1 /* 2 ****************************************************************************** 3 * Copyright (C) 1997-2011, International Business Machines 4 * Corporation and others. All Rights Reserved. 5 ****************************************************************************** 6 * Date Name Description 7 * 03/22/00 aliu Adapted from original C++ ICU Hashtable. 8 * 07/06/01 aliu Modified to support int32_t keys on 9 * platforms with sizeof(void*) < 32. 10 ****************************************************************************** 11 */ 12 13 #include "uhash.h" 14 #include "unicode/ustring.h" 15 #include "cstring.h" 16 #include "cmemory.h" 17 #include "uassert.h" 18 #include "ustr_imp.h" 19 20 /* This hashtable is implemented as a double hash. All elements are 21 * stored in a single array with no secondary storage for collision 22 * resolution (no linked list, etc.). When there is a hash collision 23 * (when two unequal keys have the same hashcode) we resolve this by 24 * using a secondary hash. The secondary hash is an increment 25 * computed as a hash function (a different one) of the primary 26 * hashcode. This increment is added to the initial hash value to 27 * obtain further slots assigned to the same hash code. For this to 28 * work, the length of the array and the increment must be relatively 29 * prime. The easiest way to achieve this is to have the length of 30 * the array be prime, and the increment be any value from 31 * 1..length-1. 32 * 33 * Hashcodes are 32-bit integers. We make sure all hashcodes are 34 * non-negative by masking off the top bit. This has two effects: (1) 35 * modulo arithmetic is simplified. If we allowed negative hashcodes, 36 * then when we computed hashcode % length, we could get a negative 37 * result, which we would then have to adjust back into range. It's 38 * simpler to just make hashcodes non-negative. (2) It makes it easy 39 * to check for empty vs. occupied slots in the table. We just mark 40 * empty or deleted slots with a negative hashcode. 41 * 42 * The central function is _uhash_find(). This function looks for a 43 * slot matching the given key and hashcode. If one is found, it 44 * returns a pointer to that slot. If the table is full, and no match 45 * is found, it returns NULL -- in theory. This would make the code 46 * more complicated, since all callers of _uhash_find() would then 47 * have to check for a NULL result. To keep this from happening, we 48 * don't allow the table to fill. When there is only one 49 * empty/deleted slot left, uhash_put() will refuse to increase the 50 * count, and fail. This simplifies the code. In practice, one will 51 * seldom encounter this using default UHashtables. However, if a 52 * hashtable is set to a U_FIXED resize policy, or if memory is 53 * exhausted, then the table may fill. 54 * 55 * High and low water ratios control rehashing. They establish levels 56 * of fullness (from 0 to 1) outside of which the data array is 57 * reallocated and repopulated. Setting the low water ratio to zero 58 * means the table will never shrink. Setting the high water ratio to 59 * one means the table will never grow. The ratios should be 60 * coordinated with the ratio between successive elements of the 61 * PRIMES table, so that when the primeIndex is incremented or 62 * decremented during rehashing, it brings the ratio of count / length 63 * back into the desired range (between low and high water ratios). 