Home | History | Annotate | Download | only in dsp
      1 // Copyright 2011 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // SSE2 version of speed-critical encoding functions.
     11 //
     12 // Author: Christian Duvivier (cduvivier (at) google.com)
     13 
     14 #include "./dsp.h"
     15 
     16 #if defined(WEBP_USE_SSE2)
     17 #include <stdlib.h>  // for abs()
     18 #include <emmintrin.h>
     19 
     20 #include "../enc/cost.h"
     21 #include "../enc/vp8enci.h"
     22 #include "../utils/utils.h"
     23 
     24 //------------------------------------------------------------------------------
     25 // Quite useful macro for debugging. Left here for convenience.
     26 
     27 #if 0
     28 #include <stdio.h>
     29 static void PrintReg(const __m128i r, const char* const name, int size) {
     30   int n;
     31   union {
     32     __m128i r;
     33     uint8_t i8[16];
     34     uint16_t i16[8];
     35     uint32_t i32[4];
     36     uint64_t i64[2];
     37   } tmp;
     38   tmp.r = r;
     39   printf("%s\t: ", name);
     40   if (size == 8) {
     41     for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]);
     42   } else if (size == 16) {
     43     for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]);
     44   } else if (size == 32) {
     45     for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]);
     46   } else {
     47     for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]);
     48   }
     49   printf("\n");
     50 }
     51 #endif
     52 
     53 //------------------------------------------------------------------------------
     54 // Compute susceptibility based on DCT-coeff histograms:
     55 // the higher, the "easier" the macroblock is to compress.
     56 
     57 static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
     58                              int start_block, int end_block,
     59                              VP8Histogram* const histo) {
     60   const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
     61   int j;
     62   for (j = start_block; j < end_block; ++j) {
     63     int16_t out[16];
     64     int k;
     65 
     66     VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
     67 
     68     // Convert coefficients to bin (within out[]).
     69     {
     70       // Load.
     71       const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
     72       const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
     73       // sign(out) = out >> 15  (0x0000 if positive, 0xffff if negative)
     74       const __m128i sign0 = _mm_srai_epi16(out0, 15);
     75       const __m128i sign1 = _mm_srai_epi16(out1, 15);
     76       // abs(out) = (out ^ sign) - sign
     77       const __m128i xor0 = _mm_xor_si128(out0, sign0);
     78       const __m128i xor1 = _mm_xor_si128(out1, sign1);
     79       const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
     80       const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
     81       // v = abs(out) >> 3
     82       const __m128i v0 = _mm_srai_epi16(abs0, 3);
     83       const __m128i v1 = _mm_srai_epi16(abs1, 3);
     84       // bin = min(v, MAX_COEFF_THRESH)
     85       const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
     86       const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
     87       // Store.
     88       _mm_storeu_si128((__m128i*)&out[0], bin0);
     89       _mm_storeu_si128((__m128i*)&out[8], bin1);
     90     }
     91 
     92     // Convert coefficients to bin.
     93     for (k = 0; k < 16; ++k) {
     94       histo->distribution[out[k]]++;
     95     }
     96   }
     97 }
     98 
     99 //------------------------------------------------------------------------------
    100 // Transforms (Paragraph 14.4)
    101 
    102 // Does one or two inverse transforms.
    103 static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst,
    104                        int do_two) {
    105   // This implementation makes use of 16-bit fixed point versions of two
    106   // multiply constants:
    107   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
    108   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
    109   //
    110   // To be able to use signed 16-bit integers, we use the following trick to
    111   // have constants within range:
    112   // - Associated constants are obtained by subtracting the 16-bit fixed point
    113   //   version of one:
    114   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
    115   //      K1 = 85267  =>  k1 =  20091
    116   //      K2 = 35468  =>  k2 = -30068
    117   // - The multiplication of a variable by a constant become the sum of the
    118   //   variable and the multiplication of that variable by the associated
    119   //   constant:
    120   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
    121   const __m128i k1 = _mm_set1_epi16(20091);
    122   const __m128i k2 = _mm_set1_epi16(-30068);
    123   __m128i T0, T1, T2, T3;
    124 
    125   // Load and concatenate the transform coefficients (we'll do two inverse
    126   // transforms in parallel). In the case of only one inverse transform, the
    127   // second half of the vectors will just contain random value we'll never
    128   // use nor store.
