   1147                     }
   1148                     // If we see L+V+x where x!=T then we drop to the slow path,
   1149                     // decompose and recompose.
   1150                     // This is to deal with NFKC finding normal L and V but a
   1151                     // compatibility variant of a T. We need to either fully compose that
   1152                     // combination here (which would complicate the code and may not work
   1153                     // with strange custom data) or use the slow path -- or else our replacing
   1154                     // two input characters (L+V) with one output character (LV syllable)
   1155                     // would violate the invariant that [prevBoundary..prevSrc[ has the same
   1156                     // length as what we appended to the buffer since prevBoundary.
   1157                     needToDecompose=TRUE;
   1158                 }
   1159             } else if(Hangul::isHangulWithoutJamoT(prev)) {
   1160                 // c is a Jamo Trailing consonant,
   1161                 // compose with previous Hangul LV that does not contain a Jamo T.
   1162                 if(!doCompose) {
   1163                     return FALSE;
   1164                 }
   1165                 buffer.setLastChar((UChar)(prev+c-Hangul::JAMO_T_BASE));
   1166                 prevBoundary=src;
   1167                 continue;
   1168             }
   1169             if(!needToDecompose) {
   1170                 // The Jamo V/T did not compose into a Hangul syllable.
   1171                 if(doCompose) {
   1172                     if(!buffer.appendBMP((UChar)c, 0, errorCode)) {
   1173                         break;
   1174                     }
   1175                 } else {
   1176                     prevCC=0;
   1177                 }
   1178                 continue;
   1179             }
   1180         }
   1181         /*
   1182          * Source buffer pointers:
   1183          *
   1184          *  all done      quick check   current char  not yet
   1185          *                "yes" but     (c)           processed
   1186          *                may combine
   1187          *                forward
   1188          * [-------------[-------------[-------------[-------------[
   1189          * |             |             |             |             |
   1190          * orig. src     prevBoundary  prevSrc       src           limit
   1191          *
   1192          *
   1193          * Destination buffer pointers inside the ReorderingBuffer:
   1194          *
   1195          *  all done      might take    not filled yet
   1196          *                characters for
   1197          *                reordering
   1198          * [-------------[-------------[-------------[
   1199          * |             |             |             |
   1200          * start         reorderStart  limit         |
   1201          *                             +remainingCap.+
   1202          */
   1203         if(norm16>=MIN_YES_YES_WITH_CC) {
   1204             uint8_t cc=(uint8_t)norm16;  // cc!=0
   1205             if( onlyContiguous &&  // FCC
   1206                 (doCompose ? buffer.getLastCC() : prevCC)==0 &&
   1207                 prevBoundary<prevSrc &&
   1208                 // buffer.getLastCC()==0 && prevBoundary<prevSrc tell us that
   1209                 // [prevBoundary..prevSrc[ (which is exactly one character under these conditions)
   1210                 // passed the quick check "yes && ccc==0" test.
   1211                 // Check whether the last character was a "yesYes" or a "yesNo".
   1212                 // If a "yesNo", then we get its trailing ccc from its
   1213                 // mapping and check for canonical order.
   1214                 // All other cases are ok.
   1215                 getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc
   1216             ) {
   1217                 // Fails FCD test, need to decompose and contiguously recompose.
   1218                 if(!doCompose) {
   1219                     return FALSE;
   1220                 }
   1221             } else if(doCompose) {
   1222                 if(!buffer.append(c, cc, errorCode)) {
   1223                     break;
   1224                 }
   1225                 continue;
   1226             } else if(prevCC<=cc) {
   1227                 prevCC=cc;
   1228                 continue;
   1229             } else {
   1230                 return FALSE;
   1231             }
   1232         } else if(!doCompose && !isMaybeOrNonZeroCC(norm16)) {
   1233             return FALSE;
   1234         }
   1235 
   1236         /*
   1237          * Find appropriate boundaries around this character,
   1238          * decompose the source text from between the boundaries,
   1239          * and recompose it.
   1240          *
   1241          * We may need to remove the last few characters from the ReorderingBuffer
   1242          * to account for source text that was copied or appended
   1243          * but needs to take part in the recomposition.
   1244          */
   1245 
   1246         /*
   1247          * Find the last composition boundary in [prevBoundary..src[.
   1248          * It is either the decomposition of the current character (at prevSrc),
   1249          * or prevBoundary.
   1250          */
   1251         if(hasCompBoundaryBefore(c, norm16)) {
   1252             prevBoundary=prevSrc;
   1253         } else if(doCompose) {
   1254             buffer.removeSuffix((int32_t)(prevSrc-prevBoundary));
   1255         }
   1256 
   1257         // Find the next composition boundary in [src..limit[ -
   1258         // modifies src to point to the next starter.