64 */ 65 66 /******************************************************************** 67 * PRIVATE Constants, Macros 68 ********************************************************************/ 69 70 /* This is a list of non-consecutive primes chosen such that 71 * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81 72 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this 73 * ratio is changed, the low and high water ratios should also be 74 * adjusted to suit. 75 * 76 * These prime numbers were also chosen so that they are the largest 77 * prime number while being less than a power of two. 78 */ 79 static const int32_t PRIMES[] = { 80 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, 81 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, 82 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, 83 1073741789, 2147483647 /*, 4294967291 */ 84 }; 85 86 #define PRIMES_LENGTH (sizeof(PRIMES) / sizeof(PRIMES[0])) 87 #define DEFAULT_PRIME_INDEX 3 88 89 /* These ratios are tuned to the PRIMES array such that a resize 90 * places the table back into the zone of non-resizing. That is, 91 * after a call to _uhash_rehash(), a subsequent call to 92 * _uhash_rehash() should do nothing (should not churn). This is only 93 * a potential problem with U_GROW_AND_SHRINK. 94 */ 95 static const float RESIZE_POLICY_RATIO_TABLE[6] = { 96 /* low, high water ratio */ 97 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */ 98 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */ 99 0.0F, 1.0F /* U_FIXED: Never change size */ 100 }; 101 102 /* 103 Invariants for hashcode values: 104 105 * DELETED < 0 106 * EMPTY < 0 107 * Real hashes >= 0 108 109 Hashcodes may not start out this way, but internally they are 110 adjusted so that they are always positive. We assume 32-bit 111 hashcodes; adjust these constants for other hashcode sizes. 112 */ 113 #define HASH_DELETED ((int32_t) 0x80000000) 114 #define HASH_EMPTY ((int32_t) HASH_DELETED + 1) 115 116 #define IS_EMPTY_OR_DELETED(x) ((x) < 0) 117 118 /* This macro expects a UHashTok.pointer as its keypointer and 119 valuepointer parameters */ 120 #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \ 121 if (hash->keyDeleter != NULL && keypointer != NULL) { \ 122 (*hash->keyDeleter)(keypointer); \ 123 } \ 124 if (hash->valueDeleter != NULL && valuepointer != NULL) { \ 125 (*hash->valueDeleter)(valuepointer); \ 126 } 127 128 /* 129 * Constants for hinting whether a key or value is an integer 130 * or a pointer. If a hint bit is zero, then the associated 131 * token is assumed to be an integer. 132 */ 133 #define HINT_KEY_POINTER (1) 134 #define HINT_VALUE_POINTER (2) 135 136 /******************************************************************** 137 * PRIVATE Implementation 138 ********************************************************************/ 139 140 static UHashTok 141 _uhash_setElement(UHashtable *hash, UHashElement* e, 142 int32_t hashcode, 143 UHashTok key, UHashTok value, int8_t hint) { 144 145 UHashTok oldValue = e->value; 146 if (hash->keyDeleter != NULL && e->key.pointer != NULL && 147 e->key.pointer != key.pointer) { /* Avoid double deletion */ 148 (*hash->keyDeleter)(e->key.pointer); 149 } 150 if (hash->valueDeleter != NULL) { 151 if (oldValue.pointer != NULL && 152 oldValue.pointer != value.pointer) { /* Avoid double deletion */ 153 (*hash->valueDeleter)(oldValue.pointer); 154 } 155 oldValue.pointer = NULL; 156 } 157 /* Compilers should copy the UHashTok union correctly, but even if 158 * they do, memory heap tools (e.g. BoundsChecker) can get 159 * confused when a pointer is cloaked in a union and then copied. 160 * TO ALLEVIATE THIS, we use hints (based on what API the user is 161 * calling) to copy pointers when we know the user thinks 162 * something is a pointer. */ 163 if (hint & HINT_KEY_POINTER) { 164 e->key.pointer = key.pointer; 165 } else { 166 e->key = key; 167 } 168 if (hint & HINT_VALUE_POINTER) { 169 e->value.pointer = value.pointer; 170 } else { 171 e->value = value; 172 } 173 e->hashcode = hashcode; 174 return oldValue; 175 } 176 177 /** 178 * Assumes that the given element is not empty or deleted. 