    129   __m128i in0, in1, in2, in3;
    130   {
    131     in0 = _mm_loadl_epi64((__m128i*)&in[0]);
    132     in1 = _mm_loadl_epi64((__m128i*)&in[4]);
    133     in2 = _mm_loadl_epi64((__m128i*)&in[8]);
    134     in3 = _mm_loadl_epi64((__m128i*)&in[12]);
    135     // a00 a10 a20 a30   x x x x
    136     // a01 a11 a21 a31   x x x x
    137     // a02 a12 a22 a32   x x x x
    138     // a03 a13 a23 a33   x x x x
    139     if (do_two) {
    140       const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
    141       const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
    142       const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
    143       const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
    144       in0 = _mm_unpacklo_epi64(in0, inB0);
    145       in1 = _mm_unpacklo_epi64(in1, inB1);
    146       in2 = _mm_unpacklo_epi64(in2, inB2);
    147       in3 = _mm_unpacklo_epi64(in3, inB3);
    148       // a00 a10 a20 a30   b00 b10 b20 b30
    149       // a01 a11 a21 a31   b01 b11 b21 b31
    150       // a02 a12 a22 a32   b02 b12 b22 b32
    151       // a03 a13 a23 a33   b03 b13 b23 b33
    152     }
    153   }
    154 
    155   // Vertical pass and subsequent transpose.
    156   {
    157     // First pass, c and d calculations are longer because of the "trick"
    158     // multiplications.
    159     const __m128i a = _mm_add_epi16(in0, in2);
    160     const __m128i b = _mm_sub_epi16(in0, in2);
    161     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
    162     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
    163     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
    164     const __m128i c3 = _mm_sub_epi16(in1, in3);
    165     const __m128i c4 = _mm_sub_epi16(c1, c2);
    166     const __m128i c = _mm_add_epi16(c3, c4);
    167     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
    168     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
    169     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
    170     const __m128i d3 = _mm_add_epi16(in1, in3);
    171     const __m128i d4 = _mm_add_epi16(d1, d2);
    172     const __m128i d = _mm_add_epi16(d3, d4);
    173 
    174     // Second pass.
    175     const __m128i tmp0 = _mm_add_epi16(a, d);
    176     const __m128i tmp1 = _mm_add_epi16(b, c);
    177     const __m128i tmp2 = _mm_sub_epi16(b, c);
    178     const __m128i tmp3 = _mm_sub_epi16(a, d);
    179 
    180     // Transpose the two 4x4.
    181     // a00 a01 a02 a03   b00 b01 b02 b03
    182     // a10 a11 a12 a13   b10 b11 b12 b13
    183     // a20 a21 a22 a23   b20 b21 b22 b23
    184     // a30 a31 a32 a33   b30 b31 b32 b33
    185     const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
    186     const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
    187     const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
    188     const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
    189     // a00 a10 a01 a11   a02 a12 a03 a13
    190     // a20 a30 a21 a31   a22 a32 a23 a33
    191     // b00 b10 b01 b11   b02 b12 b03 b13
    192     // b20 b30 b21 b31   b22 b32 b23 b33
    193     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    194     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    195     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    196     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    197     // a00 a10 a20 a30 a01 a11 a21 a31
    198     // b00 b10 b20 b30 b01 b11 b21 b31
    199     // a02 a12 a22 a32 a03 a13 a23 a33
    200     // b02 b12 a22 b32 b03 b13 b23 b33
    201     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    202     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    203     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    204     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    205     // a00 a10 a20 a30   b00 b10 b20 b30
    206     // a01 a11 a21 a31   b01 b11 b21 b31
    207     // a02 a12 a22 a32   b02 b12 b22 b32
    208     // a03 a13 a23 a33   b03 b13 b23 b33
    209   }
    210 
    211   // Horizontal pass and subsequent transpose.
    212   {
    213     // First pass, c and d calculations are longer because of the "trick"
    214     // multiplications.
    215     const __m128i four = _mm_set1_epi16(4);
    216     const __m128i dc = _mm_add_epi16(T0, four);
    217     const __m128i a =  _mm_add_epi16(dc, T2);
    218     const __m128i b =  _mm_sub_epi16(dc, T2);
    219     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
    220     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
    221     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
    222     const __m128i c3 = _mm_sub_epi16(T1, T3);
    223     const __m128i c4 = _mm_sub_epi16(c1, c2);
    224     const __m128i c = _mm_add_epi16(c3, c4);
    225     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
    226     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
    227     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
    228     const __m128i d3 = _mm_add_epi16(T1, T3);
    229     const __m128i d4 = _mm_add_epi16(d1, d2);
    230     const __m128i d = _mm_add_epi16(d3, d4);
    231 
    232     // Second pass.
    233     const __m128i tmp0 = _mm_add_epi16(a, d);
    234     const __m128i tmp1 = _mm_add_epi16(b, c);
    235     const __m128i tmp2 = _mm_sub_epi16(b, c);
    236     const __m128i tmp3 = _mm_sub_epi16(a, d);
    237     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
    238     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
    239     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
    240     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
    241 
    242     // Transpose the two 4x4.