   1259         src=(UChar *)findNextCompBoundary(src, limit);
   1260 
   1261         // Decompose [prevBoundary..src[ into the buffer and then recompose that part of it.
   1262         int32_t recomposeStartIndex=buffer.length();
   1263         if(!decomposeShort(prevBoundary, src, buffer, errorCode)) {
   1264             break;
   1265         }
   1266         recompose(buffer, recomposeStartIndex, onlyContiguous);
   1267         if(!doCompose) {
   1268             if(!buffer.equals(prevBoundary, src)) {
   1269                 return FALSE;
   1270             }
   1271             buffer.remove();
   1272             prevCC=0;
   1273         }
   1274 
   1275         // Move to the next starter. We never need to look back before this point again.
   1276         prevBoundary=src;
   1277     }
   1278     return TRUE;
   1279 }
   1280 
   1281 // Very similar to compose(): Make the same changes in both places if relevant.
   1282 // pQCResult==NULL: spanQuickCheckYes
   1283 // pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES)
   1284 const UChar *
   1285 Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit,
   1286                                    UBool onlyContiguous,
   1287                                    UNormalizationCheckResult *pQCResult) const {
   1288     /*
   1289      * prevBoundary points to the last character before the current one
   1290      * that has a composition boundary before it with ccc==0 and quick check "yes".
   1291      */
   1292     const UChar *prevBoundary=src;
   1293     UChar32 minNoMaybeCP=minCompNoMaybeCP;
   1294     if(limit==NULL) {
   1295         UErrorCode errorCode=U_ZERO_ERROR;
   1296         src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode);
   1297         if(prevBoundary<src) {
   1298             // Set prevBoundary to the last character in the prefix.
   1299             prevBoundary=src-1;
   1300         }
   1301         limit=u_strchr(src, 0);
   1302     }
   1303 
   1304     const UChar *prevSrc;
   1305     UChar32 c=0;
   1306     uint16_t norm16=0;
   1307     uint8_t prevCC=0;
   1308 
   1309     for(;;) {
   1310         // count code units below the minimum or with irrelevant data for the quick check
   1311         for(prevSrc=src;;) {
   1312             if(src==limit) {
   1313                 return src;
   1314             }
   1315             if( (c=*src)<minNoMaybeCP ||
   1316                 isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c))
   1317             ) {
   1318                 ++src;
   1319             } else if(!U16_IS_SURROGATE(c)) {
   1320                 break;
   1321             } else {
   1322                 UChar c2;
   1323                 if(U16_IS_SURROGATE_LEAD(c)) {
   1324                     if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
   1325                         c=U16_GET_SUPPLEMENTARY(c, c2);
   1326                     }
   1327                 } else /* trail surrogate */ {
   1328                     if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
   1329                         --src;
   1330                         c=U16_GET_SUPPLEMENTARY(c2, c);
   1331                     }
   1332                 }
   1333                 if(isCompYesAndZeroCC(norm16=getNorm16(c))) {
   1334                     src+=U16_LENGTH(c);
   1335                 } else {
   1336                     break;
   1337                 }
   1338             }
   1339         }
   1340         if(src!=prevSrc) {
   1341             // Set prevBoundary to the last character in the quick check loop.
   1342             prevBoundary=src-1;
   1343             if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary &&
   1344                 U16_IS_LEAD(*(prevBoundary-1))
   1345             ) {
   1346                 --prevBoundary;
   1347             }
   1348             prevCC=0;
   1349             // The start of the current character (c).
   1350             prevSrc=src;
   1351         }
   1352 
   1353         src+=U16_LENGTH(c);
   1354         /*
   1355          * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
   1356          * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward)
   1357          * or has ccc!=0.
   1358          */
   1359         if(isMaybeOrNonZeroCC(norm16)) {
   1360             uint8_t cc=getCCFromYesOrMaybe(norm16);
   1361             if( onlyContiguous &&  // FCC
   1362                 cc!=0 &&
   1363                 prevCC==0 &&
   1364                 prevBoundary<prevSrc &&
   1365                 // prevCC==0 && prevBoundary<prevSrc tell us that
   1366                 // [prevBoundary..prevSrc[ (which is exactly one character under these conditions)
   1367                 // passed the quick check "yes && ccc==0" test.
   1368                 // Check whether the last character was a "yesYes" or a "yesNo".
   1369                 // If a "yesNo", then we get its trailing ccc from its
   1370                 // mapping and check for canonical order.
   1371                 // All other cases are ok.
   1372                 getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc
   1373             ) {
   1374                 // Fails FCD test.