179 */ 180 static UHashTok 181 _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) { 182 UHashTok empty; 183 U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode)); 184 --hash->count; 185 empty.pointer = NULL; empty.integer = 0; 186 return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0); 187 } 188 189 static void 190 _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { 191 U_ASSERT(hash != NULL); 192 U_ASSERT(((int32_t)policy) >= 0); 193 U_ASSERT(((int32_t)policy) < 3); 194 hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2]; 195 hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1]; 196 } 197 198 /** 199 * Allocate internal data array of a size determined by the given 200 * prime index. If the index is out of range it is pinned into range. 201 * If the allocation fails the status is set to 202 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In 203 * either case the previous array pointer is overwritten. 204 * 205 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1. 206 */ 207 static void 208 _uhash_allocate(UHashtable *hash, 209 int32_t primeIndex, 210 UErrorCode *status) { 211 212 UHashElement *p, *limit; 213 UHashTok emptytok; 214 215 if (U_FAILURE(*status)) return; 216 217 U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH); 218 219 hash->primeIndex = primeIndex; 220 hash->length = PRIMES[primeIndex]; 221 222 p = hash->elements = (UHashElement*) 223 uprv_malloc(sizeof(UHashElement) * hash->length); 224 225 if (hash->elements == NULL) { 226 *status = U_MEMORY_ALLOCATION_ERROR; 227 return; 228 } 229 230 emptytok.pointer = NULL; /* Only one of these two is needed */ 231 emptytok.integer = 0; /* but we don't know which one. */ 232 233 limit = p + hash->length; 234 while (p < limit) { 235 p->key = emptytok; 236 p->value = emptytok; 237 p->hashcode = HASH_EMPTY; 238 ++p; 239 } 240 241 hash->count = 0; 242 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); 243 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); 244 } 245 246 static UHashtable* 247 _uhash_init(UHashtable *result, 248 UHashFunction *keyHash, 249 UKeyComparator *keyComp, 250 UValueComparator *valueComp, 251 int32_t primeIndex, 252 UErrorCode *status) 253 { 254 if (U_FAILURE(*status)) return NULL; 255 U_ASSERT(keyHash != NULL); 256 U_ASSERT(keyComp != NULL); 257 258 result->keyHasher = keyHash; 259 result->keyComparator = keyComp; 260 result->valueComparator = valueComp; 261 result->keyDeleter = NULL; 262 result->valueDeleter = NULL; 263 result->allocated = FALSE; 264 _uhash_internalSetResizePolicy(result, U_GROW); 265 266 _uhash_allocate(result, primeIndex, status); 267 268 if (U_FAILURE(*status)) { 269 return NULL; 270 } 271 272 return result; 273 } 274 275 static UHashtable* 276 _uhash_create(UHashFunction *keyHash, 277 UKeyComparator *keyComp, 278 UValueComparator *valueComp, 279 int32_t primeIndex, 280 UErrorCode *status) { 281 UHashtable *result; 282 283 if (U_FAILURE(*status)) return NULL; 284 285 result = (UHashtable*) uprv_malloc(sizeof(UHashtable)); 286 if (result == NULL) { 287 *status = U_MEMORY_ALLOCATION_ERROR; 288 return NULL; 289 } 290 291 _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status); 292 result->allocated = TRUE; 293 294 if (U_FAILURE(*status)) { 295 uprv_free(result); 296 return NULL; 297 } 298 299 return result; 300 } 301 302 /** 303 * Look for a key in the table, or if no such key exists, the first 304 * empty slot matching the given hashcode. Keys are compared using 305 * the keyComparator function. 306 * 307 * First find the start position, which is the hashcode modulo 308 * the length. Test it to see if it is: 309 * 310 * a. identical: First check the hash values for a quick check, 311 * then compare keys for equality using keyComparator. 312 * b. deleted 313 * c. empty 314 * 315 * Stop if it is identical or empty, otherwise continue by adding a 316 * "jump" value (moduloing by the length again to keep it within 317 * range) and retesting. For efficiency, there need enough empty 318 * values so that the searchs stop within a reasonable amount of time. 319 * This can be changed by changing the high/low water marks. 