Home | History | Annotate | Download | only in simd
      1 ;
      2 ; jiss2fst.asm - fast integer IDCT (SSE2)
      3 ;
      4 ; Copyright 2009 Pierre Ossman <ossman (a] cendio.se> for Cendio AB
      5 ;
      6 ; Based on
      7 ; x86 SIMD extension for IJG JPEG library
      8 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
      9 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
     10 ;
     11 ; This file should be assembled with NASM (Netwide Assembler),
     12 ; can *not* be assembled with Microsoft's MASM or any compatible
     13 ; assembler (including Borland's Turbo Assembler).
     14 ; NASM is available from http://nasm.sourceforge.net/ or
     15 ; http://sourceforge.net/project/showfiles.php?group_id=6208
     16 ;
     17 ; This file contains a fast, not so accurate integer implementation of
     18 ; the inverse DCT (Discrete Cosine Transform). The following code is
     19 ; based directly on the IJG's original jidctfst.c; see the jidctfst.c
     20 ; for more details.
     21 ;
     22 ; [TAB8]
     23 
     24 %include "jsimdext.inc"
     25 %include "jdct.inc"
     26 
     27 ; --------------------------------------------------------------------------
     28 
     29 %define CONST_BITS	8	; 14 is also OK.
     30 %define PASS1_BITS	2
     31 
     32 %if IFAST_SCALE_BITS != PASS1_BITS
     33 %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'."
     34 %endif
     35 
     36 %if CONST_BITS == 8
     37 F_1_082	equ	277		; FIX(1.082392200)
     38 F_1_414	equ	362		; FIX(1.414213562)
     39 F_1_847	equ	473		; FIX(1.847759065)
     40 F_2_613	equ	669		; FIX(2.613125930)
     41 F_1_613	equ	(F_2_613 - 256)	; FIX(2.613125930) - FIX(1)
     42 %else
     43 ; NASM cannot do compile-time arithmetic on floating-point constants.
     44 %define	DESCALE(x,n)  (((x)+(1<<((n)-1)))>>(n))
     45 F_1_082	equ	DESCALE(1162209775,30-CONST_BITS)	; FIX(1.082392200)
     46 F_1_414	equ	DESCALE(1518500249,30-CONST_BITS)	; FIX(1.414213562)
     47 F_1_847	equ	DESCALE(1984016188,30-CONST_BITS)	; FIX(1.847759065)
     48 F_2_613	equ	DESCALE(2805822602,30-CONST_BITS)	; FIX(2.613125930)
     49 F_1_613	equ	(F_2_613 - (1 << CONST_BITS))	; FIX(2.613125930) - FIX(1)
     50 %endif
     51 
     52 ; --------------------------------------------------------------------------
     53 	SECTION	SEG_CONST
     54 
     55 ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
     56 ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
     57 
     58 %define PRE_MULTIPLY_SCALE_BITS   2
     59 %define CONST_SHIFT     (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
     60 
     61 	alignz	16
     62 	global	EXTN(jconst_idct_ifast_sse2) PRIVATE
     63 
     64 EXTN(jconst_idct_ifast_sse2):
     65 
     66 PW_F1414	times 8 dw  F_1_414 << CONST_SHIFT
     67 PW_F1847	times 8 dw  F_1_847 << CONST_SHIFT
     68 PW_MF1613	times 8 dw -F_1_613 << CONST_SHIFT
     69 PW_F1082	times 8 dw  F_1_082 << CONST_SHIFT
     70 PB_CENTERJSAMP	times 16 db CENTERJSAMPLE
     71 
     72 	alignz	16
     73 
     74 ; --------------------------------------------------------------------------
     75 	SECTION	SEG_TEXT
     76 	BITS	32
     77 ;
     78 ; Perform dequantization and inverse DCT on one block of coefficients.