   1375             } else if(prevCC<=cc || cc==0) {
   1376                 prevCC=cc;
   1377                 if(norm16<MIN_YES_YES_WITH_CC) {
   1378                     if(pQCResult!=NULL) {
   1379                         *pQCResult=UNORM_MAYBE;
   1380                     } else {
   1381                         return prevBoundary;
   1382                     }
   1383                 }
   1384                 continue;
   1385             }
   1386         }
   1387         if(pQCResult!=NULL) {
   1388             *pQCResult=UNORM_NO;
   1389         }
   1390         return prevBoundary;
   1391     }
   1392 }
   1393 
   1394 void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit,
   1395                                        UBool doCompose,
   1396                                        UBool onlyContiguous,
   1397                                        UnicodeString &safeMiddle,
   1398                                        ReorderingBuffer &buffer,
   1399                                        UErrorCode &errorCode) const {
   1400     if(!buffer.isEmpty()) {
   1401         const UChar *firstStarterInSrc=findNextCompBoundary(src, limit);
   1402         if(src!=firstStarterInSrc) {
   1403             const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(),
   1404                                                                     buffer.getLimit());
   1405             int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest);
   1406             UnicodeString middle(lastStarterInDest, destSuffixLength);
   1407             buffer.removeSuffix(destSuffixLength);
   1408             safeMiddle=middle;
   1409             middle.append(src, (int32_t)(firstStarterInSrc-src));
   1410             const UChar *middleStart=middle.getBuffer();
   1411             compose(middleStart, middleStart+middle.length(), onlyContiguous,
   1412                     TRUE, buffer, errorCode);
   1413             if(U_FAILURE(errorCode)) {
   1414                 return;
   1415             }
   1416             src=firstStarterInSrc;
   1417         }
   1418     }
   1419     if(doCompose) {
   1420         compose(src, limit, onlyContiguous, TRUE, buffer, errorCode);
   1421     } else {
   1422         if(limit==NULL) {  // appendZeroCC() needs limit!=NULL
   1423             limit=u_strchr(src, 0);
   1424         }
   1425         buffer.appendZeroCC(src, limit, errorCode);
   1426     }
   1427 }
   1428 
   1429 /**
   1430  * Does c have a composition boundary before it?
   1431  * True if its decomposition begins with a character that has
   1432  * ccc=0 && NFC_QC=Yes (isCompYesAndZeroCC()).
   1433  * As a shortcut, this is true if c itself has ccc=0 && NFC_QC=Yes
   1434  * (isCompYesAndZeroCC()) so we need not decompose.
   1435  */
   1436 UBool Normalizer2Impl::hasCompBoundaryBefore(UChar32 c, uint16_t norm16) const {
   1437     for(;;) {
   1438         if(isCompYesAndZeroCC(norm16)) {
   1439             return TRUE;
   1440         } else if(isMaybeOrNonZeroCC(norm16)) {
   1441             return FALSE;
   1442         } else if(isDecompNoAlgorithmic(norm16)) {
   1443             c=mapAlgorithmic(c, norm16);
   1444             norm16=getNorm16(c);
   1445         } else {
   1446             // c decomposes, get everything from the variable-length extra data
   1447             const uint16_t *mapping=getMapping(norm16);
   1448             uint16_t firstUnit=*mapping;
   1449             if((firstUnit&MAPPING_LENGTH_MASK)==0) {
   1450                 return FALSE;
   1451             }
   1452             if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD) && (*(mapping-1)&0xff00)) {
   1453                 return FALSE;  // non-zero leadCC
   1454             }
   1455             int32_t i=1;  // skip over the firstUnit
   1456             UChar32 c;
   1457             U16_NEXT_UNSAFE(mapping, i, c);
   1458             return isCompYesAndZeroCC(getNorm16(c));
   1459         }
   1460     }
   1461 }
   1462 
   1463 UBool Normalizer2Impl::hasCompBoundaryAfter(UChar32 c, UBool onlyContiguous, UBool testInert) const {
   1464     for(;;) {
   1465         uint16_t norm16=getNorm16(c);
   1466         if(isInert(norm16)) {
   1467             return TRUE;
   1468         } else if(norm16<=minYesNo) {
   1469             // Hangul: norm16==minYesNo
   1470             // Hangul LVT has a boundary after it.
   1471             // Hangul LV and non-inert yesYes characters combine forward.
   1472             return isHangul(norm16) && !Hangul::isHangulWithoutJamoT((UChar)c);
   1473         } else if(norm16>= (testInert ? minNoNo : minMaybeYes)) {
   1474             return FALSE;
   1475         } else if(isDecompNoAlgorithmic(norm16)) {
   1476             c=mapAlgorithmic(c, norm16);
   1477         } else {
   1478             // c decomposes, get everything from the variable-length extra data.