320 * 321 * In theory, this function can return NULL, if it is full (no empty 322 * or deleted slots) and if no matching key is found. In practice, we 323 * prevent this elsewhere (in uhash_put) by making sure the last slot 324 * in the table is never filled. 325 * 326 * The size of the table should be prime for this algorithm to work; 327 * otherwise we are not guaranteed that the jump value (the secondary 328 * hash) is relatively prime to the table length. 329 */ 330 static UHashElement* 331 _uhash_find(const UHashtable *hash, UHashTok key, 332 int32_t hashcode) { 333 334 int32_t firstDeleted = -1; /* assume invalid index */ 335 int32_t theIndex, startIndex; 336 int32_t jump = 0; /* lazy evaluate */ 337 int32_t tableHash; 338 UHashElement *elements = hash->elements; 339 340 hashcode &= 0x7FFFFFFF; /* must be positive */ 341 startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length; 342 343 do { 344 tableHash = elements[theIndex].hashcode; 345 if (tableHash == hashcode) { /* quick check */ 346 if ((*hash->keyComparator)(key, elements[theIndex].key)) { 347 return &(elements[theIndex]); 348 } 349 } else if (!IS_EMPTY_OR_DELETED(tableHash)) { 350 /* We have hit a slot which contains a key-value pair, 351 * but for which the hash code does not match. Keep 352 * looking. 353 */ 354 } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */ 355 break; 356 } else if (firstDeleted < 0) { /* remember first deleted */ 357 firstDeleted = theIndex; 358 } 359 if (jump == 0) { /* lazy compute jump */ 360 /* The jump value must be relatively prime to the table 361 * length. As long as the length is prime, then any value 362 * 1..length-1 will be relatively prime to it. 363 */ 364 jump = (hashcode % (hash->length - 1)) + 1; 365 } 366 theIndex = (theIndex + jump) % hash->length; 367 } while (theIndex != startIndex); 368 369 if (firstDeleted >= 0) { 370 theIndex = firstDeleted; /* reset if had deleted slot */ 371 } else if (tableHash != HASH_EMPTY) { 372 /* We get to this point if the hashtable is full (no empty or 373 * deleted slots), and we've failed to find a match. THIS 374 * WILL NEVER HAPPEN as long as uhash_put() makes sure that 375 * count is always < length. 376 */ 377 U_ASSERT(FALSE); 378 return NULL; /* Never happens if uhash_put() behaves */ 379 } 380 return &(elements[theIndex]); 381 } 382 383 /** 384 * Attempt to grow or shrink the data arrays in order to make the 385 * count fit between the high and low water marks. hash_put() and 386 * hash_remove() call this method when the count exceeds the high or 387 * low water marks. This method may do nothing, if memory allocation 388 * fails, or if the count is already in range, or if the length is 389 * already at the low or high limit. In any case, upon return the 390 * arrays will be valid. 391 */ 392 static void 393 _uhash_rehash(UHashtable *hash, UErrorCode *status) { 394 395 UHashElement *old = hash->elements; 396 int32_t oldLength = hash->length; 397 int32_t newPrimeIndex = hash->primeIndex; 398 int32_t i; 399 400 if (hash->count > hash->highWaterMark) { 401 if (++newPrimeIndex >= PRIMES_LENGTH) { 402 return; 403 } 404 } else if (hash->count < hash->lowWaterMark) { 405 if (--newPrimeIndex < 0) { 406 return; 407 } 408 } else { 409 return; 410 } 411 412 _uhash_allocate(hash, newPrimeIndex, status); 413 414 if (U_FAILURE(*status)) { 415 hash->elements = old; 416 hash->length = oldLength; 417 return; 418 } 419 420 for (i = oldLength - 1; i >= 0; --i) { 421 if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) { 422 UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode); 423 U_ASSERT(e != NULL); 424 U_ASSERT(e->hashcode == HASH_EMPTY); 425 e->key = old[i].key; 426 e->value = old[i].value; 427 e->hashcode = old[i].hashcode; 428 ++hash->count; 429 } 430 } 431 432 uprv_free(old); 433 } 434 435 static UHashTok 436 _uhash_remove(UHashtable *hash, 437 UHashTok key) { 438 /* First find the position of the key in the table. If the object 439 * has not been removed already, remove it. If the user wanted 440 * keys deleted, then delete it also. We have to put a special 441 * hashcode in that position that means that something has been 442 * deleted, since when we do a find, we have to continue PAST any 443 * deleted values. 