    243     // a00 a01 a02 a03   b00 b01 b02 b03
    244     // a10 a11 a12 a13   b10 b11 b12 b13
    245     // a20 a21 a22 a23   b20 b21 b22 b23
    246     // a30 a31 a32 a33   b30 b31 b32 b33
    247     const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
    248     const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
    249     const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
    250     const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
    251     // a00 a10 a01 a11   a02 a12 a03 a13
    252     // a20 a30 a21 a31   a22 a32 a23 a33
    253     // b00 b10 b01 b11   b02 b12 b03 b13
    254     // b20 b30 b21 b31   b22 b32 b23 b33
    255     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    256     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    257     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    258     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    259     // a00 a10 a20 a30 a01 a11 a21 a31
    260     // b00 b10 b20 b30 b01 b11 b21 b31
    261     // a02 a12 a22 a32 a03 a13 a23 a33
    262     // b02 b12 a22 b32 b03 b13 b23 b33
    263     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    264     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    265     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    266     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    267     // a00 a10 a20 a30   b00 b10 b20 b30
    268     // a01 a11 a21 a31   b01 b11 b21 b31
    269     // a02 a12 a22 a32   b02 b12 b22 b32
    270     // a03 a13 a23 a33   b03 b13 b23 b33
    271   }
    272 
    273   // Add inverse transform to 'ref' and store.
    274   {
    275     const __m128i zero = _mm_setzero_si128();
    276     // Load the reference(s).
    277     __m128i ref0, ref1, ref2, ref3;
    278     if (do_two) {
    279       // Load eight bytes/pixels per line.
    280       ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
    281       ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
    282       ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
    283       ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
    284     } else {
    285       // Load four bytes/pixels per line.
    286       ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
    287       ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
    288       ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
    289       ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
    290     }
    291     // Convert to 16b.
    292     ref0 = _mm_unpacklo_epi8(ref0, zero);
    293     ref1 = _mm_unpacklo_epi8(ref1, zero);
    294     ref2 = _mm_unpacklo_epi8(ref2, zero);
    295     ref3 = _mm_unpacklo_epi8(ref3, zero);
    296     // Add the inverse transform(s).
    297     ref0 = _mm_add_epi16(ref0, T0);
    298     ref1 = _mm_add_epi16(ref1, T1);
    299     ref2 = _mm_add_epi16(ref2, T2);
    300     ref3 = _mm_add_epi16(ref3, T3);
    301     // Unsigned saturate to 8b.
    302     ref0 = _mm_packus_epi16(ref0, ref0);
    303     ref1 = _mm_packus_epi16(ref1, ref1);
    304     ref2 = _mm_packus_epi16(ref2, ref2);
    305     ref3 = _mm_packus_epi16(ref3, ref3);
    306     // Store the results.
    307     if (do_two) {
    308       // Store eight bytes/pixels per line.
    309       _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
    310       _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
    311       _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
    312       _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
    313     } else {
    314       // Store four bytes/pixels per line.
    315       *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
    316       *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
    317       *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
    318       *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
    319     }
    320   }
    321 }
    322 
    323 static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) {
    324   const __m128i zero = _mm_setzero_si128();
    325   const __m128i seven = _mm_set1_epi16(7);
    326   const __m128i k937 = _mm_set1_epi32(937);
    327   const __m128i k1812 = _mm_set1_epi32(1812);
    328   const __m128i k51000 = _mm_set1_epi32(51000);
    329   const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
    330   const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
    331                                            5352,  2217, 5352,  2217);
    332   const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
    333                                            2217, -5352, 2217, -5352);
    334   const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
    335   const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
    336   const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
    337                                             2217, 5352, 2217, 5352);
    338   const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
    339                                             -5352, 2217, -5352, 2217);
    340   __m128i v01, v32;
    341 
    342 
    343   // Difference between src and ref and initial transpose.
    344   {
    345     // Load src and convert to 16b.
    346     const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
    347     const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
    348     const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
    349     const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
    350     const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
    351     const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
    352     const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
    353     const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
    354     // Load ref and convert to 16b.
    355     const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
    356     const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
    357     const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
    358     const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
    359     const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
    360     const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
    361     const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
    362     const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
    363     // Compute difference. -> 00 01 02 03 00 00 00 00
    364     const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
    365     const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
    366     const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
    367     const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
    368 
    369 
    370     // Unpack and shuffle
    371     // 00 01 02 03   0 0 0 0
    372     // 10 11 12 13   0 0 0 0
    373     // 20 21 22 23   0 0 0 0
    374     // 30 31 32 33   0 0 0 0
    375     const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1);
    376     const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3);
    377     // 00 01 10 11 02 03 12 13
    378     // 20 21 30 31 22 23 32 33
    379     const __m128i shuf01_p =
    380         _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1));
    381     const __m128i shuf23_p =
    382         _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1));
    383     // 00 01 10 11 03 02 13 12
    384     // 20 21 30 31 23 22 33 32
    385     const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
    386     const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
    387     // 00 01 10 11 20 21 30 31
    388     // 03 02 13 12 23 22 33 32
    389     const __m128i a01 = _mm_add_epi16(s01, s32);
    390     const __m128i a32 = _mm_sub_epi16(s01, s32);
    391     // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
    392     // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
    393 
    394     const __m128i tmp0 = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
    395     const __m128i tmp2 = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
    396     const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
    397     const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
    398     const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
    399     const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
    400     const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
    401     const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
    402     const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
    403     const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
    404     const __m128i s_lo = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
    405     const __m128i s_hi = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
    406     const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
    407     v01 = _mm_unpacklo_epi32(s_lo, s_hi);
    408     v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
    409   }
    410 
    411   // Second pass
    412   {
    413     // Same operations are done on the (0,3) and (1,2) pairs.