   1479             // If testInert, then c must be a yesNo character which has lccc=0,
   1480             // otherwise it could be a noNo.
   1481             const uint16_t *mapping=getMapping(norm16);
   1482             uint16_t firstUnit=*mapping;
   1483             // TRUE if
   1484             //   not MAPPING_NO_COMP_BOUNDARY_AFTER
   1485             //     (which is set if
   1486             //       c is not deleted, and
   1487             //       it and its decomposition do not combine forward, and it has a starter)
   1488             //   and if FCC then trailCC<=1
   1489             return
   1490                 (firstUnit&MAPPING_NO_COMP_BOUNDARY_AFTER)==0 &&
   1491                 (!onlyContiguous || firstUnit<=0x1ff);
   1492         }
   1493     }
   1494 }
   1495 
   1496 const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p) const {
   1497     BackwardUTrie2StringIterator iter(normTrie, start, p);
   1498     uint16_t norm16;
   1499     do {
   1500         norm16=iter.previous16();
   1501     } while(!hasCompBoundaryBefore(iter.codePoint, norm16));
   1502     // We could also test hasCompBoundaryAfter() and return iter.codePointLimit,
   1503     // but that's probably not worth the extra cost.
   1504     return iter.codePointStart;
   1505 }
   1506 
   1507 const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit) const {
   1508     ForwardUTrie2StringIterator iter(normTrie, p, limit);
   1509     uint16_t norm16;
   1510     do {
   1511         norm16=iter.next16();
   1512     } while(!hasCompBoundaryBefore(iter.codePoint, norm16));
   1513     return iter.codePointStart;
   1514 }
   1515 
   1516 // Note: normalizer2impl.cpp r30982 (2011-nov-27)
   1517 // still had getFCDTrie() which built and cached an FCD trie.
   1518 // That provided faster access to FCD data than getFCD16FromNormData()
   1519 // but required synchronization and consumed some 10kB of heap memory
   1520 // in any process that uses FCD (e.g., via collation).
   1521 // tccc180[] and smallFCD[] are intended to help with any loss of performance,
   1522 // at least for Latin & CJK.
   1523 
   1524 // Gets the FCD value from the regular normalization data.
   1525 uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const {
   1526     // Only loops for 1:1 algorithmic mappings.
   1527     for(;;) {
   1528         uint16_t norm16=getNorm16(c);
   1529         if(norm16<=minYesNo) {
   1530             // no decomposition or Hangul syllable, all zeros
   1531             return 0;
   1532         } else if(norm16>=MIN_NORMAL_MAYBE_YES) {
   1533             // combining mark
   1534             norm16&=0xff;
   1535             return norm16|(norm16<<8);
   1536         } else if(norm16>=minMaybeYes) {
   1537             return 0;
   1538         } else if(isDecompNoAlgorithmic(norm16)) {
   1539             c=mapAlgorithmic(c, norm16);
   1540         } else {
   1541             // c decomposes, get everything from the variable-length extra data
   1542             const uint16_t *mapping=getMapping(norm16);
   1543             uint16_t firstUnit=*mapping;
   1544             if((firstUnit&MAPPING_LENGTH_MASK)==0) {
   1545                 // A character that is deleted (maps to an empty string) must
   1546                 // get the worst-case lccc and tccc values because arbitrary
   1547                 // characters on both sides will become adjacent.
   1548                 return 0x1ff;
   1549             } else {
   1550                 norm16=firstUnit>>8;  // tccc
   1551                 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
   1552                     norm16|=*(mapping-1)&0xff00;  // lccc
   1553                 }
   1554                 return norm16;
   1555             }
   1556         }
   1557     }
   1558 }
   1559 
   1560 // Dual functionality:
   1561 // buffer!=NULL: normalize
   1562 // buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes
   1563 const UChar *
   1564 Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit,
   1565                          ReorderingBuffer *buffer,
   1566                          UErrorCode &errorCode) const {
   1567     // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1.
   1568     // Similar to the prevBoundary in the compose() implementation.
   1569     const UChar *prevBoundary=src;
   1570     int32_t prevFCD16=0;
   1571     if(limit==NULL) {
   1572         src=copyLowPrefixFromNulTerminated(src, MIN_CCC_LCCC_CP, buffer, errorCode);
   1573         if(U_FAILURE(errorCode)) {
   1574             return src;
   1575         }
   1576         if(prevBoundary<src) {
   1577             prevBoundary=src;
   1578             // We know that the previous character's lccc==0.
   1579             // Fetching the fcd16 value was deferred for this below-U+0300 code point.