     79 ;
     80 ; GLOBAL(void)
     81 ; jsimd_idct_ifast_sse2 (void * dct_table, JCOEFPTR coef_block,
     82 ;                       JSAMPARRAY output_buf, JDIMENSION output_col)
     83 ;
     84 
     85 %define dct_table(b)	(b)+8			; jpeg_component_info * compptr
     86 %define coef_block(b)	(b)+12		; JCOEFPTR coef_block
     87 %define output_buf(b)	(b)+16		; JSAMPARRAY output_buf
     88 %define output_col(b)	(b)+20		; JDIMENSION output_col
     89 
     90 %define original_ebp	ebp+0
     91 %define wk(i)		ebp-(WK_NUM-(i))*SIZEOF_XMMWORD	; xmmword wk[WK_NUM]
     92 %define WK_NUM		2
     93 
     94 	align	16
     95 	global	EXTN(jsimd_idct_ifast_sse2) PRIVATE
     96 
     97 EXTN(jsimd_idct_ifast_sse2):
     98 	push	ebp
     99 	mov	eax,esp				; eax = original ebp
    100 	sub	esp, byte 4
    101 	and	esp, byte (-SIZEOF_XMMWORD)	; align to 128 bits
    102 	mov	[esp],eax
    103 	mov	ebp,esp				; ebp = aligned ebp
    104 	lea	esp, [wk(0)]
    105 	pushpic	ebx
    106 ;	push	ecx		; unused
    107 ;	push	edx		; need not be preserved
    108 	push	esi
    109 	push	edi
    110 
    111 	get_GOT	ebx		; get GOT address
    112 
    113 	; ---- Pass 1: process columns from input.
    114 
    115 ;	mov	eax, [original_ebp]
    116 	mov	edx, POINTER [dct_table(eax)]	; quantptr
    117 	mov	esi, JCOEFPTR [coef_block(eax)]		; inptr
    118 
    119 %ifndef NO_ZERO_COLUMN_TEST_IFAST_SSE2
    120 	mov	eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)]
    121 	or	eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)]
    122 	jnz	near .columnDCT
    123 
    124 	movdqa	xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)]
    125 	movdqa	xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)]
    126 	por	xmm0, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)]
    127 	por	xmm1, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)]
    128 	por	xmm0, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)]
    129 	por	xmm1, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)]
    130 	por	xmm0, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)]
    131 	por	xmm1,xmm0
    132 	packsswb xmm1,xmm1
    133 	packsswb xmm1,xmm1
    134 	movd	eax,xmm1
    135 	test	eax,eax
    136 	jnz	short .columnDCT
    137 
    138 	; -- AC terms all zero
    139 
    140 	movdqa	xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)]
    141 	pmullw	xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)]
    142 
    143 	movdqa    xmm7,xmm0		; xmm0=in0=(00 01 02 03 04 05 06 07)
    144 	punpcklwd xmm0,xmm0		; xmm0=(00 00 01 01 02 02 03 03)
    145 	punpckhwd xmm7,xmm7		; xmm7=(04 04 05 05 06 06 07 07)
    146 
    147 	pshufd	xmm6,xmm0,0x00		; xmm6=col0=(00 00 00 00 00 00 00 00)
    148 	pshufd	xmm2,xmm0,0x55		; xmm2=col1=(01 01 01 01 01 01 01 01)
    149 	pshufd	xmm5,xmm0,0xAA		; xmm5=col2=(02 02 02 02 02 02 02 02)
    150 	pshufd	xmm0,xmm0,0xFF		; xmm0=col3=(03 03 03 03 03 03 03 03)
    151 	pshufd	xmm1,xmm7,0x00		; xmm1=col4=(04 04 04 04 04 04 04 04)
    152 	pshufd	xmm4,xmm7,0x55		; xmm4=col5=(05 05 05 05 05 05 05 05)