    414     // a0 = v0 + v3
    415     // a1 = v1 + v2
    416     // a3 = v0 - v3
    417     // a2 = v1 - v2
    418     const __m128i a01 = _mm_add_epi16(v01, v32);
    419     const __m128i a32 = _mm_sub_epi16(v01, v32);
    420     const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
    421     const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
    422     const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
    423 
    424     // d0 = (a0 + a1 + 7) >> 4;
    425     // d2 = (a0 - a1 + 7) >> 4;
    426     const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
    427     const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
    428     const __m128i d0 = _mm_srai_epi16(c0, 4);
    429     const __m128i d2 = _mm_srai_epi16(c2, 4);
    430 
    431     // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
    432     // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
    433     const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
    434     const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
    435     const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
    436     const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
    437     const __m128i d3 = _mm_add_epi32(c3, k51000);
    438     const __m128i e1 = _mm_srai_epi32(d1, 16);
    439     const __m128i e3 = _mm_srai_epi32(d3, 16);
    440     const __m128i f1 = _mm_packs_epi32(e1, e1);
    441     const __m128i f3 = _mm_packs_epi32(e3, e3);
    442     // f1 = f1 + (a3 != 0);
    443     // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
    444     // desired (0, 1), we add one earlier through k12000_plus_one.
    445     // -> f1 = f1 + 1 - (a3 == 0)
    446     const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
    447 
    448     const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
    449     const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
    450     _mm_storeu_si128((__m128i*)&out[0], d0_g1);
    451     _mm_storeu_si128((__m128i*)&out[8], d2_f3);
    452   }
    453 }
    454 
    455 static void FTransformWHT(const int16_t* in, int16_t* out) {
    456   int32_t tmp[16];
    457   int i;
    458   for (i = 0; i < 4; ++i, in += 64) {
    459     const int a0 = (in[0 * 16] + in[2 * 16]);
    460     const int a1 = (in[1 * 16] + in[3 * 16]);
    461     const int a2 = (in[1 * 16] - in[3 * 16]);
    462     const int a3 = (in[0 * 16] - in[2 * 16]);
    463     tmp[0 + i * 4] = a0 + a1;
    464     tmp[1 + i * 4] = a3 + a2;
    465     tmp[2 + i * 4] = a3 - a2;
    466     tmp[3 + i * 4] = a0 - a1;
    467   }
    468   {
    469     const __m128i src0 = _mm_loadu_si128((__m128i*)&tmp[0]);
    470     const __m128i src1 = _mm_loadu_si128((__m128i*)&tmp[4]);
    471     const __m128i src2 = _mm_loadu_si128((__m128i*)&tmp[8]);
    472     const __m128i src3 = _mm_loadu_si128((__m128i*)&tmp[12]);
    473     const __m128i a0 = _mm_add_epi32(src0, src2);
    474     const __m128i a1 = _mm_add_epi32(src1, src3);
    475     const __m128i a2 = _mm_sub_epi32(src1, src3);
    476     const __m128i a3 = _mm_sub_epi32(src0, src2);
    477     const __m128i b0 = _mm_srai_epi32(_mm_add_epi32(a0, a1), 1);
    478     const __m128i b1 = _mm_srai_epi32(_mm_add_epi32(a3, a2), 1);
    479     const __m128i b2 = _mm_srai_epi32(_mm_sub_epi32(a3, a2), 1);
    480     const __m128i b3 = _mm_srai_epi32(_mm_sub_epi32(a0, a1), 1);
    481     const __m128i out0 = _mm_packs_epi32(b0, b1);
    482     const __m128i out1 = _mm_packs_epi32(b2, b3);
    483     _mm_storeu_si128((__m128i*)&out[0], out0);
    484     _mm_storeu_si128((__m128i*)&out[8], out1);
    485   }
    486 }
    487 
    488 //------------------------------------------------------------------------------
    489 // Metric
    490 
    491 static int SSE_Nx4(const uint8_t* a, const uint8_t* b,
    492                    int num_quads, int do_16) {
    493   const __m128i zero = _mm_setzero_si128();
    494   __m128i sum1 = zero;
    495   __m128i sum2 = zero;
    496 
    497   while (num_quads-- > 0) {
    498     // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok,
    499     // thanks to buffer over-allocation to that effect.