   1580             prevFCD16=getFCD16(*(src-1));
   1581             if(prevFCD16>1) {
   1582                 --prevBoundary;
   1583             }
   1584         }
   1585         limit=u_strchr(src, 0);
   1586     }
   1587 
   1588     // Note: In this function we use buffer->appendZeroCC() because we track
   1589     // the lead and trail combining classes here, rather than leaving it to
   1590     // the ReorderingBuffer.
   1591     // The exception is the call to decomposeShort() which uses the buffer
   1592     // in the normal way.
   1593 
   1594     const UChar *prevSrc;
   1595     UChar32 c=0;
   1596     uint16_t fcd16=0;
   1597 
   1598     for(;;) {
   1599         // count code units with lccc==0
   1600         for(prevSrc=src; src!=limit;) {
   1601             if((c=*src)<MIN_CCC_LCCC_CP) {
   1602                 prevFCD16=~c;
   1603                 ++src;
   1604             } else if(!singleLeadMightHaveNonZeroFCD16(c)) {
   1605                 prevFCD16=0;
   1606                 ++src;
   1607             } else {
   1608                 if(U16_IS_SURROGATE(c)) {
   1609                     UChar c2;
   1610                     if(U16_IS_SURROGATE_LEAD(c)) {
   1611                         if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
   1612                             c=U16_GET_SUPPLEMENTARY(c, c2);
   1613                         }
   1614                     } else /* trail surrogate */ {
   1615                         if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
   1616                             --src;
   1617                             c=U16_GET_SUPPLEMENTARY(c2, c);
   1618                         }
   1619                     }
   1620                 }
   1621                 if((fcd16=getFCD16FromNormData(c))<=0xff) {
   1622                     prevFCD16=fcd16;
   1623                     src+=U16_LENGTH(c);
   1624                 } else {
   1625                     break;
   1626                 }
   1627             }
   1628         }
   1629         // copy these code units all at once
   1630         if(src!=prevSrc) {
   1631             if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) {
   1632                 break;
   1633             }
   1634             if(src==limit) {
   1635                 break;
   1636             }
   1637             prevBoundary=src;
   1638             // We know that the previous character's lccc==0.
   1639             if(prevFCD16<0) {
   1640                 // Fetching the fcd16 value was deferred for this below-U+0300 code point.
   1641                 UChar32 prev=~prevFCD16;
   1642                 prevFCD16= prev<0x180 ? tccc180[prev] : getFCD16FromNormData(prev);
   1643                 if(prevFCD16>1) {
   1644                     --prevBoundary;
   1645                 }
   1646             } else {
   1647                 const UChar *p=src-1;
   1648                 if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) {
   1649                     --p;
   1650                     // Need to fetch the previous character's FCD value because
   1651                     // prevFCD16 was just for the trail surrogate code point.
   1652                     prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1]));
   1653                     // Still known to have lccc==0 because its lead surrogate unit had lccc==0.
   1654                 }
   1655                 if(prevFCD16>1) {
   1656                     prevBoundary=p;
   1657                 }
   1658             }
   1659             // The start of the current character (c).
   1660             prevSrc=src;
   1661         } else if(src==limit) {
   1662             break;
   1663         }
   1664 
   1665         src+=U16_LENGTH(c);
   1666         // The current character (c) at [prevSrc..src[ has a non-zero lead combining class.
   1667         // Check for proper order, and decompose locally if necessary.
   1668         if((prevFCD16&0xff)<=(fcd16>>8)) {
   1669             // proper order: prev tccc <= current lccc
   1670             if((fcd16&0xff)<=1) {
   1671                 prevBoundary=src;
   1672             }
   1673             if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) {
   1674                 break;
   1675             }
   1676             prevFCD16=fcd16;
   1677             continue;
   1678         } else if(buffer==NULL) {
   1679             return prevBoundary;  // quick check "no"
   1680         } else {
   1681             /*
   1682              * Back out the part of the source that we copied or appended
   1683              * already but is now going to be decomposed.
   1684              * prevSrc is set to after what was copied/appended.
   1685              */
   1686             buffer->removeSuffix((int32_t)(prevSrc-prevBoundary));
   1687             /*
   1688              * Find the part of the source that needs to be decomposed,
   1689              * up to the next safe boundary.
   1690              */
   1691             src=findNextFCDBoundary(src, limit);
   1692             /*
   1693              * The source text does not fulfill the conditions for FCD.
   1694              * Decompose and reorder a limited piece of the text.