444 */ 445 UHashTok result; 446 UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key)); 447 U_ASSERT(e != NULL); 448 result.pointer = NULL; 449 result.integer = 0; 450 if (!IS_EMPTY_OR_DELETED(e->hashcode)) { 451 result = _uhash_internalRemoveElement(hash, e); 452 if (hash->count < hash->lowWaterMark) { 453 UErrorCode status = U_ZERO_ERROR; 454 _uhash_rehash(hash, &status); 455 } 456 } 457 return result; 458 } 459 460 static UHashTok 461 _uhash_put(UHashtable *hash, 462 UHashTok key, 463 UHashTok value, 464 int8_t hint, 465 UErrorCode *status) { 466 467 /* Put finds the position in the table for the new value. If the 468 * key is already in the table, it is deleted, if there is a 469 * non-NULL keyDeleter. Then the key, the hash and the value are 470 * all put at the position in their respective arrays. 471 */ 472 int32_t hashcode; 473 UHashElement* e; 474 UHashTok emptytok; 475 476 if (U_FAILURE(*status)) { 477 goto err; 478 } 479 U_ASSERT(hash != NULL); 480 /* Cannot always check pointer here or iSeries sees NULL every time. */ 481 if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) { 482 /* Disallow storage of NULL values, since NULL is returned by 483 * get() to indicate an absent key. Storing NULL == removing. 484 */ 485 return _uhash_remove(hash, key); 486 } 487 if (hash->count > hash->highWaterMark) { 488 _uhash_rehash(hash, status); 489 if (U_FAILURE(*status)) { 490 goto err; 491 } 492 } 493 494 hashcode = (*hash->keyHasher)(key); 495 e = _uhash_find(hash, key, hashcode); 496 U_ASSERT(e != NULL); 497 498 if (IS_EMPTY_OR_DELETED(e->hashcode)) { 499 /* Important: We must never actually fill the table up. If we 500 * do so, then _uhash_find() will return NULL, and we'll have 501 * to check for NULL after every call to _uhash_find(). To 502 * avoid this we make sure there is always at least one empty 503 * or deleted slot in the table. This only is a problem if we 504 * are out of memory and rehash isn't working. 505 */ 506 ++hash->count; 507 if (hash->count == hash->length) { 508 /* Don't allow count to reach length */ 509 --hash->count; 510 *status = U_MEMORY_ALLOCATION_ERROR; 511 goto err; 512 } 513 } 514 515 /* We must in all cases handle storage properly. If there was an 516 * old key, then it must be deleted (if the deleter != NULL). 517 * Make hashcodes stored in table positive. 518 */ 519 return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint); 520 521 err: 522 /* If the deleters are non-NULL, this method adopts its key and/or 523 * value arguments, and we must be sure to delete the key and/or 524 * value in all cases, even upon failure. 525 */ 526 HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer); 527 emptytok.pointer = NULL; emptytok.integer = 0; 528 return emptytok; 529 } 530 531 532 /******************************************************************** 533 * PUBLIC API 534 ********************************************************************/ 535 536 U_CAPI UHashtable* U_EXPORT2 537 uhash_open(UHashFunction *keyHash, 538 UKeyComparator *keyComp, 539 UValueComparator *valueComp, 540 UErrorCode *status) { 541 542 return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); 543 } 544 545 U_CAPI UHashtable* U_EXPORT2 546 uhash_openSize(UHashFunction *keyHash, 547 UKeyComparator *keyComp, 548 UValueComparator *valueComp, 549 int32_t size, 550 UErrorCode *status) { 551 552 /* Find the smallest index i for which PRIMES[i] >= size. */ 553 int32_t