    500     const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]);
    501     const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]);
    502     const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]);
    503     const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]);
    504     const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]);
    505     const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]);
    506     const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]);
    507     const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]);
    508 
    509     // compute clip0(a-b) and clip0(b-a)
    510     const __m128i a0p = _mm_subs_epu8(a0, b0);
    511     const __m128i a0m = _mm_subs_epu8(b0, a0);
    512     const __m128i a1p = _mm_subs_epu8(a1, b1);
    513     const __m128i a1m = _mm_subs_epu8(b1, a1);
    514     const __m128i a2p = _mm_subs_epu8(a2, b2);
    515     const __m128i a2m = _mm_subs_epu8(b2, a2);
    516     const __m128i a3p = _mm_subs_epu8(a3, b3);
    517     const __m128i a3m = _mm_subs_epu8(b3, a3);
    518 
    519     // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a)
    520     const __m128i diff0 = _mm_or_si128(a0p, a0m);
    521     const __m128i diff1 = _mm_or_si128(a1p, a1m);
    522     const __m128i diff2 = _mm_or_si128(a2p, a2m);
    523     const __m128i diff3 = _mm_or_si128(a3p, a3m);
    524 
    525     // unpack (only four operations, instead of eight)
    526     const __m128i low0 = _mm_unpacklo_epi8(diff0, zero);
    527     const __m128i low1 = _mm_unpacklo_epi8(diff1, zero);
    528     const __m128i low2 = _mm_unpacklo_epi8(diff2, zero);
    529     const __m128i low3 = _mm_unpacklo_epi8(diff3, zero);
    530 
    531     // multiply with self
    532     const __m128i low_madd0 = _mm_madd_epi16(low0, low0);
    533     const __m128i low_madd1 = _mm_madd_epi16(low1, low1);
    534     const __m128i low_madd2 = _mm_madd_epi16(low2, low2);
    535     const __m128i low_madd3 = _mm_madd_epi16(low3, low3);
    536 
    537     // collect in a cascading way
    538     const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1);
    539     const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3);
    540     sum1 = _mm_add_epi32(sum1, low_sum0);
    541     sum2 = _mm_add_epi32(sum2, low_sum1);
    542 
    543     if (do_16) {  // if necessary, process the higher 8 bytes similarly
    544       const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero);
    545       const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero);
    546       const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero);
    547       const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero);
    548 
    549       const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0);
    550       const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1);
    551       const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2);
    552       const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3);
    553       const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1);
    554       const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3);
    555       sum1 = _mm_add_epi32(sum1, hi_sum0);
    556       sum2 = _mm_add_epi32(sum2, hi_sum1);
    557     }
    558     a += 4 * BPS;
    559     b += 4 * BPS;
    560   }
    561   {
    562     int32_t tmp[4];
    563     const __m128i sum = _mm_add_epi32(sum1, sum2);
    564     _mm_storeu_si128((__m128i*)tmp, sum);
    565     return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
    566   }
    567 }
    568 
    569 static int SSE16x16(const uint8_t* a, const uint8_t* b) {
    570   return SSE_Nx4(a, b, 4, 1);
    571 }
    572 
    573 static int SSE16x8(const uint8_t* a, const uint8_t* b) {
    574   return SSE_Nx4(a, b, 2, 1);
    575 }
    576 
    577 static int SSE8x8(const uint8_t* a, const uint8_t* b) {
    578   return SSE_Nx4(a, b, 2, 0);
    579 }
    580 
    581 static int SSE4x4(const uint8_t* a, const uint8_t* b) {
    582   const __m128i zero = _mm_setzero_si128();
    583 
    584   // Load values. Note that we read 8 pixels instead of 4,
    585   // but the a/b buffers are over-allocated to that effect.
    586   const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
    587   const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
    588   const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
    589   const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
    590   const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
    591   const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
    592   const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
    593   const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
    594 
    595   // Combine pair of lines and convert to 16b.
    596   const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
    597   const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
    598   const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
    599   const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
    600   const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
    601   const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
    602   const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
    603   const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
    604 
    605   // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
    606   // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
    607   //                  need absolute values, there is no need to do calculation
    608   //                  in 8bit as we are already in 16bit, ... Yet this is what
    609   //                  benchmarks the fastest!
    610   const __m128i d0 = _mm_subs_epu8(a01s, b01s);
    611   const __m128i d1 = _mm_subs_epu8(b01s, a01s);
    612   const __m128i d2 = _mm_subs_epu8(a23s, b23s);
    613   const __m128i d3 = _mm_subs_epu8(b23s, a23s);
    614 
    615   // Square and add them all together.
    616   const __m128i madd0 = _mm_madd_epi16(d0, d0);
    617   const __m128i madd1 = _mm_madd_epi16(d1, d1);
    618   const __m128i madd2 = _mm_madd_epi16(d2, d2);
    619   const __m128i madd3 = _mm_madd_epi16(d3, d3);
    620   const __m128i sum0 = _mm_add_epi32(madd0, madd1);
    621   const __m128i sum1 = _mm_add_epi32(madd2, madd3);
    622   const __m128i sum2 = _mm_add_epi32(sum0, sum1);
    623 
    624   int32_t tmp[4];
    625   _mm_storeu_si128((__m128i*)tmp, sum2);
    626   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
    627 }
    628 
    629 //------------------------------------------------------------------------------
    630 // Texture distortion
    631 //
    632 // We try to match the spectral content (weighted) between source and
    633 // reconstructed samples.