   1695              */
   1696             if(!decomposeShort(prevBoundary, src, *buffer, errorCode)) {
   1697                 break;
   1698             }
   1699             prevBoundary=src;
   1700             prevFCD16=0;
   1701         }
   1702     }
   1703     return src;
   1704 }
   1705 
   1706 void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit,
   1707                                        UBool doMakeFCD,
   1708                                        UnicodeString &safeMiddle,
   1709                                        ReorderingBuffer &buffer,
   1710                                        UErrorCode &errorCode) const {
   1711     if(!buffer.isEmpty()) {
   1712         const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit);
   1713         if(src!=firstBoundaryInSrc) {
   1714             const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(),
   1715                                                                     buffer.getLimit());
   1716             int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest);
   1717             UnicodeString middle(lastBoundaryInDest, destSuffixLength);
   1718             buffer.removeSuffix(destSuffixLength);
   1719             safeMiddle=middle;
   1720             middle.append(src, (int32_t)(firstBoundaryInSrc-src));
   1721             const UChar *middleStart=middle.getBuffer();
   1722             makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode);
   1723             if(U_FAILURE(errorCode)) {
   1724                 return;
   1725             }
   1726             src=firstBoundaryInSrc;
   1727         }
   1728     }
   1729     if(doMakeFCD) {
   1730         makeFCD(src, limit, &buffer, errorCode);
   1731     } else {
   1732         if(limit==NULL) {  // appendZeroCC() needs limit!=NULL
   1733             limit=u_strchr(src, 0);
   1734         }
   1735         buffer.appendZeroCC(src, limit, errorCode);
   1736     }
   1737 }
   1738 
   1739 const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const {
   1740     while(start<p && previousFCD16(start, p)>0xff) {}
   1741     return p;
   1742 }
   1743 
   1744 const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const {
   1745     while(p<limit) {
   1746         const UChar *codePointStart=p;
   1747         if(nextFCD16(p, limit)<=0xff) {
   1748             return codePointStart;
   1749         }
   1750     }
   1751     return p;
   1752 }
   1753 
   1754 // CanonicalIterator data -------------------------------------------------- ***
   1755 
   1756 CanonIterData::CanonIterData(UErrorCode &errorCode) :
   1757         trie(utrie2_open(0, 0, &errorCode)),
   1758         canonStartSets(uprv_deleteUObject, NULL, errorCode) {}
   1759 
   1760 CanonIterData::~CanonIterData() {
   1761     utrie2_close(trie);
   1762 }
   1763 
   1764 void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) {
   1765     uint32_t canonValue=utrie2_get32(trie, decompLead);
   1766     if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) {
   1767         // origin is the first character whose decomposition starts with
   1768         // the character for which we are setting the value.
   1769         utrie2_set32(trie, decompLead, canonValue|origin, &errorCode);
   1770     } else {
   1771         // origin is not the first character, or it is U+0000.
   1772         UnicodeSet *set;
   1773         if((canonValue&CANON_HAS_SET)==0) {
   1774             set=new UnicodeSet;
   1775             if(set==NULL) {
   1776                 errorCode=U_MEMORY_ALLOCATION_ERROR;
   1777                 return;
   1778             }
   1779             UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK);
   1780             canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size();
   1781             utrie2_set32(trie, decompLead, canonValue, &errorCode);
   1782             canonStartSets.addElement(set, errorCode);
   1783             if(firstOrigin!=0) {
   1784                 set->add(firstOrigin);
   1785             }
   1786         } else {
   1787             set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)];
   1788         }
   1789         set->add(origin);
   1790     }
   1791 }
   1792 
   1793 U_CDECL_BEGIN
   1794 
   1795 // Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters.
   1796 //     context: the Normalizer2Impl
   1797 static UBool U_CALLCONV
   1798 enumCIDRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value) {
   1799     UErrorCode errorCode = U_ZERO_ERROR;
   1800     if (value != 0) {
   1801         Normalizer2Impl *impl = (Normalizer2Impl *)context;
   1802         impl->makeCanonIterDataFromNorm16(
   1803             start, end, (uint16_t)value, *impl->fCanonIterData, errorCode);
   1804     }
   1805     return U_SUCCESS(errorCode);
   1806 }
   1807 
   1808 
   1809 
   1810 // UInitOnce instantiation function for CanonIterData
   1811 
   1812 static void U_CALLCONV
   1813 initCanonIterData(Normalizer2Impl *impl, UErrorCode &errorCode) {
   1814     U_ASSERT(impl->fCanonIterData == NULL);
   1815     impl->fCanonIterData = new CanonIterData(errorCode);
   1816     if (impl->fCanonIterData == NULL) {
   1817         errorCode=U_MEMORY_ALLOCATION_ERROR;
   1818     }
   1819     if (U_SUCCESS(errorCode)) {
   1820         utrie2_enum(impl->getNormTrie(), NULL, enumCIDRangeHandler, impl);
   1821         utrie2_freeze(impl->fCanonIterData->trie, UTRIE2_32_VALUE_BITS, &errorCode);
   1822     }
   1823     if (U_FAILURE(errorCode)) {
   1824         delete impl->fCanonIterData;
   1825         impl->fCanonIterData = NULL;
   1826     }
   1827 }
   1828 
   1829 U_CDECL_END
   1830 
   1831 void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, uint16_t norm16,
   1832                                                   CanonIterData &newData,
   1833                                                   UErrorCode &errorCode) const {
   1834     if(norm16==0 || (minYesNo<=norm16 && norm16<minNoNo)) {
   1835         // Inert, or 2-way mapping (including Hangul syllable).