    153 	pshufd	xmm3,xmm7,0xAA		; xmm3=col6=(06 06 06 06 06 06 06 06)
    154 	pshufd	xmm7,xmm7,0xFF		; xmm7=col7=(07 07 07 07 07 07 07 07)
    155 
    156 	movdqa	XMMWORD [wk(0)], xmm2	; wk(0)=col1
    157 	movdqa	XMMWORD [wk(1)], xmm0	; wk(1)=col3
    158 	jmp	near .column_end
    159 	alignx	16,7
    160 %endif
    161 .columnDCT:
    162 
    163 	; -- Even part
    164 
    165 	movdqa	xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)]
    166 	movdqa	xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)]
    167 	pmullw	xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    168 	pmullw	xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    169 	movdqa	xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)]
    170 	movdqa	xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)]
    171 	pmullw	xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    172 	pmullw	xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    173 
    174 	movdqa	xmm4,xmm0
    175 	movdqa	xmm5,xmm1
    176 	psubw	xmm0,xmm2		; xmm0=tmp11
    177 	psubw	xmm1,xmm3
    178 	paddw	xmm4,xmm2		; xmm4=tmp10
    179 	paddw	xmm5,xmm3		; xmm5=tmp13
    180 
    181 	psllw	xmm1,PRE_MULTIPLY_SCALE_BITS
    182 	pmulhw	xmm1,[GOTOFF(ebx,PW_F1414)]
    183 	psubw	xmm1,xmm5		; xmm1=tmp12
    184 
    185 	movdqa	xmm6,xmm4
    186 	movdqa	xmm7,xmm0
    187 	psubw	xmm4,xmm5		; xmm4=tmp3
    188 	psubw	xmm0,xmm1		; xmm0=tmp2
    189 	paddw	xmm6,xmm5		; xmm6=tmp0
    190 	paddw	xmm7,xmm1		; xmm7=tmp1
    191 
    192 	movdqa	XMMWORD [wk(1)], xmm4	; wk(1)=tmp3
    193 	movdqa	XMMWORD [wk(0)], xmm0	; wk(0)=tmp2
    194 
    195 	; -- Odd part
    196 
    197 	movdqa	xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)]
    198 	movdqa	xmm3, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)]
    199 	pmullw	xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    200 	pmullw	xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    201 	movdqa	xmm5, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)]
    202 	movdqa	xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)]
    203 	pmullw	xmm5, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    204 	pmullw	xmm1, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    205 
    206 	movdqa	xmm4,xmm2
    207 	movdqa	xmm0,xmm5
    208 	psubw	xmm2,xmm1		; xmm2=z12
    209 	psubw	xmm5,xmm3		; xmm5=z10
    210 	paddw	xmm4,xmm1		; xmm4=z11
    211 	paddw	xmm0,xmm3		; xmm0=z13
    212 
    213 	movdqa	xmm1,xmm5		; xmm1=z10(unscaled)
    214 	psllw	xmm2,PRE_MULTIPLY_SCALE_BITS
    215 	psllw	xmm5,PRE_MULTIPLY_SCALE_BITS
    216 
    217 	movdqa	xmm3,xmm4
    218 	psubw	xmm4,xmm0
    219 	paddw	xmm3,xmm0		; xmm3=tmp7
    220 
    221 	psllw	xmm4,PRE_MULTIPLY_SCALE_BITS
    222 	pmulhw	xmm4,[GOTOFF(ebx,PW_F1414)]	; xmm4=tmp11
    223 
    224 	; To avoid overflow...
    225 	;
    226 	; (Original)
    227 	; tmp12 = -2.613125930 * z10 + z5;
    228 	;
    229 	; (This implementation)
    230 	; tmp12 = (-1.613125930 - 1) * z10 + z5;