    634 
    635 // Hadamard transform
    636 // Returns the difference between the weighted sum of the absolute value of
    637 // transformed coefficients.
    638 static int TTransform(const uint8_t* inA, const uint8_t* inB,
    639                       const uint16_t* const w) {
    640   int32_t sum[4];
    641   __m128i tmp_0, tmp_1, tmp_2, tmp_3;
    642   const __m128i zero = _mm_setzero_si128();
    643 
    644   // Load, combine and transpose inputs.
    645   {
    646     const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
    647     const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
    648     const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
    649     const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
    650     const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
    651     const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
    652     const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
    653     const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
    654 
    655     // Combine inA and inB (we'll do two transforms in parallel).
    656     const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
    657     const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
    658     const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
    659     const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
    660     // a00 b00 a01 b01 a02 b03 a03 b03   0 0 0 0 0 0 0 0
    661     // a10 b10 a11 b11 a12 b12 a13 b13   0 0 0 0 0 0 0 0
    662     // a20 b20 a21 b21 a22 b22 a23 b23   0 0 0 0 0 0 0 0
    663     // a30 b30 a31 b31 a32 b32 a33 b33   0 0 0 0 0 0 0 0
    664 
    665     // Transpose the two 4x4, discarding the filling zeroes.
    666     const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
    667     const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
    668     // a00 a20  b00 b20  a01 a21  b01 b21  a02 a22  b02 b22  a03 a23  b03 b23
    669     // a10 a30  b10 b30  a11 a31  b11 b31  a12 a32  b12 b32  a13 a33  b13 b33
    670     const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
    671     const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
    672     // a00 a10 a20 a30  b00 b10 b20 b30  a01 a11 a21 a31  b01 b11 b21 b31
    673     // a02 a12 a22 a32  b02 b12 b22 b32  a03 a13 a23 a33  b03 b13 b23 b33
    674 
    675     // Convert to 16b.
    676     tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
    677     tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
    678     tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
    679     tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
    680     // a00 a10 a20 a30   b00 b10 b20 b30
    681     // a01 a11 a21 a31   b01 b11 b21 b31
    682     // a02 a12 a22 a32   b02 b12 b22 b32
    683     // a03 a13 a23 a33   b03 b13 b23 b33
    684   }
    685 
    686   // Horizontal pass and subsequent transpose.
    687   {
    688     // Calculate a and b (two 4x4 at once).
    689     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
    690     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
    691     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
    692     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
    693     const __m128i b0 = _mm_add_epi16(a0, a1);
    694     const __m128i b1 = _mm_add_epi16(a3, a2);
    695     const __m128i b2 = _mm_sub_epi16(a3, a2);
    696     const __m128i b3 = _mm_sub_epi16(a0, a1);
    697     // a00 a01 a02 a03   b00 b01 b02 b03
    698     // a10 a11 a12 a13   b10 b11 b12 b13
    699     // a20 a21 a22 a23   b20 b21 b22 b23
    700     // a30 a31 a32 a33   b30 b31 b32 b33
    701 
    702     // Transpose the two 4x4.
    703     const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
    704     const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
    705     const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
    706     const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
    707     // a00 a10 a01 a11   a02 a12 a03 a13
    708     // a20 a30 a21 a31   a22 a32 a23 a33
    709     // b00 b10 b01 b11   b02 b12 b03 b13
    710     // b20 b30 b21 b31   b22 b32 b23 b33
    711     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    712     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    713     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    714     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    715     // a00 a10 a20 a30 a01 a11 a21 a31
    716     // b00 b10 b20 b30 b01 b11 b21 b31
    717     // a02 a12 a22 a32 a03 a13 a23 a33
    718     // b02 b12 a22 b32 b03 b13 b23 b33
    719     tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    720     tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    721     tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    722     tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    723     // a00 a10 a20 a30   b00 b10 b20 b30
    724     // a01 a11 a21 a31   b01 b11 b21 b31
    725     // a02 a12 a22 a32   b02 b12 b22 b32
    726     // a03 a13 a23 a33   b03 b13 b23 b33
    727   }
    728 
    729   // Vertical pass and difference of weighted sums.
    730   {
    731     // Load all inputs.
    732     // TODO(cduvivier): Make variable declarations and allocations aligned so
    733     //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
    734     const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
    735     const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
    736 
    737     // Calculate a and b (two 4x4 at once).
    738     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
    739     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
    740     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
    741     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
    742     const __m128i b0 = _mm_add_epi16(a0, a1);
    743     const __m128i b1 = _mm_add_epi16(a3, a2);
    744     const __m128i b2 = _mm_sub_epi16(a3, a2);
    745     const __m128i b3 = _mm_sub_epi16(a0, a1);
    746 
    747     // Separate the transforms of inA and inB.