   1836         // We do not write a canonStartSet for any yesNo character.
   1837         // Composites from 2-way mappings are added at runtime from the
   1838         // starter's compositions list, and the other characters in
   1839         // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are
   1840         // "maybe" characters.
   1841         return;
   1842     }
   1843     for(UChar32 c=start; c<=end; ++c) {
   1844         uint32_t oldValue=utrie2_get32(newData.trie, c);
   1845         uint32_t newValue=oldValue;
   1846         if(norm16>=minMaybeYes) {
   1847             // not a segment starter if it occurs in a decomposition or has cc!=0
   1848             newValue|=CANON_NOT_SEGMENT_STARTER;
   1849             if(norm16<MIN_NORMAL_MAYBE_YES) {
   1850                 newValue|=CANON_HAS_COMPOSITIONS;
   1851             }
   1852         } else if(norm16<minYesNo) {
   1853             newValue|=CANON_HAS_COMPOSITIONS;
   1854         } else {
   1855             // c has a one-way decomposition
   1856             UChar32 c2=c;
   1857             uint16_t norm16_2=norm16;
   1858             while(limitNoNo<=norm16_2 && norm16_2<minMaybeYes) {
   1859                 c2=mapAlgorithmic(c2, norm16_2);
   1860                 norm16_2=getNorm16(c2);
   1861             }
   1862             if(minYesNo<=norm16_2 && norm16_2<limitNoNo) {
   1863                 // c decomposes, get everything from the variable-length extra data
   1864                 const uint16_t *mapping=getMapping(norm16_2);
   1865                 uint16_t firstUnit=*mapping;
   1866                 int32_t length=firstUnit&MAPPING_LENGTH_MASK;
   1867                 if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) {
   1868                     if(c==c2 && (*(mapping-1)&0xff)!=0) {
   1869                         newValue|=CANON_NOT_SEGMENT_STARTER;  // original c has cc!=0
   1870                     }
   1871                 }
   1872                 // Skip empty mappings (no characters in the decomposition).
   1873                 if(length!=0) {
   1874                     ++mapping;  // skip over the firstUnit
   1875                     // add c to first code point's start set
   1876                     int32_t i=0;
   1877                     U16_NEXT_UNSAFE(mapping, i, c2);
   1878                     newData.addToStartSet(c, c2, errorCode);
   1879                     // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a
   1880                     // one-way mapping. A 2-way mapping is possible here after
   1881                     // intermediate algorithmic mapping.
   1882                     if(norm16_2>=minNoNo) {
   1883                         while(i<length) {
   1884                             U16_NEXT_UNSAFE(mapping, i, c2);
   1885                             uint32_t c2Value=utrie2_get32(newData.trie, c2);
   1886                             if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) {
   1887                                 utrie2_set32(newData.trie, c2, c2Value|CANON_NOT_SEGMENT_STARTER,
   1888                                              &errorCode);
   1889                             }
   1890                         }
   1891                     }
   1892                 }
   1893             } else {
   1894                 // c decomposed to c2 algorithmically; c has cc==0
   1895                 newData.addToStartSet(c, c2, errorCode);
   1896             }
   1897         }
   1898         if(newValue!=oldValue) {
   1899             utrie2_set32(newData.trie, c, newValue, &errorCode);
   1900         }
   1901     }
   1902 }
   1903 
   1904 UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const {
   1905     // Logically const: Synchronized instantiation.