    231 	;       = -1.613125930 * z10 - z10 + z5;
    232 
    233 	movdqa	xmm0,xmm5
    234 	paddw	xmm5,xmm2
    235 	pmulhw	xmm5,[GOTOFF(ebx,PW_F1847)]	; xmm5=z5
    236 	pmulhw	xmm0,[GOTOFF(ebx,PW_MF1613)]
    237 	pmulhw	xmm2,[GOTOFF(ebx,PW_F1082)]
    238 	psubw	xmm0,xmm1
    239 	psubw	xmm2,xmm5		; xmm2=tmp10
    240 	paddw	xmm0,xmm5		; xmm0=tmp12
    241 
    242 	; -- Final output stage
    243 
    244 	psubw	xmm0,xmm3		; xmm0=tmp6
    245 	movdqa	xmm1,xmm6
    246 	movdqa	xmm5,xmm7
    247 	paddw	xmm6,xmm3		; xmm6=data0=(00 01 02 03 04 05 06 07)
    248 	paddw	xmm7,xmm0		; xmm7=data1=(10 11 12 13 14 15 16 17)
    249 	psubw	xmm1,xmm3		; xmm1=data7=(70 71 72 73 74 75 76 77)
    250 	psubw	xmm5,xmm0		; xmm5=data6=(60 61 62 63 64 65 66 67)
    251 	psubw	xmm4,xmm0		; xmm4=tmp5
    252 
    253 	movdqa    xmm3,xmm6		; transpose coefficients(phase 1)
    254 	punpcklwd xmm6,xmm7		; xmm6=(00 10 01 11 02 12 03 13)
    255 	punpckhwd xmm3,xmm7		; xmm3=(04 14 05 15 06 16 07 17)
    256 	movdqa    xmm0,xmm5		; transpose coefficients(phase 1)
    257 	punpcklwd xmm5,xmm1		; xmm5=(60 70 61 71 62 72 63 73)
    258 	punpckhwd xmm0,xmm1		; xmm0=(64 74 65 75 66 76 67 77)
    259 
    260 	movdqa	xmm7, XMMWORD [wk(0)]	; xmm7=tmp2
    261 	movdqa	xmm1, XMMWORD [wk(1)]	; xmm1=tmp3
    262 
    263 	movdqa	XMMWORD [wk(0)], xmm5	; wk(0)=(60 70 61 71 62 72 63 73)
    264 	movdqa	XMMWORD [wk(1)], xmm0	; wk(1)=(64 74 65 75 66 76 67 77)
    265 
    266 	paddw	xmm2,xmm4		; xmm2=tmp4
    267 	movdqa	xmm5,xmm7
    268 	movdqa	xmm0,xmm1
    269 	paddw	xmm7,xmm4		; xmm7=data2=(20 21 22 23 24 25 26 27)
    270 	paddw	xmm1,xmm2		; xmm1=data4=(40 41 42 43 44 45 46 47)
    271 	psubw	xmm5,xmm4		; xmm5=data5=(50 51 52 53 54 55 56 57)
    272 	psubw	xmm0,xmm2		; xmm0=data3=(30 31 32 33 34 35 36 37)
    273 
    274 	movdqa    xmm4,xmm7		; transpose coefficients(phase 1)
    275 	punpcklwd xmm7,xmm0		; xmm7=(20 30 21 31 22 32 23 33)
    276 	punpckhwd xmm4,xmm0		; xmm4=(24 34 25 35 26 36 27 37)
    277 	movdqa    xmm2,xmm1		; transpose coefficients(phase 1)
    278 	punpcklwd xmm1,xmm5		; xmm1=(40 50 41 51 42 52 43 53)
    279 	punpckhwd xmm2,xmm5		; xmm2=(44 54 45 55 46 56 47 57)
    280 
    281 	movdqa    xmm0,xmm3		; transpose coefficients(phase 2)
    282 	punpckldq xmm3,xmm4		; xmm3=(04 14 24 34 05 15 25 35)
    283 	punpckhdq xmm0,xmm4		; xmm0=(06 16 26 36 07 17 27 37)
    284 	movdqa    xmm5,xmm6		; transpose coefficients(phase 2)
    285 	punpckldq xmm6,xmm7		; xmm6=(00 10 20 30 01 11 21 31)
    286 	punpckhdq xmm5,xmm7		; xmm5=(02 12 22 32 03 13 23 33)
    287 
    288 	movdqa	xmm4, XMMWORD [wk(0)]	; xmm4=(60 70 61 71 62 72 63 73)
    289 	movdqa	xmm7, XMMWORD [wk(1)]	; xmm7=(64 74 65 75 66 76 67 77)
    290 
    291 	movdqa	XMMWORD [wk(0)], xmm3	; wk(0)=(04 14 24 34 05 15 25 35)
    292 	movdqa	XMMWORD [wk(1)], xmm0	; wk(1)=(06 16 26 36 07 17 27 37)
    293 
    294 	movdqa    xmm3,xmm1		; transpose coefficients(phase 2)
    295 	punpckldq xmm1,xmm4		; xmm1=(40 50 60 70 41 51 61 71)
    296 	punpckhdq xmm3,xmm4		; xmm3=(42 52 62 72 43 53 63 73)