i = 0; 554 while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { 555 ++i; 556 } 557 558 return _uhash_create(keyHash, keyComp, valueComp, i, status); 559 } 560 561 U_CAPI UHashtable* U_EXPORT2 562 uhash_init(UHashtable *fillinResult, 563 UHashFunction *keyHash, 564 UKeyComparator *keyComp, 565 UValueComparator *valueComp, 566 UErrorCode *status) { 567 568 return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); 569 } 570 571 U_CAPI void U_EXPORT2 572 uhash_close(UHashtable *hash) { 573 if (hash == NULL) { 574 return; 575 } 576 if (hash->elements != NULL) { 577 if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) { 578 int32_t pos=-1; 579 UHashElement *e; 580 while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) { 581 HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer); 582 } 583 } 584 uprv_free(hash->elements); 585 hash->elements = NULL; 586 } 587 if (hash->allocated) { 588 uprv_free(hash); 589 } 590 } 591 592 U_CAPI UHashFunction *U_EXPORT2 593 uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) { 594 UHashFunction *result = hash->keyHasher; 595 hash->keyHasher = fn; 596 return result; 597 } 598 599 U_CAPI UKeyComparator *U_EXPORT2 600 uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) { 601 UKeyComparator *result = hash->keyComparator; 602 hash->keyComparator = fn; 603 return result; 604 } 605 U_CAPI UValueComparator *U_EXPORT2 606 uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){ 607 UValueComparator *result = hash->valueComparator; 608 hash->valueComparator = fn; 609 return result; 610 } 611 612 U_CAPI UObjectDeleter *U_EXPORT2 613 uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) { 614 UObjectDeleter *result = hash->keyDeleter; 615 hash->keyDeleter = fn; 616 return result; 617 } 618 619 U_CAPI UObjectDeleter *U_EXPORT2 620 uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) { 621 UObjectDeleter *result = hash->valueDeleter; 622 hash->valueDeleter = fn; 623 return result; 624 } 625 626 U_CAPI void U_EXPORT2 627 uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { 628 UErrorCode status = U_ZERO_ERROR; 629 _uhash_internalSetResizePolicy(hash, policy); 630 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); 631 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); 632 _uhash_rehash(hash, &status); 633 } 634 635 U_CAPI int32_t U_EXPORT2 636 uhash_count(const UHashtable *hash) { 637 return hash->count; 638 } 639 640 U_CAPI void* U_EXPORT2 641 uhash_get(const UHashtable *hash, 642 const void* key) { 643 UHashTok keyholder; 644 keyholder.pointer = (void*) key; 645 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; 646 } 647 648 U_CAPI void* U_EXPORT2 649 uhash_iget(const UHashtable *hash, 650 int32_t key) { 651 UHashTok keyholder; 652 keyholder.integer = key; 653 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; 654 } 655 656 U_CAPI int32_t U_EXPORT2 657 uhash_geti(const UHashtable *hash, 658 const void* key) { 659 UHashTok keyholder; 660 keyholder.pointer = (void*) key; 661 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; 662 } 663 664 U_CAPI int32_t U_EXPORT2 665 uhash_igeti(const UHashtable *hash, 666 int32_t key) { 667 UHashTok keyholder; 668 keyholder.integer = key; 669 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; 670 } 671 672 U_CAPI void* U_EXPORT2 673 uhash_put(UHashtable *hash, 674 void* key, 675 void* value, 676 UErrorCode *status) { 677 UHashTok keyholder, valueholder; 678 keyholder.pointer = key; 679 valueholder.pointer = value; 680 return _uhash_put(hash, keyholder, valueholder, 681 HINT_KEY_POINTER | HINT_VALUE_POINTER, 682 status).pointer; 683 } 684 685 U_CAPI void* U_EXPORT2 686 uhash_iput(UHashtable *hash, 687 int32_t key, 688 void* value, 689 UErrorCode *status) { 690 UHashTok keyholder, valueholder; 691 keyholder.integer = key; 692 valueholder.pointer = value; 693 return _uhash_put(hash, keyholder, valueholder, 