   1906     Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this);
   1907     umtx_initOnce(me->fCanonIterDataInitOnce, &initCanonIterData, me, errorCode);
   1908     return U_SUCCESS(errorCode);
   1909 }
   1910 
   1911 int32_t Normalizer2Impl::getCanonValue(UChar32 c) const {
   1912     return (int32_t)utrie2_get32(fCanonIterData->trie, c);
   1913 }
   1914 
   1915 const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const {
   1916     return *(const UnicodeSet *)fCanonIterData->canonStartSets[n];
   1917 }
   1918 
   1919 UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const {
   1920     return getCanonValue(c)>=0;
   1921 }
   1922 
   1923 UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const {
   1924     int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER;
   1925     if(canonValue==0) {
   1926         return FALSE;
   1927     }
   1928     set.clear();
   1929     int32_t value=canonValue&CANON_VALUE_MASK;
   1930     if((canonValue&CANON_HAS_SET)!=0) {
   1931         set.addAll(getCanonStartSet(value));
   1932     } else if(value!=0) {
   1933         set.add(value);
   1934     }
   1935     if((canonValue&CANON_HAS_COMPOSITIONS)!=0) {
   1936         uint16_t norm16=getNorm16(c);
   1937         if(norm16==JAMO_L) {
   1938             UChar32 syllable=
   1939                 (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT);
   1940             set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1);
   1941         } else {
   1942             addComposites(getCompositionsList(norm16), set);
   1943         }
   1944     }
   1945     return TRUE;
   1946 }
   1947 
   1948 U_NAMESPACE_END
   1949 
   1950 // Normalizer2 data swapping ----------------------------------------------- ***
   1951 
   1952 U_NAMESPACE_USE
   1953 
   1954 U_CAPI int32_t U_EXPORT2
   1955 unorm2_swap(const UDataSwapper *ds,
   1956             const void *inData, int32_t length, void *outData,
   1957             UErrorCode *pErrorCode) {
   1958     const UDataInfo *pInfo;
   1959     int32_t headerSize;
   1960 
   1961     const uint8_t *inBytes;
   1962     uint8_t *outBytes;
   1963 
   1964     const int32_t *inIndexes;
   1965     int32_t indexes[Normalizer2Impl::IX_MIN_MAYBE_YES+1];
   1966 
   1967     int32_t i, offset, nextOffset, size;
   1968 
   1969     /* udata_swapDataHeader checks the arguments */
   1970     headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode);
   1971     if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
   1972         return 0;
   1973     }
   1974 
   1975     /* check data format and format version */
   1976     pInfo=(const UDataInfo *)((const char *)inData+4);
   1977     if(!(
   1978         pInfo->dataFormat[0]==0x4e &&   /* dataFormat="Nrm2" */
   1979         pInfo->dataFormat[1]==0x72 &&
   1980         pInfo->dataFormat[2]==0x6d &&
   1981         pInfo->dataFormat[3]==0x32 &&
   1982         (pInfo->formatVersion[0]==1 || pInfo->formatVersion[0]==2)
   1983     )) {
   1984         udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n",
   1985                          pInfo->dataFormat[0], pInfo->dataFormat[1],
   1986                          pInfo->dataFormat[2], pInfo->dataFormat[3],
   1987                          pInfo->formatVersion[0]);
   1988         *pErrorCode=U_UNSUPPORTED_ERROR;
   1989         return 0;
   1990     }
   1991 
   1992     inBytes=(const uint8_t *)inData+headerSize;
   1993     outBytes=(uint8_t *)outData+headerSize;
   1994 
   1995     inIndexes=(const int32_t *)inBytes;
   1996 
   1997     if(length>=0) {
   1998         length-=headerSize;
   1999         if(length<(int32_t)sizeof(indexes)) {
   2000             udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n",
   2001                              length);
   2002             *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
   2003             return 0;
   2004         }
   2005     }
   2006 
   2007     /* read the first few indexes */
   2008     for(i=0; i<=Normalizer2Impl::IX_MIN_MAYBE_YES; ++i) {
   2009         indexes[i]=udata_readInt32(ds, inIndexes[i]);
   2010     }
   2011 
   2012     /* get the total length of the data */
   2013     size=indexes[Normalizer2Impl::IX_TOTAL_SIZE];
   2014 
   2015     if(length>=0) {
   2016         if(length<size) {
   2017             udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n",
   2018                              length);
   2019             *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
   2020             return 0;
   2021         }
   2022 
   2023         /* copy the data for inaccessible bytes */
   2024         if(inBytes!=outBytes) {
   2025             uprv_memcpy(outBytes, inBytes, size);
   2026         }
   2027 
   2028         offset=0;
   2029 
   2030         /* swap the int32_t indexes[] */
   2031         nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET];
   2032         ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode);
   2033         offset=nextOffset;
   2034 
   2035         /* swap the UTrie2 */
   2036         nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET];
   2037         utrie2_swap(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
   2038         offset=nextOffset;
   2039 
   2040         /* swap the uint16_t extraData[] */
   2041         nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET];
   2042         ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
   2043         offset=nextOffset;
   2044 
   2045         /* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */
   2046         nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1];
   2047         offset=nextOffset;
   2048 
   2049         U_ASSERT(offset==size);
   2050     }
   2051 
   2052     return headerSize+size;
   2053 }
   2054 
   2055 #endif  // !UCONFIG_NO_NORMALIZATION
   2056