    297 	movdqa    xmm0,xmm2		; transpose coefficients(phase 2)
    298 	punpckldq xmm2,xmm7		; xmm2=(44 54 64 74 45 55 65 75)
    299 	punpckhdq xmm0,xmm7		; xmm0=(46 56 66 76 47 57 67 77)
    300 
    301 	movdqa     xmm4,xmm6		; transpose coefficients(phase 3)
    302 	punpcklqdq xmm6,xmm1		; xmm6=col0=(00 10 20 30 40 50 60 70)
    303 	punpckhqdq xmm4,xmm1		; xmm4=col1=(01 11 21 31 41 51 61 71)
    304 	movdqa     xmm7,xmm5		; transpose coefficients(phase 3)
    305 	punpcklqdq xmm5,xmm3		; xmm5=col2=(02 12 22 32 42 52 62 72)
    306 	punpckhqdq xmm7,xmm3		; xmm7=col3=(03 13 23 33 43 53 63 73)
    307 
    308 	movdqa	xmm1, XMMWORD [wk(0)]	; xmm1=(04 14 24 34 05 15 25 35)
    309 	movdqa	xmm3, XMMWORD [wk(1)]	; xmm3=(06 16 26 36 07 17 27 37)
    310 
    311 	movdqa	XMMWORD [wk(0)], xmm4	; wk(0)=col1
    312 	movdqa	XMMWORD [wk(1)], xmm7	; wk(1)=col3
    313 
    314 	movdqa     xmm4,xmm1		; transpose coefficients(phase 3)
    315 	punpcklqdq xmm1,xmm2		; xmm1=col4=(04 14 24 34 44 54 64 74)
    316 	punpckhqdq xmm4,xmm2		; xmm4=col5=(05 15 25 35 45 55 65 75)
    317 	movdqa     xmm7,xmm3		; transpose coefficients(phase 3)
    318 	punpcklqdq xmm3,xmm0		; xmm3=col6=(06 16 26 36 46 56 66 76)
    319 	punpckhqdq xmm7,xmm0		; xmm7=col7=(07 17 27 37 47 57 67 77)
    320 .column_end:
    321 
    322 	; -- Prefetch the next coefficient block
    323 
    324 	prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 0*32]
    325 	prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 1*32]
    326 	prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 2*32]
    327 	prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 3*32]
    328 
    329 	; ---- Pass 2: process rows from work array, store into output array.
    330 
    331 	mov	eax, [original_ebp]
    332 	mov	edi, JSAMPARRAY [output_buf(eax)]	; (JSAMPROW *)
    333 	mov	eax, JDIMENSION [output_col(eax)]
    334 
    335 	; -- Even part
    336 
    337 	; xmm6=col0, xmm5=col2, xmm1=col4, xmm3=col6
    338 
    339 	movdqa	xmm2,xmm6
    340 	movdqa	xmm0,xmm5
    341 	psubw	xmm6,xmm1		; xmm6=tmp11
    342 	psubw	xmm5,xmm3
    343 	paddw	xmm2,xmm1		; xmm2=tmp10
    344 	paddw	xmm0,xmm3		; xmm0=tmp13
    345 
    346 	psllw	xmm5,PRE_MULTIPLY_SCALE_BITS
    347 	pmulhw	xmm5,[GOTOFF(ebx,PW_F1414)]
    348 	psubw	xmm5,xmm0		; xmm5=tmp12
    349 
    350 	movdqa	xmm1,xmm2
    351 	movdqa	xmm3,xmm6
    352 	psubw	xmm2,xmm0		; xmm2=tmp3
    353 	psubw	xmm6,xmm5		; xmm6=tmp2
    354 	paddw	xmm1,xmm0		; xmm1=tmp0
    355 	paddw	xmm3,xmm5		; xmm3=tmp1
    356 
    357 	movdqa	xmm0, XMMWORD [wk(0)]	; xmm0=col1
    358 	movdqa	xmm5, XMMWORD [wk(1)]	; xmm5=col3
    359 
    360 	movdqa	XMMWORD [wk(0)], xmm2	; wk(0)=tmp3
    361 	movdqa	XMMWORD [wk(1)], xmm6	; wk(1)=tmp2
    362 
    363 	; -- Odd part
    364 
    365 	; xmm0=col1, xmm5=col3, xmm4=col5, xmm7=col7
    366 
    367 	movdqa	xmm2,xmm0
    368 	movdqa	xmm6,xmm4
    369 	psubw	xmm0,xmm7		; xmm0=z12
    370 	psubw	xmm4,xmm5		; xmm4=z10
    371 	paddw	xmm2,xmm7		; xmm2=z11