    748     __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
    749     __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
    750     __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
    751     __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
    752 
    753     {
    754       // sign(b) = b >> 15  (0x0000 if positive, 0xffff if negative)
    755       const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
    756       const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
    757       const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
    758       const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
    759 
    760       // b = abs(b) = (b ^ sign) - sign
    761       A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
    762       A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
    763       B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
    764       B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
    765       A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
    766       A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
    767       B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
    768       B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
    769     }
    770 
    771     // weighted sums
    772     A_b0 = _mm_madd_epi16(A_b0, w_0);
    773     A_b2 = _mm_madd_epi16(A_b2, w_8);
    774     B_b0 = _mm_madd_epi16(B_b0, w_0);
    775     B_b2 = _mm_madd_epi16(B_b2, w_8);
    776     A_b0 = _mm_add_epi32(A_b0, A_b2);
    777     B_b0 = _mm_add_epi32(B_b0, B_b2);
    778 
    779     // difference of weighted sums
    780     A_b0 = _mm_sub_epi32(A_b0, B_b0);
    781     _mm_storeu_si128((__m128i*)&sum[0], A_b0);
    782   }
    783   return sum[0] + sum[1] + sum[2] + sum[3];
    784 }
    785 
    786 static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
    787                     const uint16_t* const w) {
    788   const int diff_sum = TTransform(a, b, w);
    789   return abs(diff_sum) >> 5;
    790 }
    791 
    792 static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
    793                       const uint16_t* const w) {
    794   int D = 0;
    795   int x, y;
    796   for (y = 0; y < 16 * BPS; y += 4 * BPS) {
    797     for (x = 0; x < 16; x += 4) {
    798       D += Disto4x4(a + x + y, b + x + y, w);
    799     }
    800   }
    801   return D;
    802 }
    803 
    804 //------------------------------------------------------------------------------
    805 // Quantization
    806 //
    807 
    808 static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16],
    809                                        const uint16_t* const sharpen,
    810                                        const VP8Matrix* const mtx) {
    811   const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
    812   const __m128i zero = _mm_setzero_si128();
    813   __m128i coeff0, coeff8;
    814   __m128i out0, out8;
    815   __m128i packed_out;
    816 
    817   // Load all inputs.
    818   // TODO(cduvivier): Make variable declarations and allocations aligned so that
    819   //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
    820   __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
    821   __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
    822   const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
    823   const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
    824   const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
    825   const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
    826 
    827   // extract sign(in)  (0x0000 if positive, 0xffff if negative)
    828   const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
    829   const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
    830 
    831   // coeff = abs(in) = (in ^ sign) - sign
    832   coeff0 = _mm_xor_si128(in0, sign0);
    833   coeff8 = _mm_xor_si128(in8, sign8);
    834   coeff0 = _mm_sub_epi16(coeff0, sign0);
    835   coeff8 = _mm_sub_epi16(coeff8, sign8);
    836 
    837   // coeff = abs(in) + sharpen
    838   if (sharpen != NULL) {
    839     const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&sharpen[0]);
    840     const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&sharpen[8]);
    841     coeff0 = _mm_add_epi16(coeff0, sharpen0);
    842     coeff8 = _mm_add_epi16(coeff8, sharpen8);
    843   }
    844 
    845   // out = (coeff * iQ + B) >> QFIX
    846   {
    847     // doing calculations with 32b precision (QFIX=17)
    848     // out = (coeff * iQ)
    849     const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
    850     const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
    851     const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
    852     const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
    853     __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
    854     __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
    855     __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
    856     __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
    857     // out = (coeff * iQ + B)
    858     const __m128i bias_00 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
    859     const __m128i bias_04 = _mm_loadu_si128((__m128i*)&mtx->bias_[4]);
    860     const __m128i bias_08 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
    861     const __m128i bias_12 = _mm_loadu_si128((__m128i*)&mtx->bias_[12]);
    862     out_00 = _mm_add_epi32(out_00, bias_00);
    863     out_04 = _mm_add_epi32(out_04, bias_04);
    864     out_08 = _mm_add_epi32(out_08, bias_08);
    865     out_12 = _mm_add_epi32(out_12, bias_12);
    866     // out = QUANTDIV(coeff, iQ, B, QFIX)
    867     out_00 = _mm_srai_epi32(out_00, QFIX);
    868     out_04 = _mm_srai_epi32(out_04, QFIX);
    869     out_08 = _mm_srai_epi32(out_08, QFIX);
    870     out_12 = _mm_srai_epi32(out_12, QFIX);
    871 
    872     // pack result as 16b
    873     out0 = _mm_packs_epi32(out_00, out_04);
    874     out8 = _mm_packs_epi32(out_08, out_12);
    875 
    876     // if (coeff > 2047) coeff = 2047
    877     out0 = _mm_min_epi16(out0, max_coeff_2047);
    878     out8 = _mm_min_epi16(out8, max_coeff_2047);
    879   }
    880 
    881   // get sign back (if (sign[j]) out_n = -out_n)
    882   out0 = _mm_xor_si128(out0, sign0);
    883   out8 = _mm_xor_si128(out8, sign8);
    884   out0 = _mm_sub_epi16(out0, sign0);
    885   out8 = _mm_sub_epi16(out8, sign8);
    886 
    887   // in = out * Q
    888   in0 = _mm_mullo_epi16(out0, q0);
    889   in8 = _mm_mullo_epi16(out8, q8);
    890 
    891   _mm_storeu_si128((__m128i*)&in[0], in0);
    892   _mm_storeu_si128((__m128i*)&in[8], in8);
    893 
    894   // zigzag the output before storing it.