694 HINT_VALUE_POINTER, 695 status).pointer; 696 } 697 698 U_CAPI int32_t U_EXPORT2 699 uhash_puti(UHashtable *hash, 700 void* key, 701 int32_t value, 702 UErrorCode *status) { 703 UHashTok keyholder, valueholder; 704 keyholder.pointer = key; 705 valueholder.integer = value; 706 return _uhash_put(hash, keyholder, valueholder, 707 HINT_KEY_POINTER, 708 status).integer; 709 } 710 711 712 U_CAPI int32_t U_EXPORT2 713 uhash_iputi(UHashtable *hash, 714 int32_t key, 715 int32_t value, 716 UErrorCode *status) { 717 UHashTok keyholder, valueholder; 718 keyholder.integer = key; 719 valueholder.integer = value; 720 return _uhash_put(hash, keyholder, valueholder, 721 0, /* neither is a ptr */ 722 status).integer; 723 } 724 725 U_CAPI void* U_EXPORT2 726 uhash_remove(UHashtable *hash, 727 const void* key) { 728 UHashTok keyholder; 729 keyholder.pointer = (void*) key; 730 return _uhash_remove(hash, keyholder).pointer; 731 } 732 733 U_CAPI void* U_EXPORT2 734 uhash_iremove(UHashtable *hash, 735 int32_t key) { 736 UHashTok keyholder; 737 keyholder.integer = key; 738 return _uhash_remove(hash, keyholder).pointer; 739 } 740 741 U_CAPI int32_t U_EXPORT2 742 uhash_removei(UHashtable *hash, 743 const void* key) { 744 UHashTok keyholder; 745 keyholder.pointer = (void*) key; 746 return _uhash_remove(hash, keyholder).integer; 747 } 748 749 U_CAPI int32_t U_EXPORT2 750 uhash_iremovei(UHashtable *hash, 751 int32_t key) { 752 UHashTok keyholder; 753 keyholder.integer = key; 754 return _uhash_remove(hash, keyholder).integer; 755 } 756 757 U_CAPI void U_EXPORT2 758 uhash_removeAll(UHashtable *hash) { 759 int32_t pos = -1; 760 const UHashElement *e; 761 U_ASSERT(hash != NULL); 762 if (hash->count != 0) { 763 while ((e = uhash_nextElement(hash, &pos)) != NULL) { 764 uhash_removeElement(hash, e); 765 } 766 } 767 U_ASSERT(hash->count == 0); 768 } 769 770 U_CAPI const UHashElement* U_EXPORT2 771 uhash_find(const UHashtable *hash, const void* key) { 772 UHashTok keyholder; 773 const UHashElement *e; 774 keyholder.pointer = (void*) key; 775 e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); 776 return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e; 777 } 778 779 U_CAPI const UHashElement* U_EXPORT2 780 uhash_nextElement(const UHashtable *hash, int32_t *pos) { 781 /* Walk through the array until we find an element that is not 782 * EMPTY and not DELETED. 783 */ 784 int32_t i; 785 U_ASSERT(hash != NULL); 786 for (i = *pos + 1; i < hash->length; ++i) { 787 if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) { 788 *pos = i; 789 return &(hash->elements[i]); 790 } 791 } 792 793 /* No more elements */ 794 return NULL; 795 } 796 797 U_CAPI void* U_EXPORT2 798 uhash_removeElement(UHashtable *hash, const UHashElement* e) { 799 U_ASSERT(hash != NULL); 800 U_ASSERT(e != NULL); 801 if (!IS_EMPTY_OR_DELETED(e->hashcode)) { 802 UHashElement *nce = (UHashElement *)e; 803 return _uhash_internalRemoveElement(hash, nce).pointer; 804 } 805 return NULL; 806 } 807 808 /******************************************************************** 809 * UHashTok convenience 810 ********************************************************************/ 811 812 /** 813 * Return a UHashTok for an integer. 814 */ 815 /*U_CAPI UHashTok U_EXPORT2 816 uhash_toki(int32_t i) { 817 UHashTok tok; 818 tok.integer = i; 819 return tok; 820 }*/ 821 822 /** 823 * Return a UHashTok for a pointer. 824 */ 825 /*U_CAPI UHashTok U_EXPORT2 826 uhash_tokp(void* p) { 827 UHashTok tok; 828 tok.pointer = p; 829 return tok; 830 }*/ 831 832 /******************************************************************** 833 * PUBLIC Key Hash Functions 834 ********************************************************************/ 835 836 U_CAPI int32_t U_EXPORT2 837 uhash_hashUChars(const UHashTok key) { 838 const UChar *s = (const UChar *)key.pointer; 839 return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s)); 840 } 841 842 U_CAPI int32_t U_EXPORT2 843 uhash_hashChars(const UHashTok key) { 844 const char *s = (const char *)key.pointer; 845 return s == NULL ? 