    372 	paddw	xmm6,xmm5		; xmm6=z13
    373 
    374 	movdqa	xmm7,xmm4		; xmm7=z10(unscaled)
    375 	psllw	xmm0,PRE_MULTIPLY_SCALE_BITS
    376 	psllw	xmm4,PRE_MULTIPLY_SCALE_BITS
    377 
    378 	movdqa	xmm5,xmm2
    379 	psubw	xmm2,xmm6
    380 	paddw	xmm5,xmm6		; xmm5=tmp7
    381 
    382 	psllw	xmm2,PRE_MULTIPLY_SCALE_BITS
    383 	pmulhw	xmm2,[GOTOFF(ebx,PW_F1414)]	; xmm2=tmp11
    384 
    385 	; To avoid overflow...
    386 	;
    387 	; (Original)
    388 	; tmp12 = -2.613125930 * z10 + z5;
    389 	;
    390 	; (This implementation)
    391 	; tmp12 = (-1.613125930 - 1) * z10 + z5;
    392 	;       = -1.613125930 * z10 - z10 + z5;
    393 
    394 	movdqa	xmm6,xmm4
    395 	paddw	xmm4,xmm0
    396 	pmulhw	xmm4,[GOTOFF(ebx,PW_F1847)]	; xmm4=z5
    397 	pmulhw	xmm6,[GOTOFF(ebx,PW_MF1613)]
    398 	pmulhw	xmm0,[GOTOFF(ebx,PW_F1082)]
    399 	psubw	xmm6,xmm7
    400 	psubw	xmm0,xmm4		; xmm0=tmp10
    401 	paddw	xmm6,xmm4		; xmm6=tmp12
    402 
    403 	; -- Final output stage
    404 
    405 	psubw	xmm6,xmm5		; xmm6=tmp6
    406 	movdqa	xmm7,xmm1
    407 	movdqa	xmm4,xmm3
    408 	paddw	xmm1,xmm5		; xmm1=data0=(00 10 20 30 40 50 60 70)
    409 	paddw	xmm3,xmm6		; xmm3=data1=(01 11 21 31 41 51 61 71)
    410 	psraw	xmm1,(PASS1_BITS+3)	; descale
    411 	psraw	xmm3,(PASS1_BITS+3)	; descale
    412 	psubw	xmm7,xmm5		; xmm7=data7=(07 17 27 37 47 57 67 77)
    413 	psubw	xmm4,xmm6		; xmm4=data6=(06 16 26 36 46 56 66 76)
    414 	psraw	xmm7,(PASS1_BITS+3)	; descale
    415 	psraw	xmm4,(PASS1_BITS+3)	; descale
    416 	psubw	xmm2,xmm6		; xmm2=tmp5
    417 
    418 	packsswb  xmm1,xmm4	; xmm1=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76)
    419 	packsswb  xmm3,xmm7	; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77)
    420 
    421 	movdqa	xmm5, XMMWORD [wk(1)]	; xmm5=tmp2
    422 	movdqa	xmm6, XMMWORD [wk(0)]	; xmm6=tmp3
    423 
    424 	paddw	xmm0,xmm2		; xmm0=tmp4
    425 	movdqa	xmm4,xmm5
    426 	movdqa	xmm7,xmm6
    427 	paddw	xmm5,xmm2		; xmm5=data2=(02 12 22 32 42 52 62 72)
    428 	paddw	xmm6,xmm0		; xmm6=data4=(04 14 24 34 44 54 64 74)
    429 	psraw	xmm5,(PASS1_BITS+3)	; descale
    430 	psraw	xmm6,(PASS1_BITS+3)	; descale
    431 	psubw	xmm4,xmm2		; xmm4=data5=(05 15 25 35 45 55 65 75)
    432 	psubw	xmm7,xmm0		; xmm7=data3=(03 13 23 33 43 53 63 73)
    433 	psraw	xmm4,(PASS1_BITS+3)	; descale
    434 	psraw	xmm7,(PASS1_BITS+3)	; descale
    435 
    436 	movdqa    xmm2,[GOTOFF(ebx,PB_CENTERJSAMP)]	; xmm2=[PB_CENTERJSAMP]
    437 
    438 	packsswb  xmm5,xmm6	; xmm5=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74)
    439 	packsswb  xmm7,xmm4	; xmm7=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75)
    440 
    441 	paddb     xmm1,xmm2
    442 	paddb     xmm3,xmm2
    443 	paddb     xmm5,xmm2
    444 	paddb     xmm7,xmm2
    445 
    446 	movdqa    xmm0,xmm1	; transpose coefficients(phase 1)
    447 	punpcklbw xmm1,xmm3	; xmm1=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71)
    448 	punpckhbw xmm0,xmm3	; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77)