    895   //
    896   // The zigzag pattern can almost be reproduced with a small sequence of
    897   // shuffles. After it, we only need to swap the 7th (ending up in third
    898   // position instead of twelfth) and 8th values.
    899   {
    900     __m128i outZ0, outZ8;
    901     outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
    902     outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
    903     outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
    904     outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
    905     outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
    906     outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
    907     _mm_storeu_si128((__m128i*)&out[0], outZ0);
    908     _mm_storeu_si128((__m128i*)&out[8], outZ8);
    909     packed_out = _mm_packs_epi16(outZ0, outZ8);
    910   }
    911   {
    912     const int16_t outZ_12 = out[12];
    913     const int16_t outZ_3 = out[3];
    914     out[3] = outZ_12;
    915     out[12] = outZ_3;
    916   }
    917 
    918   // detect if all 'out' values are zeroes or not
    919   return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
    920 }
    921 
    922 static int QuantizeBlock(int16_t in[16], int16_t out[16],
    923                          const VP8Matrix* const mtx) {
    924   return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx);
    925 }
    926 
    927 static int QuantizeBlockWHT(int16_t in[16], int16_t out[16],
    928                             const VP8Matrix* const mtx) {
    929   return DoQuantizeBlock(in, out, NULL, mtx);
    930 }
    931 
    932 // Forward declaration.
    933 void VP8SetResidualCoeffsSSE2(const int16_t* const coeffs,
    934                               VP8Residual* const res);
    935 
    936 void VP8SetResidualCoeffsSSE2(const int16_t* const coeffs,
    937                               VP8Residual* const res) {
    938   const __m128i c0 = _mm_loadu_si128((const __m128i*)coeffs);
    939   const __m128i c1 = _mm_loadu_si128((const __m128i*)(coeffs + 8));
    940   // Use SSE to compare 8 values with a single instruction.
    941   const __m128i zero = _mm_setzero_si128();
    942   const __m128i m0 = _mm_cmpeq_epi16(c0, zero);
    943   const __m128i m1 = _mm_cmpeq_epi16(c1, zero);
    944   // Get the comparison results as a bitmask, consisting of two times 16 bits:
    945   // two identical bits for each result. Concatenate both bitmasks to get a
    946   // single 32 bit value. Negate the mask to get the position of entries that
    947   // are not equal to zero. We don't need to mask out least significant bits
    948   // according to res->first, since coeffs[0] is 0 if res->first > 0
    949   const uint32_t mask =
    950       ~(((uint32_t)_mm_movemask_epi8(m1) << 16) | _mm_movemask_epi8(m0));
    951   // The position of the most significant non-zero bit indicates the position of
    952   // the last non-zero value. Divide the result by two because __movemask_epi8
    953   // operates on 8 bit values instead of 16 bit values.
    954   assert(res->first == 0 || coeffs[0] == 0);
    955   res->last = mask ? (BitsLog2Floor(mask) >> 1) : -1;
    956   res->coeffs = coeffs;
    957 }
    958 
    959 #endif   // WEBP_USE_SSE2
    960 
    961 //------------------------------------------------------------------------------
    962 // Entry point
    963 
    964 extern void VP8EncDspInitSSE2(void);
    965 
    966 void VP8EncDspInitSSE2(void) {
    967 #if defined(WEBP_USE_SSE2)
    968   VP8CollectHistogram = CollectHistogram;
    969   VP8EncQuantizeBlock = QuantizeBlock;
    970   VP8EncQuantizeBlockWHT = QuantizeBlockWHT;
    971   VP8ITransform = ITransform;
    972   VP8FTransform = FTransform;
    973   VP8FTransformWHT = FTransformWHT;
    974   VP8SSE16x16 = SSE16x16;
    975   VP8SSE16x8 = SSE16x8;
    976   VP8SSE8x8 = SSE8x8;
    977   VP8SSE4x4 = SSE4x4;
    978   VP8TDisto4x4 = Disto4x4;
    979   VP8TDisto16x16 = Disto16x16;
    980 #endif   // WEBP_USE_SSE2
    981 }
    982 
    983