0 : ustr_hashCharsN(s, uprv_strlen(s)); 846 } 847 848 U_CAPI int32_t U_EXPORT2 849 uhash_hashIChars(const UHashTok key) { 850 const char *s = (const char *)key.pointer; 851 return s == NULL ? 0 : ustr_hashICharsN(s, uprv_strlen(s)); 852 } 853 854 U_CAPI UBool U_EXPORT2 855 uhash_equals(const UHashtable* hash1, const UHashtable* hash2){ 856 int32_t count1, count2, pos, i; 857 858 if(hash1==hash2){ 859 return TRUE; 860 } 861 862 /* 863 * Make sure that we are comparing 2 valid hashes of the same type 864 * with valid comparison functions. 865 * Without valid comparison functions, a binary comparison 866 * of the hash values will yield random results on machines 867 * with 64-bit pointers and 32-bit integer hashes. 868 * A valueComparator is normally optional. 869 */ 870 if (hash1==NULL || hash2==NULL || 871 hash1->keyComparator != hash2->keyComparator || 872 hash1->valueComparator != hash2->valueComparator || 873 hash1->valueComparator == NULL) 874 { 875 /* 876 Normally we would return an error here about incompatible hash tables, 877 but we return FALSE instead. 878 */ 879 return FALSE; 880 } 881 882 count1 = uhash_count(hash1); 883 count2 = uhash_count(hash2); 884 if(count1!=count2){ 885 return FALSE; 886 } 887 888 pos=-1; 889 for(i=0; i<count1; i++){ 890 const UHashElement* elem1 = uhash_nextElement(hash1, &pos); 891 const UHashTok key1 = elem1->key; 892 const UHashTok val1 = elem1->value; 893 /* here the keys are not compared, instead the key form hash1 is used to fetch 894 * value from hash2. If the hashes are equal then then both hashes should 895 * contain equal values for the same key! 896 */ 897 const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1)); 898 const UHashTok val2 = elem2->value; 899 if(hash1->valueComparator(val1, val2)==FALSE){ 900 return FALSE; 901 } 902 } 903 return TRUE; 904 } 905 906 /******************************************************************** 907 * PUBLIC Comparator Functions 908 ********************************************************************/ 909 910 U_CAPI UBool U_EXPORT2 911 uhash_compareUChars(const UHashTok key1, const UHashTok key2) { 912 const UChar *p1 = (const UChar*) key1.pointer; 913 const UChar *p2 = (const UChar*) key2.pointer; 914 if (p1 == p2) { 915 return TRUE; 916 } 917 if (p1 == NULL || p2 == NULL) { 918 return FALSE; 919 } 920 while (*p1 != 0 && *p1 == *p2) { 921 ++p1; 922 ++p2; 923 } 924 return (UBool)(*p1 == *p2); 925 } 926 927 U_CAPI UBool U_EXPORT2 928 uhash_compareChars(const UHashTok key1, const UHashTok key2) { 929 const char *p1 = (const char*) key1.pointer; 930 const char *p2 = (const char*) key2.pointer; 931 if (p1 == p2) { 932 return TRUE; 933 } 934 if (p1 == NULL || p2 == NULL) { 935 return FALSE; 936 } 937 while (*p1 != 0 && *p1 == *p2) { 938 ++p1; 939 ++p2; 940 } 941 return (UBool)(*p1 == *p2); 942 } 943 944 U_CAPI UBool U_EXPORT2 945 uhash_compareIChars(const UHashTok key1, const UHashTok key2) { 946 const char *p1 = (const char*) key1.pointer; 947 const char *p2 = (const char*) key2.pointer; 948 if (p1 == p2) { 949 return TRUE; 950 } 951 if (p1 == NULL || p2 == NULL) { 952 return FALSE; 953 } 954 while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) { 955 ++p1; 956 ++p2; 957 } 958 return (UBool)(*p1 == *p2); 959 } 960 961 /******************************************************************** 962 * PUBLIC int32_t Support Functions 963 ********************************************************************/ 964 965 U_CAPI int32_t U_EXPORT2 966 uhash_hashLong(const UHashTok key) { 967 return key.integer; 968 } 969 970 U_CAPI UBool U_EXPORT2 971 uhash_compareLong(const UHashTok key1, const UHashTok key2) { 972 return (UBool)(key1.integer == key2.integer); 973 } 974