    449 	movdqa    xmm6,xmm5	; transpose coefficients(phase 1)
    450 	punpcklbw xmm5,xmm7	; xmm5=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73)
    451 	punpckhbw xmm6,xmm7	; xmm6=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75)
    452 
    453 	movdqa    xmm4,xmm1	; transpose coefficients(phase 2)
    454 	punpcklwd xmm1,xmm5	; xmm1=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33)
    455 	punpckhwd xmm4,xmm5	; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73)
    456 	movdqa    xmm2,xmm6	; transpose coefficients(phase 2)
    457 	punpcklwd xmm6,xmm0	; xmm6=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37)
    458 	punpckhwd xmm2,xmm0	; xmm2=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77)
    459 
    460 	movdqa    xmm3,xmm1	; transpose coefficients(phase 3)
    461 	punpckldq xmm1,xmm6	; xmm1=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17)
    462 	punpckhdq xmm3,xmm6	; xmm3=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37)
    463 	movdqa    xmm7,xmm4	; transpose coefficients(phase 3)
    464 	punpckldq xmm4,xmm2	; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57)
    465 	punpckhdq xmm7,xmm2	; xmm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77)
    466 
    467 	pshufd	xmm5,xmm1,0x4E	; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07)
    468 	pshufd	xmm0,xmm3,0x4E	; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27)
    469 	pshufd	xmm6,xmm4,0x4E	; xmm6=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47)
    470 	pshufd	xmm2,xmm7,0x4E	; xmm2=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67)
    471 
    472 	mov	edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW]
    473 	mov	esi, JSAMPROW [edi+2*SIZEOF_JSAMPROW]
    474 	movq	XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm1
    475 	movq	XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm3
    476 	mov	edx, JSAMPROW [edi+4*SIZEOF_JSAMPROW]
    477 	mov	esi, JSAMPROW [edi+6*SIZEOF_JSAMPROW]
    478 	movq	XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm4
    479 	movq	XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm7
    480 
    481 	mov	edx, JSAMPROW [edi+1*SIZEOF_JSAMPROW]
    482 	mov	esi, JSAMPROW [edi+3*SIZEOF_JSAMPROW]
    483 	movq	XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm5
    484 	movq	XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm0
    485 	mov	edx, JSAMPROW [edi+5*SIZEOF_JSAMPROW]
    486 	mov	esi, JSAMPROW [edi+7*SIZEOF_JSAMPROW]
    487 	movq	XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm6
    488 	movq	XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm2
    489 
    490 	pop	edi
    491 	pop	esi
    492 ;	pop	edx		; need not be preserved
    493 ;	pop	ecx		; unused
    494 	poppic	ebx
    495 	mov	esp,ebp		; esp <- aligned ebp
    496 	pop	esp		; esp <- original ebp
    497 	pop	ebp
    498 	ret
    499 
    500 ; For some reason, the OS X linker does not honor the request to align the
    501 ; segment unless we do this.
    502 	align	16
    503